1
|
Nicolaidou V, Koufaris C. Application of transcriptomic and microRNA profiling in the evaluation of potential liver carcinogens. Toxicol Ind Health 2020; 36:386-397. [PMID: 32419640 DOI: 10.1177/0748233720922710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocarcinogens are agents that increase the incidence of liver cancer in exposed animals or humans. It is now established that carcinogenic exposures have a widespread impact on the transcriptome, inducing both adaptive and adverse changes in the activities of genes and pathways. Chemical hepatocarcinogens have also been shown to affect expression of microRNA (miRNA), the evolutionarily conserved noncoding RNA that regulates gene expression posttranscriptionally. Considerable effort has been invested into examining the involvement of mRNA in chemical hepatocarcinogenesis and their potential usage for the classification and prediction of new chemical entities. For miRNA, there has been an increasing number of studies reported over the past decade, although not to the same degree as for transcriptomic studies. Current data suggest that it is unlikely that any gene or miRNA signature associated with short-term carcinogen exposure can replace the rodent bioassay. In this review, we discuss the application of transcriptomic and miRNA profiles to increase mechanistic understanding of chemical carcinogens and to aid in their classification.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
David R. The promise of toxicogenomics for genetic toxicology: past, present and future. Mutagenesis 2020; 35:153-159. [PMID: 32087008 DOI: 10.1093/mutage/geaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
Toxicogenomics, the application of genomics to toxicology, was described as 'a new era' for toxicology. Standard toxicity tests typically involve a number of short-term bioassays that are costly, time consuming, require large numbers of animals and generally focus on a single end point. Toxicogenomics was heralded as a way to improve the efficiency of toxicity testing by assessing gene regulation across the genome, allowing rapid classification of compounds based on characteristic expression profiles. Gene expression microarrays could measure and characterise genome-wide gene expression changes in a single study and while transcriptomic profiles that can discriminate between genotoxic and non-genotoxic carcinogens have been identified, challenges with the approach limited its application. As such, toxicogenomics did not transform the field of genetic toxicology in the way it was predicted. More recently, next generation sequencing (NGS) technologies have revolutionised genomics owing to the fact that hundreds of billions of base pairs can be sequenced simultaneously cheaper and quicker than traditional Sanger methods. In relation to genetic toxicology, and thousands of cancer genomes have been sequenced with single-base substitution mutational signatures identified, and mutation signatures have been identified following treatment of cells with known or suspected environmental carcinogens. RNAseq has been applied to detect transcriptional changes following treatment with genotoxins; modified RNAseq protocols have been developed to identify adducts in the genome and Duplex sequencing is an example of a technique that has recently been developed to accurately detect mutation. Machine learning, including MutationSeq and SomaticSeq, has also been applied to somatic mutation detection and improvements in automation and/or the application of machine learning algorithms may allow high-throughput mutation sequencing in the future. This review will discuss the initial promise of transcriptomics for genetic toxicology, and how the development of NGS technologies and new machine learning algorithms may finally realise that promise.
Collapse
Affiliation(s)
- Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
3
|
Kobets T, Iatropoulos MJ, Williams GM. Mechanisms of DNA-reactive and epigenetic chemical carcinogens: applications to carcinogenicity testing and risk assessment. Toxicol Res (Camb) 2019; 8:123-145. [PMID: 30997017 PMCID: PMC6417487 DOI: 10.1039/c8tx00250a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
Chemicals with carcinogenic activity in either animals or humans produce increases in neoplasia through diverse mechanisms. One mechanism is reaction with nuclear DNA. Other mechanisms consist of epigenetic effects involving either modifications of regulatory macromolecules or perturbation of cellular regulatory processes. The basis for distinguishing between carcinogens that have either DNA reactivity or an epigenetic activity as their primary mechanism of action is detailed in this review. In addition, important applications of information on these mechanisms of action to carcinogenicity testing and human risk assessment are discussed.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| | - Michael J Iatropoulos
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| | - Gary M Williams
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| |
Collapse
|
4
|
Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens. Chem Biol Interact 2019; 301:88-111. [DOI: 10.1016/j.cbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
|
5
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
6
|
Malik DES, David RM, Gooderham NJ. Mechanistic evidence that benzo[a]pyrene promotes an inflammatory microenvironment that drives the metastatic potential of human mammary cells. Arch Toxicol 2018; 92:3223-3239. [PMID: 30155724 PMCID: PMC6132703 DOI: 10.1007/s00204-018-2291-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (B(a)P) is a major cancer-causing contaminant present in food such as cooked meats and cereals, and is ubiquitous in the environment in smoke derived from the combustion of organic material. Exposure to B(a)P is epidemiologically linked with the incidence of breast cancer. Although B(a)P is recognized as a complete genotoxic carcinogen, thought to act primarily via CYP-mediated metabolic activation to DNA-damaging species, there is also evidence that B(a)P exposure elicits other biological responses that promote development of the cancer phenotype. Here in mechanistic studies using human mammary cells MCF-7 and MDA-MB-231, we have explored mechanisms whereby B(a)P (10- 8 to 10- 5M) promotes inflammation pathways via TNF-α and NFκB leading to IL-6 upregulation, microRNA (Let7a, miR21 and miR29b) dysregulation and activation of VEGF. The miRNA dysregulation is associated with altered expression of inflammation mediators and increased migration and invasive potential of human mammary cancer cells. Our data suggest that mammary cell exposure to B(a)P results in perturbation of inflammation mediators and dysregulation of tumorigenic miRNAs, leading to an inflammation microenvironment that facilitates migration and invasion of mammary epithelial cells. These properties of B(a)P, together with its well-established metabolic activation to DNA-damaging species, offer mechanistic insights into its carcinogenic mode of action.
