1
|
Choi MA, Rose S, Langouët S. Per- and polyfluoroalkyl substances as potentiators of hepatotoxicity in an exposome framework: Current challenges of environmental toxicology. Toxicology 2025; 515:154167. [PMID: 40300710 DOI: 10.1016/j.tox.2025.154167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/17/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Chronic liver diseases, including metabolic dysfunction-associated steatosic liver disease (MASLD) and hepatocellular carcinoma (HCC), are on the rise, potentially due to daily exposure to complex mixtures of chemical compounds forming part of the exposome. Understanding the mechanisms involved in hepatotoxicity of these mixtures is essential to identify common molecular targets that may highlight potential interactions at the molecular level. We illustrated this issue with two families of environmental contaminants, per- and polyfluoroalkyl substances (PFAS) and heterocyclic aromatic amines (HAAs), both of which could be involved in the progression of chronic liver diseases, and whose toxicity may be potentiated by interactions at the level of xenobiotic metabolism. In the study of exposome effects on chronic liver disease, New Approach Methodologies (NAMs) including omics analyses and data from various in vitro, in vivo and in silico approaches, are crucial for improving predictivity of toxicological studies in humans while reducing animal experimentation. Additionally, the development of complex in vitro human liver cell models, such as organoids, is essential to avoid interspecies differences that minimize the risk for humans. All together, these approaches will contribute to construct Adverse Outcome Pathways (AOPs) and could be applied not only to PFAS mixtures but also to other chemical families, providing valuable insights into mixture hepatotoxicity prediction in the study of the exposome. A better understanding of toxicological mechanisms will clarify the role of environmental contaminant mixtures in the development of MASLD and HCC, supporting risk assessment for better treatment, monitoring and prevention strategies.
Collapse
Affiliation(s)
- Minna A Choi
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Sophie Rose
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France.
| |
Collapse
|
2
|
Brown GE, Bodke VV, Ware BR, Khetani SR. Liver portal fibroblasts induce the functions of primary human hepatocytes in vitro. Commun Biol 2025; 8:721. [PMID: 40346200 PMCID: PMC12064700 DOI: 10.1038/s42003-025-08135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
In vitro human liver models are critical to mitigate species-specific differences observed for toxicology, disease modeling, and regenerative medicine. Interactions with mesenchyme (i.e., fibroblasts) can promote phenotypic functions of primary human hepatocytes (PHHs) in culture; however, using liver-derived fibroblasts remains elusive. Portal fibroblasts (PFs) around the portal triad influence bile duct formation during development, but their role in regulating homeostatic hepatic functions remains unknown. Here, we show that human liver PFs induce long-term phenotypic functions in PHHs at higher levels than activated hepatic stellate cells across 2-dimensional and 3-dimensional culture formats. While PF-conditioned media induces some hepatic functions, partly via insulin-like growth factor binding protein-5 signaling, direct contact is necessary to induce optimal functional levels. Inhibiting Notch signaling reduces progenitor-like characteristics of PHHs and further enhances functionality. Overall, this work demonstrates a unique role for PFs in modulating hepatic functions and provides all-human and all-liver coculture strategies for downstream applications.
Collapse
Affiliation(s)
- Grace E Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Vedant V Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Brenton R Ware
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Zhou Y, Zhong Y, Lauschke VM. Evaluating the synergistic use of advanced liver models and AI for the prediction of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2025; 21:563-577. [PMID: 39893552 DOI: 10.1080/17425255.2025.2461484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Hepatotoxicity typically occurs only in a subset of individuals after prolonged exposure and constitutes a major risk factor for the termination of drug development projects. AREAS COVERED We provide an overview of available human liver models for DILI research and discuss how they have been used to aid in early risk assessments and to mitigate the risk of project closures due to DILI in clinical stages. We summarize the different data that can be provided by such models and illustrate how these diverse data types can be interfaced with machine learning strategies to improve predictions of liver safety liabilities. EXPERT OPINION Advanced human liver models closely mimic human liver phenotypes and functions for many weeks, allowing for the recapitulation of hepatotoxicity events in vitro. Integration of the biochemical, histological, and toxicogenomic output data from these models with physicochemical compound properties using different machine learning architectures holds promise to enhance preclinical DILI predictions. However, to realize this aim, it is important to benchmark the available liver models on test sets of DILI positive and negative compounds and to carefully annotate and share the resulting data.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
De Vos K, Mols R, Armoudjian Y, Augustijns P, Annaert P. In