Collapse
Affiliation(s)
- Durr-E-Shahwar Malik
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Rhiannon M David
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK
- Genetic Toxicology, Drug Safety and Metabolism, MSAS Unit, AstraZeneca, Cambridge, UK
| | - Nigel J Gooderham
- Computational and Systems Medicine, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Plummer SM, Wright J, Currie RA. Dose-dependent effects on rat liver miRNAs 200a/b and 429: potential early biomarkers of liver carcinogenesis. Toxicol Rep 2018; 5:309-313. [PMID: 29556478 PMCID: PMC5856664 DOI: 10.1016/j.toxrep.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
An increased incidence of liver tumours in the long term rodent bioassay is not an uncommon finding, invariably as a result of a non-genotoxic mode of action. Non-genotoxic liver carcinogenesis has been found to involve activation of certain nuclear hormone receptors (NHR) including the constitutive androstane receptor (CAR), peroxisome proliferator activated receptor alpha (PPARalpha) and arylhydrocarbon receptor (AHR) and more recently the induction of specific microRNAs (miRs), has also been demonstrated following CAR activation in studies up to 90 days (Koufaris et al., 2012). The stable induction of these tissue specific miRs, namely miR200a, 200b and 429, by liver non-genotoxic carcinogens may serve as early predictors (biomarkers) of heptocarcinogenic potential. To test this hypothesis we used RT-PCR to measure the levels of these miRs in the livers from Wistar rats treated with two rat hepatocarcinogenic and one non hepatocarcinogenic pyrazole carboxamide succinate dehydrogenase inhibitors, Isopyrazam, Sedaxane and Benzovindiflupyr, respectively. The miRs were quantified by RT-PCR in liver RNA samples from three 90 day repeat dose toxicity studies performed at the low, mid and high doses relative to control. In Isopyrazam treated rats a statistically significant (p < 0.01) dose-dependent increase in miR 200a, 220b and 429 in both males and females was observed, whilst for Sedaxane a significant (p < 0.05) increase in miR200b in males and females at the high dose was seen. Benzovindiflupyr treatment did not cause any dose related changes in miR 200a, 200b and 429 relative to control. Our results suggest that assessment of miR 200a/200b/429 levels has potential as a biomarker of the perturbation of pathways involved in hepatocarcinogenesis in Wistar rats. Further work is required to establish the possible relationship between miR200 cluster induction and CAR-mediated hepatocarcinogenesis in a more diverse range of compounds.
Collapse
Affiliation(s)
| | - J Wright
- MicroMatrices Associates Ltd, Dundee, UK
| | | |
Collapse
|
8
|
Guo XY, Sun F, Chen JN, Wang YQ, Pan Q, Fan JG. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 2018; 24:323-337. [PMID: 29391755 PMCID: PMC5776394 DOI: 10.3748/wjg.v24.i3.323] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate micro (mi)R-34a-antagonizing circular (circ)RNA that underlies hepatocellular steatosis. METHODS The effect of circRNA on miR-34a was recognized by the miRNA response element (MRE), and validated by the dual-luciferase reporter assay. Its association with hepatocellular steatosis was investigated in HepG2-based hepatocellular steatosis induced by free fatty acids (FFAs; 2:1 oleate:palmitate) stimulation. After normalization of the steatosis-related circRNA by expression vector, analysis of miR-34a activity, peroxisome proliferator-activated receptor (PPAR)α level, and expression of downstream genes were carried out so as to reveal its impact on the miR-34a/PPARα regulatory system. Both triglyceride (TG) assessment and cytopathological manifestations uncovered the role of circRNA in miR-34a-dependent hepatosteatogenesis. RESULTS Bioinformatic and functional analysis verified circRNA_0046366 to antagonize the activity of miR-34a via MRE-based complementation. In contrast to its lowered level during FFA-induced hepatocellular steatosis, circRNA_0046366 up-regulation abolished the miR-34a-dependent inhibition of PPARα that played a critical role in metabolic signaling pathways. PPARα restoration exerted transcriptional improvement to multiple genes responsible for lipid metabolism. TG-specific lipolytic genes [carnitine palmitoyltransferase 1A (CPT1A) and solute-carrier family 27A (SLC27A)] among these showed significant increase in their expression levels. The circRNA_0046366-related rebalancing of lipid homeostasis led to dramatic reduction of TG content, and resulted in the ameliorated phenotype of hepatocellular steatosis. CONCLUSION Dysregulation of circRNA_0046366/miR-34a/PPARα signaling may be a novel epigenetic mechanism underlying hepatocellular steatosis. circRNA_0046366 serves as a potential target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Xing-Ya Guo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Fang Sun
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Neng Chen
- Department of Hepatology, Zhengxing Hospital, Zhangzhou 363000, Fujian Province, China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Children’s Digestion and Nutrition, Shanghai 200092, China
| |
Collapse
|
9
|
Lin H, Ewing LE, Koturbash I, Gurley BJ, Miousse IR. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem Toxicol 2017; 110:229-239. [PMID: 29042291 PMCID: PMC6693868 DOI: 10.1016/j.fct.2017.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that are involved in various biological processes that regulate gene expression posttranscriptionally. Changes in miRNA expression can be detected in many physiological and pathological events, such as liver injury. Drug induced liver injury is a life threatening condition that frequently requires organ transplantation. Hepatotoxicity is also one of the major causes of drug failure in clinical trials and of drug withdrawal from the market. The profiling of miRNA expression shows great promise in monitoring liver injury, in the prediction of outcome in patients, and in the identification of liver-reactive compounds in toxicological assessment. Recent studies have demonstrated organ-specificity of some miRNAs (i.e., miR-122), which are released into biological fluids as a result of hepatocyte damage. This attests to the potential of miRNAs as noninvasive biomarkers to detect liver toxicity. This review presents information on miRNA signatures of hepatotoxicity and on the application of promising miRNA biomarkers in preclinical safety assessment. We further discuss the technical challenges associated with these emerging biomarkers for early diagnosis and detection of hepatotoxicity.
Collapse
Affiliation(s)
- Haixia Lin
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Laura E Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| | - Bill J Gurley
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, United States.
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, United States.
| |
Collapse
|
10
|
Loiodice S, Nogueira da Costa A, Atienzar F. Current trends in in silico, in vitro toxicology, and safety biomarkers in early drug development. Drug Chem Toxicol 2017; 42:113-121. [DOI: 10.1080/01480545.2017.1400044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simon Loiodice
- Department of Non-Clinical Development, UCB Biopharma SPRL, Braine-l’Alleud, Belgium
| | | | - Franck Atienzar
- Department of Non-Clinical Development, UCB Biopharma SPRL, Braine-l’Alleud, Belgium
| |
Collapse
|
11
|
|
12
|
Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Profound changes in miRNA expression during cancer initiation by aflatoxin B 1 and their abrogation by the chemopreventive triterpenoid CDDO-Im. Mol Carcinog 2017; 56:2382-2390. [PMID: 28218475 DOI: 10.1002/mc.22635] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a potent human and animal hepatocarcinogen. To investigate the effects of aflatoxin on miRNA expression during the initiation phase of carcinogenesis, next-generation sequencing was used to analyze liver tissues from F344 rats exposed to 200 μg/kg per day AFB1 for 4 week. A panel of miRNAs was identified that was upregulated with AFB1 treatment compared to controls: rno-miR-434-3p, rno-miR-411-5p, rno-miR-221-3p, rno-miR-127-3p, rno-miR-205, rno-miR-429, rno-miR-34a-5p, rno-miR-181c-3p, rno-miR-200b-3p, and rno-miR-541-5p. Analysis of rat livers exposed to AFB1 plus the chemopreventive triterpenoid CDDO-Im revealed a striking abrogation of this upregulation. These changes were validated by real-time PCR. We also explored the temporal variation in expression of the candidate miRNAs during the 4-week dosing period. Most of the candidate miRNAs were upregulated at week 1 and increased for the duration of AFB1 dosing over the 4-week period. Treatment with CDDO-Im ameliorated these effects at all time points. All candidate miRNAs were detectable in serum from aflatoxin treated animals; however, there was no significant difference in expression for 7 of the 11 miRNAs examined. Exposure to AFB1 upregulated miR-122-5p (fivefold), 34a-5p (13-fold), and 181c-3p (170-fold) compared with controls. The findings from this study give insight into epigenetic changes induced by aflatoxin taking place during the initial step of carcinogenesis.
Collapse
Affiliation(s)
| | | | - Bill D Roebuck
- Dartmouth College School of Medicine, Hanover, New Hampshire
| | - Thomas W Kensler
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John D Groopman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
13
|
Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop. Regul Toxicol Pharmacol 2016; 82:127-139. [DOI: 10.1016/j.yrtph.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
|
14
|
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98:2-10. [DOI: 10.1016/j.fct.2016.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 02/09/2023]
|
15
|
Zhou Y, Huang H, Zhang K, Ding X, Jia L, Yu L, Zhu G, Guo J. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:98-107. [PMID: 27267425 DOI: 10.1016/j.etap.2016.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/15/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
MicroRNA (miRNA) can regulate the expression of its target gene by mediating mRNA cleavage or by translational repression at a post-transcriptional level. Usually, one miRNA may regulate many genes as its targets, while one gene may also be targeted by many miRNAs. We previously demonstrated that cyb561d2, whose protein product is involved in cell defense, and chemical stress, is targeted by miR-155 in adult zebrafish (Danio rerio) when exposed to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile). Microcosm Targets prediction showed that the cyb561d2 gene is also highly possibly targeted by miR-194a, miR-216b, miR-429, and miR-499. These interactions need to be further validated experimentally. In this study, we evaluated the effects of fipronil on miR-194a, miR-216b, miR-429, miR-499 and cyb561d2 in zebrafish and investigated whether these four miRNAs could regulate the expression of cyb561d2 in both mRNA and protein levels. The expression of cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil, and miR-216b and miR-499 were downregulated concurrently, whereas there was no significant changes were observed in the expression level of miR-194a and miR-429. The dual luciferase report assay demonstrated that miR-216b and miR-499 interacted with cyb561d2 3'-untranslated regions (3'-UTR), miR-194a and miR-429 did not stimulate degradation of cyb561d2 mRNA. The expression of cyb561d2 was reduced in both mRNA and protein level when ZF4 cells were transfected with miR-499 mimic, whereas expression level of both mRNA and protein was increased when endogenous miR-499 was inhibited by transfection with miR-499 inhibitor. Likewise, the mRNA and protein level of cyb561d2 was affected by treatment with the mimics and the inhibitor of miR-216b. In contrast, when ZF4 cells were transfected with a mimic of miR-194a or miR-429, the expression of cyb561d2 mRNA was not significantly changed. As a result, cyb561d2 is targeted by miR-155, miR-216b and miR-499 upon fipronil exposure, and miR-194a and miR-429 can not target cyb561d2. The expression pattern of these 3 miRNAs presents novel fipronil responses that could be used as a toxicological biomarker.
Collapse
Affiliation(s)
- Yongyong Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hannian Huang
- Department of Applied Engineering, Zhejiang Economic & Trade Polytechnic, Hangzhou 310018, People's Republic of China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xianfeng Ding
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Longlue Jia
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Liang Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Jiangfeng Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
16
|
Transdifferentiated rat pancreatic progenitor cells (AR42J-B13/H) respond to phenobarbital in a rat hepatocyte-specific manner. Toxicology 2016; 363-364:10-8. [PMID: 27427493 DOI: 10.1016/j.tox.2016.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
Abstract
Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat.
Collapse
|
17
|
Rieswijk L, Brauers KJJ, Coonen MLJ, Jennen DGJ, van Breda SGJ, Kleinjans JCS. Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity. Mutagenesis 2016; 31:603-15. [PMID: 27338304 DOI: 10.1093/mutage/gew027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.
Collapse
Affiliation(s)
- Linda Rieswijk
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Karen J J Brauers
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and
| | - Maarten L J Coonen
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Simone G J van Breda
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| |
Collapse
|
18
|
Rieswijk L, Claessen SM, Bekers O, van Herwijnen M, Theunissen DH, Jennen DG, de Kok TM, Kleinjans JC, van Breda SG. Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology 2016; 350-352:31-9. [DOI: 10.1016/j.tox.2016.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/30/2023]
|
19
|
Dong H, Curran I, Williams A, Bondy G, Yauk CL, Wade MG. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:201-210. [PMID: 26724606 DOI: 10.1016/j.etap.2015.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Ivan Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Genevieve Bondy
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9.
| |
Collapse
|
20
|
Marrone AK, Tryndyak V, Beland FA, Pogribny IP. MicroRNA Responses to the Genotoxic Carcinogens Aflatoxin B1and Benzo[a]pyrene in Human HepaRG Cells. Toxicol Sci 2015; 149:496-502. [DOI: 10.1093/toxsci/kfv253] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
21
|
Liu C, Yu H, Zhang Y, Li D, Xing X, Chen L, Zeng X, Xu D, Fan Q, Xiao Y, Chen W, Wang Q. Upregulation of miR-34a-5p antagonizes AFB1-induced genotoxicity in F344 rat liver. Toxicon 2015; 106:46-56. [PMID: 26385312 DOI: 10.1016/j.toxicon.2015.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023]
Abstract
Aflatoxin B1 (AFB1) is a well-known human hepatotoxicant and genotoxicant. Recent studies demonstrated that aberrant miRNA expression patterns were correlated with the cellular and genetic lesions induced by chemicals. To explore the role of miRNAs in AFB1-induced hepatotoxicity and genotoxicity, we examined alterations in miRNA expression patterns in F334 rat livers after exposure to 100 μg/kg or 200 μg/kg AFB1 for 28 days. Using high-throughput sequencing, we discovered that rno-miR-34a-5p, rno-miR-200b-3p, and rno-miR-429 were up-regulated and that rno-miR-130a-3p was down-regulated in liver tissue from rats that received 200 μg/kg of AFB1; this finding was validated by real-time PCR. AFB1 treatment resulted in the upregulation of rno-miR-34a-5p and rno-miR-200b-3p in the rat H-4-II-E cell line similar to our in vivo observations. Moreover, rno-miR-34a-5p was transcriptionally elevated via p53 activation after AFB1 exposure. Upregulation of rno-miR-34a-5p suppressed the expression of the cell cycle-related genes CCND1, CCNE2 and MET and led to cell cycle arrest in the G0-G1 phase. The CBMN assay indicated that inhibition of rno-miR-34a-5p and p53 expression aggravated the DNA damage induced by AFB1, which might be associated with shortening of the DNA damage repair period. Circulating miR-34a-5p in rat sera preceded a significant increase in ALT activity and other miRNAs in the 100 μg/kg AFB1 group. These observations demonstrated that rno-miR-34a-5p responded sensitively to AFB1 exposure and facilitated p53 repair of DNA damage by impacting the cell cycle. Thus, circulating rno-miR-34a-5p may be a sensitive indicator for the induction of hepatic genotoxicity by AFB1 in rats.
Collapse
Affiliation(s)
- Caixia Liu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Haohui Yu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Hospital Infection Control, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan Zhang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Dandan Xu
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiming Fan
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Faculty of Preventive Medicine, A Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Dong H, Gill S, Curran IH, Williams A, Kuo B, Wade MG, Yauk CL. Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Arch Toxicol 2015; 90:1351-67. [PMID: 26194646 PMCID: PMC4873526 DOI: 10.1007/s00204-015-1561-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/11/2023]
Abstract
Furan is a widely used industrial chemical and a contaminant in heated foods. Chronic furan exposure causes cholangiocarcinoma and hepatocellular tumors in rats at doses of 2 mg/kg bw/day or greater, with gender differences in frequency and severity. The hepatic transcriptional alterations induced by low doses of furan (doses below those previously tested for induction of liver tumors) and the potential mechanisms underlying gender differences are largely unexplored. We used DNA microarrays to examine the global hepatic mRNA and microRNA transcriptional profiles of male and female rats exposed to 0, 0.03, 0.12, 0.5 or 2 mg/kg bw/day furan over 90 days. Marked gender differences in gene expression responses to furan were observed, with many more altered genes in exposed males than females, confirming the increased sensitivity of males even at the low doses. Pathway analysis supported that key events in furan-induced liver tumors in males include gene expression changes related to oxidative stress, apoptosis and inflammatory response, while pathway changes in females were consistent with primarily adaptive responses. Pathway benchmark doses (BMDs) were estimated and compared to relevant apical endpoints. Transcriptional pathway BMDs could only be examined in males. These median BMDs ranged from 0.08 to 1.43 mg/kg bw/day and approximated those derived from traditional histopathology. MiR-34a (a P53 target) was the only microRNA significantly increased at the 2 mg/kg bw/day, providing evidence to support the importance of apoptosis and cell proliferation in furan hepatotoxicity. Overall, this study demonstrates the use of transcriptional profiling to discern mode of action and mechanisms involved in gender differences.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Santokh Gill
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ivan H Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
23
|
Segal CV, Koufaris C, Powell C, Gooderham NJ. Effects of treatment with androgen receptor ligands on microRNA expression of prostate cancer cells. Toxicology 2015; 333:45-52. [PMID: 25846647 DOI: 10.1016/j.tox.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/26/2022]
Abstract
Post-transcriptional regulation by microRNA (miRNA) is an important aspect of androgen receptor (AR) signalling in prostate cancer cells. However, the global profiling of miRNA expression in prostate cancer cells following treatment with AR ligands has not been reported so far. In this study we examined the effect of treatment with two AR agonists (mibolerone (MIB) and dihydrotestosterone (DHT)) and an AR antagonist (bicalutamide (BIC)) on miRNA expression in the human androgen-dependent LNCaP prostate cancer cell line using microarray technology and verification of selected miRNA using quantitative real-time PCR (qRT-PCR). No miRNA was identified as differentially expressed following treatment with the AR antagonist BIC. In contrast, a number of common and compound-specific alterations in miRNA expression were observed following treatment with AR agonists. Unexpectedly it was found that treatment with the AR agonists resulted in the repression of miR-221, a miRNA previously established to be involved with prostate cancer development. This observation indicates that this miRNA may have a more complex role in prostate cancer development than considered previously. Treatment with MIB led to an induction of miR-210 expression, a hypoxia-related miRNA. This miRNA is reported to be involved in cell adaptation to hypoxia and thus induction in conditions of normoxia may be important in driving metabolic changes observed in prostate cancer. Thus examining the effect of AR agonists and antagonists on miRNA expression can provide novel insights into the response of cells to AR ligands and subsequent downstream events.
Collapse
Affiliation(s)
- Corrinne V Segal
- Department of Surgery & Cancer, Biomolecular Medicine, Imperial College London, London SW72AZ, UK
| | - Costas Koufaris
- Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Cyprus
| | | | - Nigel J Gooderham
- Department of Surgery & Cancer, Biomolecular Medicine, Imperial College London, London SW72AZ, UK.
| |
Collapse
|
24
|
Sinigaglia A, Lavezzo E, Trevisan M, Sanavia T, Di Camillo B, Peta E, Scarpa M, Castagliuolo I, Guido M, Sarcognato S, Cappellesso R, Fassina A, Cardin R, Farinati F, Palù G, Barzon L. Changes in microRNA expression during disease progression in patients with chronic viral hepatitis. Liver Int 2015; 35:1324-33. [PMID: 25417901 DOI: 10.1111/liv.12737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) have been involved in hepatocarcinogenesis, but little is known on their role in the progression of chronic viral hepatitis. Aim of this study was to identify miRNA signatures associated with stages of disease progression in patients with chronic viral hepatitis. METHODS MiRNA expression profile was investigated in liver biopsies from patients with chronic viral hepatitis and correlated with clinical, virological and histopathological features. Relevant miRNAs were further investigated. RESULTS Most of the significant changes in miRNA expression were associated with liver fibrosis stages and included the significant up-regulation of a group of miRNAs that were demonstrated to target the master regulators of epithelial-mesenchymal transition ZEB1 and ZEB2 and involved in the preservation of epithelial cell differentiation, but also in cell proliferation and fibrogenesis. In agreement with miRNA data, immunostaining of liver biopsies showed that expression of the epithelial marker E-cadherin was maintained in severe fibrosis/cirrhosis while expression of ZEBs and other markers of epithelial-mesenchymal transition were low or absent. Severe liver fibrosis was also significantly associated with the down-regulation of miRNAs with antiproliferative and tumour suppressor activity. Similar changes in miRNA and target gene expression were demonstrated along with disease progression in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, suggesting that they might represent a general response to liver injury. CONCLUSION Chronic viral hepatitis progression is associated with the activation of miRNA pathways that promote cell proliferation and fibrogenesis, but preserve the differentiated hepatocyte phenotype.
Collapse
Affiliation(s)
- Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, Padova, Italy; IOV Istituto Oncologico Veneto, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nicolaidou V, Koufaris C. MicroRNA responses to environmental liver carcinogens: Biological and clinical significance. Clin Chim Acta 2015; 445:25-33. [PMID: 25773117 DOI: 10.1016/j.cca.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Abstract
A large number of biological, chemical, and dietary factors have been implicated in the development of liver cancer. These involve complex and protracted interactions between genetic, epigenetic, and environmental factors. The survival rate for patients diagnosed with late-stage liver cancer is currently low due to the aggressive nature of the disease and resistance to therapy. An increasing body of evidence has offered support for the crucial role of non-coding microRNA (miRNA) in directing hepatic responses to environmental risk factors for liver cancer. In this review we focus on miRNA responses to environmental liver cancer risk factors and their potential biological and clinical significance.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Cyprus; Center for the study of Haematological Malignancies, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Cytogenetics and Genomic, Cyprus Institute of Neurology and Genetics, Cyprus.
| |
Collapse
|
26
|
Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol 2015; 11:601-11. [PMID: 25739314 DOI: 10.1517/17425255.2015.1021687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Adverse drug reactions present significant challenges that impact pharmaceutical development and are major burdens to public health services worldwide. In response to this need, the field of toxicology is rapidly expanding to identify key pathways involved in drug toxicity. AREAS COVERED MicroRNAs (miRNAs) are a class of small evolutionary conserved endogenous non-coding RNAs that regulate the translation of protein-coding genes. A wide range of toxicants alter miRNA levels in target organs and these altered miRNAs can also be detected in easily accessible biological fluids. This, combined with an early miRNA response to toxic insults and miRNA stability, substantiates the potential for these small molecules to be useful biomarkers for drug safety assessment. EXPERT OPINION miRNAs are early indicators and useful tools to detect drug-induced toxicity. Incorporation of miRNA profiling into the drug safety testing process will complement currently used techniques and may substantially enhance drug safety. With the increasing interests in translational research, the field of miRNA biomarker research will continue to expand and become an important part of the investigation of human drug toxicity.
Collapse
Affiliation(s)
- April K Marrone
- FDA-National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|
27
|
Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:170-8. [PMID: 25445902 PMCID: PMC4447300 DOI: 10.1016/j.dci.2014.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 05/03/2023]
Abstract
Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.
Collapse
Affiliation(s)
- Nathan J Dennison
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Omar J BenMarzouk-Hidalgo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Anadol E, Schierwagen R, Elfimova N, Tack K, Schwarze-Zander C, Eischeid H, Noetel A, Boesecke C, Jansen C, Dold L, Wasmuth JC, Strassburg CP, Spengler U, Rockstroh JK, Odenthal M, Trebicka J. Circulating microRNAs as a marker for liver injury in human immunodeficiency virus patients. Hepatology 2015; 61:46-55. [PMID: 25125218 DOI: 10.1002/hep.27369] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/13/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Human immunodeficiency virus (HIV) and hepatitis virus coinfection amplify and accelerate hepatic injury. MicroRNAs (miRNAs) are small regulatory RNAs suggested as biomarkers for liver injury. We analyzed the circulating levels of miRNAs in HIV patients with regard to the extent and etiology of liver injury. Total RNA was extracted from 335 serum samples of HIV patients and 22 healthy control participants using Qiazol. Comprehensive polymerase chain reaction (PCR) array analyses (768 miRNA) were performed in serum samples of eight HIV, eight HIV/HCV (hepatitis C virus), six HCV patients, and three healthy controls. Reverse transcription (RT)-PCR measured levels of miRNA-122, miRNA-22, and miRNA-34a in serum samples of 335 patients and 19 healthy control participants. Liver injury and fibrosis in these patients were defined using aspartate aminotransferase (AST) levels, fibrosis-4 (FIB-4) index and AST-to-platelet ratio index (APRI) score. The miRNA pattern of HIV/HCV samples showed altered expression of 57 and 33 miRNA compared to HCV and HIV infection, respectively. miRNA-122, miRNA-22, and miRNA-34a were highly up-regulated in HIV/HCV patients. Analyzing the entire cohort, these miRNAs were correlated with liver function tests and were independent predictors of liver injury (AST >2 × ULN). miRNA-122 and miRNA-22 were associated with relevant fibrosis (FIB-4 >1.45; APRI >1). Circulating levels of miRNA-122 were independent predictors for relevant fibrosis in HIV patients. Interestingly, miRNA-122 and miRNA-34a levels were higher in HIV/HCV patients, miRNA-22 levels were highest in HIV/HBV patients, and circulating levels of miRNA-34a correlated positively with illicit drug use and ethanol consumption. CONCLUSION Circulating miRNA-122, miRNA-22, and miRNA-34a correlates with the etiology of liver injury in HIV patients. These biomarkers not only mirror different mechanisms of hepatic injury, but also are independent predictors of liver injury in HIV patients.
Collapse
Affiliation(s)
- Evrim Anadol
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kossler N, Matheis KA, Ostenfeldt N, Bach Toft D, Dhalluin S, Deschl U, Kalkuhl A. Identification of specific mRNA signatures as fingerprints for carcinogenesis in mice induced by genotoxic and nongenotoxic hepatocarcinogens. Toxicol Sci 2014; 143:277-95. [PMID: 25410580 DOI: 10.1093/toxsci/kfu248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long-term rodent carcinogenicity studies for evaluation of chemicals and pharmaceuticals concerning their carcinogenic potential to humans are currently receiving critical revision. Additional data from mechanistic studies can support cancer risk assessment by clarifying the underlying mode of action. In the course of the IMI MARCAR project, a European consortium of EFPIA partners and academics, which aims to identify biomarkers for nongenotoxic carcinogenesis, a toxicogenomic mouse liver database was generated. CD-1 mice were orally treated for 3 and 14 days with 3 known genotoxic hepatocarcinogens: C.I. Direct Black 38, Dimethylnitrosamine and 4,4'-Methylenedianiline; 3 nongenotoxic hepatocarcinogens: 1,4-Dichlorobenzene, Phenobarbital sodium and Piperonyl butoxide; 4 nonhepatocarcinogens: Cefuroxime sodium, Nifedipine, Prazosin hydrochloride and Propranolol hydrochloride; and 3 compounds that show ambiguous results in genotoxicity testing: Cyproterone acetate, Thioacetamide and Wy-14643. By liver mRNA expression analysis using individual animal data, we identified 64 specific biomarker candidates for genotoxic carcinogens and 69 for nongenotoxic carcinogens for male mice at day 15. The majority of genotoxic carcinogen biomarker candidates possess functions in DNA damage response (eg, apoptosis, cell cycle progression, DNA repair). Most of the identified nongenotoxic carcinogen biomarker candidates are involved in regulation of cell cycle progression and apoptosis. The derived biomarker lists were characterized with respect to their dependency on study duration and gender and were successfully used to characterize carcinogens with ambiguous genotoxicity test results, such as Wy-14643. The identified biomarker candidates improve the mechanistic understanding of drug-induced effects on the mouse liver that result in hepatocellular adenomas and/or carcinomas in 2-year mouse carcinogenicity studies.
Collapse
Affiliation(s)
- Nadine Kossler
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Katja A Matheis
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Nina Ostenfeldt
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Dorthe Bach Toft
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Stéphane Dhalluin
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Ulrich Deschl
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Arno Kalkuhl
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| |
Collapse
|
30
|
Hasan SK, Khan R, Ali N, Khan AQ, Rehman MU, Tahir M, Lateef A, Nafees S, Mehdi SJ, Rashid S, Shahid A, Sultana S. 18-β Glycyrrhetinic acid alleviates 2-acetylaminofluorene-induced hepatotoxicity in Wistar rats. Hum Exp Toxicol 2014; 34:628-41. [DOI: 10.1177/0960327114554045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
2-Acetylaminofluorene (2-AAF) is a known hepatic carcinogen which leads to tumour formation in rodents. 18-β Glycyrrhetinic acid (18 β-GA) derived from liquorice plant has various pharmacological properties such as anti-ulcer, anti-inflammatory, antiviral, hepatoprotective and antioxidant. This study is designed to elucidate the chemopreventive properties of 18 β-GA against 2-AAF-induced liver toxicity in Wistar rats and evaluated its effect on inflammatory and tumour promotion marker and activities of different oxidative stress enzymes. Administration of 2-AAF at the dose of (50 mg/kg body weight (b.w.) intraperitoneally (i.p.)) for five consecutive days induces hepatic toxicity, inflammation, oxidative stress and hyperproliferation. Pretreatment with 18 β-GA at two different doses (45 and 75 mg kg−1 b.w.) significantly ameliorates 2-AAF-induced increased lipid peroxidation, alanine transaminase and aspartate transaminase, xanthine oxidase activities and activities of phase-II detoxifying enzymes along with the levels of glutathione content. Administration of 18 β-GA also significantly restored the expressions of proliferating cell nuclear antigen, cyclooxygenase 2, inducible nitric oxide synthase and nuclear factor κB. Furthermore, histological observations also support the preventive effects of 18 β-GA. Our findings suggest that pretreatment with 18 β-GA showed potential hepatoprotective effects via attenuation of oxidative stress, inflammation and hyperproliferation.
Collapse
Affiliation(s)
- SK Hasan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - R Khan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - N Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - AQ Khan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - MU Rehman
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - M Tahir
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - A Lateef
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - S Nafees
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - SJ Mehdi
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - S Rashid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - A Shahid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - S Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| |
Collapse
|
31
|
Maroof H, Salajegheh A, Smith RA, Lam AKY. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol 2014; 97:298-304. [PMID: 25102298 DOI: 10.1016/j.yexmp.2014.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA-34 is involved in pathogenesis in cancer by targeting different tumor-related genes. It could be a biomarker for predicting the prognosis of patients with cancer. In addition, miR-34 is involved in the tumor angiogenesis. Understanding the mechanism of the miR-34 in cancer and tumor angiogenesis will open horizons for development of anti-cancer and anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Hamidreza Maroof
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
32
|
Marrone AK, Beland FA, Pogribny IP. Noncoding RNA response to xenobiotic exposure: an indicator of toxicity and carcinogenicity. Expert Opin Drug Metab Toxicol 2014; 10:1409-22. [PMID: 25171492 DOI: 10.1517/17425255.2014.954312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Human exposure to certain environmental and occupational chemicals is one of the major risk factors for noncommunicable diseases, including cancer. Therefore, it is desirable to take advantage of subtle exposure-related adverse cellular events for early disease detection and to identify potential dangers caused by new and currently under-evaluated drugs and chemicals. Nongenotoxic events due to carcinogen/toxicant exposure are a general hallmark of sustained cellular stress leading to tumorigenesis. These processes are globally regulated via noncoding RNAs (ncRNAs). Tumorigenesis-associated genotoxic and nongenotoxic events lead to the altered expression of ncRNAs and may provide a mechanistic link between chemical exposure and tumorigenesis. Current advances in toxicogenomics are beginning to provide valuable insight into gene-chemical interactions at the transcriptome level. AREAS COVERED In this review, we summarize recent information about the impact of xenobiotics on ncRNAs. Evidence highlighted in this review suggests a critical role of ncRNAs in response to carcinogen/toxicant exposure. EXPERT OPINION Benefits for the use of ncRNAs in carcinogenicity assessment include remarkable tissue specificity, early appearance, low baseline variability, and their presence and stability in biological fluids, which suggests that the incorporation of ncRNAs in the evaluation of cancer risk assessment may enhance substantially the efficiency of toxicity and carcinogenicity testing.
Collapse
Affiliation(s)
- April K Marrone
- Commissioner Fellow, Research Chemist,National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|
33
|
Gooderham N, Koufaris C. Using microRNA profiles to predict and evaluate hepatic carcinogenic potential. Toxicol Lett 2014; 228:127-32. [DOI: 10.1016/j.toxlet.2014.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Accepted: 04/20/2014] [Indexed: 01/17/2023]
|
34
|
Papaioannou MD, Koufaris C, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) elicits estrogenic-like microRNA responses in breast cancer cells. Toxicol Lett 2014; 229:9-16. [PMID: 24877718 DOI: 10.1016/j.toxlet.2014.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
The cooking of meat results in the generation of heterocyclic amines (HCA), the most abundant of which is 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Data from epidemiological, mechanistic, and animal studies indicate that PhIP could be causally linked to breast cancer incidence. Besides the established DNA damaging and mutagenic activities of PhIP, the chemical is reported to have oestrogenic activity that could contribute to its tissue specific carcinogenicity. In this study we investigated the effect of treatment with PhIP and 17-β-estradiol (E2) on global microRNA (miRNA) expression of the oestrogen responsive MCF-7 human breast adenocarcinoma cell line. PhIP and E2 caused widespread and largely over-lapping effects on miRNA expression, with many of the commonly affected miRNA reported to be regulated by oestrogen and have been implicated in the initiation and progression of breast cancer. The regulatory activity of the miRNAs we show here to be responsive to PhIP treatment, are also predicted to mediate cellular phenotypes that are associated with PhIP exposure. Consequently, this study offers further support to the ability of PhIP to induce widespread effects via activation of oestrogen receptor alpha (ERα). Moreover, this study indicates that deregulation of miRNA by PhIP could potentially be an important non-DNA-damaging carcinogenic mechanism in breast cancer.
Collapse
Affiliation(s)
- M D Papaioannou
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK
| | - C Koufaris
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK
| | - N J Gooderham
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK.
| |
Collapse
|
35
|
MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 2014; 322:69-77. [PMID: 24857880 DOI: 10.1016/j.tox.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
Abstract
We examined the role of miRNAs in DNA damage response in HepG2 cells following exposure to 4-aminobiphenyl (4-ABP). The arylamine 4-ABP is a human carcinogen. Using the Comet assay, we showed that 4-ABP (18.75-300μM) induces DNA damage in HepG2 cells after 24h. DNA damage signaling pathway-based PCR arrays were used to investigate expression changes in genes involved in DNA damage response. Results showed down-regulation of 16 DNA repair-related genes in 4-ABP-treated cells. Among them, the expression of selected six genes (UNG, LIG1, EXO1, XRCC2, PCNA, and FANCG) from different DNA repair pathways was decreased with quantitative real-time PCR (qRT-PCR). In parallel, using the miRNA array, we reported that the expression of 27 miRNAs in 4-ABP-treated cells was at least 3-fold higher than that in the control group. Of these differential 27 miRNAs, the most significant expression of miRNA-513a-5p and miRNA-630 was further validated by qRT-PCR, and was predicted to be implicated in the deregulation of FANCG and RAD18 genes, respectively, via bioinformatic analysis. Both FANCG and RAD18 proteins were found to be down-regulated in 4-ABP-treated cells. In addition, overexpression and knockdown of miRNA-513a-5p and miRNA-630 reduced and increased the expression of FANCG and RAD18 proteins, respectively. Based on the above results, we indicated that miRNA-513a-5p and miRNA-630 could play a role in the suppression of DNA repair genes, and eventually lead to DNA damage.
Collapse
|
36
|
Siddeek B, Inoubli L, Lakhdari N, Rachel PB, Fussell KC, Schneider S, Mauduit C, Benahmed M. MicroRNAs as potential biomarkers in diseases and toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:46-57. [PMID: 24486656 DOI: 10.1016/j.mrgentox.2014.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
Abstract
MiRNAs (microRNAs) are single-stranded non-coding RNAs of approximately 21-23 nucleotides in length whose main function is to inhibit gene expression by interfering with mRNA processes. MicroRNAs suppress gene expression by affecting mRNA (messenger RNAs) stability, targeting the mRNA for degradation, or both. In this review, we have examined how microRNA expression could be altered following exposure to chemicals and how they could represent appropriate tissue and more interestingly circulating biomarkers. Among the key questions before using the microRNA for evaluation of risk toxicity, it remains still to clarify how they could be causally involved in the adverse effects and how stable their changes are.
Collapse
Affiliation(s)
- Bénazir Siddeek
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; BASF Agro, Ecully F-69130, France
| | - Lilia Inoubli
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Nadjem Lakhdari
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | - Paul Bellon Rachel
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France
| | | | - Steffen Schneider
- BASF SE, experimental toxicology and ecology, 67056 Ludwigshafen, Germany
| | - Claire Mauduit
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Université Lyon 1, UFR Médecine Lyon Sud, Lyon, F-69921, France; Hospices Civils de Lyon, Hôpital Lyon Sud, laboratoire d'anatomie et de cytologie pathologiques, Pierre-Bénite, F-69495, France
| | - Mohamed Benahmed
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, F-06204, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, F-06000, France; Centre Hospitalier Universitaire de Nice, Pôle Digestif, Gynécologie, Obstetrique, Centre de Reproduction, Nice, F-06202, France.
| |
Collapse
|
37
|
Luan Y, Qi X, Xu L, Ren J, Chen T. Absence of mature microRNAs inactivates the response of gene expression to carcinogenesis induced by N-ethyl-N-nitrosourea in mouse liver. J Appl Toxicol 2014; 34:1409-17. [PMID: 24478143 DOI: 10.1002/jat.2973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/25/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023]
Abstract
This study aims to evaluate the role of microRNAs (miRNAs) in chemical tumorigenesis by evaluating genomic gene expression in miRNA knockout mice. Previous studies showed that mice without mature miRNAs due to hepatocyte-specific Dicer1 knockout (KO) had a much higher liver tumor incidence than wild-type mice. In this study, Dicer1 KO or the wild-type mice were treated intraperitoneally with genotoxic carcinogen N-ethyl-N-nitrosourea (ENU) at a single dose (150 mg kg(-1) that resulted in liver tumorigenesis) or the vehicle at 3 weeks of age. The animals were killed 2 weeks after treatment and the liver samples were collected for the gene expression study. Principal components analysis and hierarchical cluster analysis showed that gene expression was globally altered by the Dicer1 KO and ENU exposure. There were 5621, 3286 and 2565 differentially expressed genes for Dicer1 disruption, ENU treatment in wild-type mice and ENU treatment in Dicer1 KO mice, respectively. Functional analysis of the differentially expressed genes suggests that the Dicer1 KO mouse liver lost their capability to suppress the carcinogenesis induced by ENU exposure in genomic level. In addition, the miRNA-mediated BRCA1 and P53 signaling pathways were identified as the main pathways responsible for the tumorigenesis. We conclude that the mouse livers in the absence of mature miRNAs could not appropriately respond to carcinogenic insults from ENU treatment, indicating that miRNAs play a critical role in chemical carcinogenesis.
Collapse
Affiliation(s)
- Yang Luan
- School of Public Health, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | |
Collapse
|
38
|
Izzotti A, Pulliero A. The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 2014; 217:601-27. [PMID: 24560354 DOI: 10.1016/j.ijheh.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens.
Collapse
Affiliation(s)
- A Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino - IST National Research Cancer Institute, Genoa, Italy.
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
39
|
Yan S, Wang J, Zhang W, Dai J. Circulating microRNA profiles altered in mice after 28d exposure to perfluorooctanoic acid. Toxicol Lett 2014; 224:24-31. [DOI: 10.1016/j.toxlet.2013.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Wang Y, Borlak J, Tong W. Toxicogenomics – A Drug Development Perspective. GENOMIC BIOMARKERS FOR PHARMACEUTICAL DEVELOPMENT 2014:127-155. [DOI: 10.1016/b978-0-12-397336-8.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Ament Z, Waterman CL, West JA, Waterfield C, Currie RA, Wright J, Griffin JL. A metabolomics investigation of non-genotoxic carcinogenicity in the rat. J Proteome Res 2013; 12:5775-90. [PMID: 24161236 DOI: 10.1021/pr4007766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay. Such assays are expensive and time-consuming and require a large number of animals, and their relevance to human health risk assessments is debatable. Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds that represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC), and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28, and 91 days to male Fisher 344 rats. Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Among the discriminatory metabolites we identified free fatty acids, phospholipids, and triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation, and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.
Collapse
Affiliation(s)
- Zsuzsanna Ament
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory , 120 Fulbourn Road, Cambridge CB1 9NL, U.K. , The Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, U.K. , and Cambridge Systems Biology Centre (CSBC), University of Cambridge , Cambridge CB2 1QR, U.K
| | | | | | | | | | | | | |
Collapse
|
42
|
Koufaris C, Wright J, Osborne M, Currie RA, Gooderham NJ. Time and dose-dependent effects of phenobarbital on the rat liver miRNAome. Toxicology 2013; 314:247-53. [PMID: 24157574 DOI: 10.1016/j.tox.2013.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022]
Abstract
In a previous study we had shown that treatment of male Fischer rats with exogenous chemicals for three months resulted in prominent, mode-of-action dependent effects on liver microRNA (miRNA) (Koufaris et al., 2012). Here we investigated how the effects of chemicals on liver miRNA in male Fischer rats relate to the length and dose of exposure to phenobarbital (PB), a drug with multiple established hepatic effects. Importantly, although acute PB treatment (1-7 days) had significant effects on liver mRNA and the expected effects on the liver phenotype (transient hyperplasia, hepatomegaly, cytochrome P450 induction), limited effects on liver miRNA were observed. However, at 14 days of PB treatment clear dose-dependent effects on miRNA were observed. The main effect of PB treatment from days 1 to 90 on liver miRNA was found to be the persistent, progressive, and highly correlated induction of the miR-200a/200b/429 and miR-96/182 clusters, occurring after the termination of the xenobiotic-induced transient hyperplasia. Moreover, in agreement with their reported functions in the literature we found associations between perturbations of miR-29b and miR-200a/200b by PB with global DNA methylation and zeb1/zeb2 proteins respectively. Our data suggest that miRNA are unlikely to play an important role in the acute responses of the adult rodent liver to PB treatment. However, the miRNA responses to longer PB exposures suggest a potential role for maintaining liver homeostasis in response to sub-chronic and chronic xenobiotic-induced perturbations. Similar studies for more chemicals are needed to clarify whether the temporal and dose pattern of miRNA-toxicant interaction identified here for PB are widely applicable to other xenobiotics.
Collapse
Affiliation(s)
- Costas Koufaris
- Surgery and Cancer, Imperial College London, SW72AZ, UK; Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
43
|
Koufaris C, Gooderham NJ. Are Differences in MicroRNA Regulation Implicated in Species-Dependent Response to Toxicological Exposures? Toxicol Sci 2012; 131:337-42. [DOI: 10.1093/toxsci/kfs302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|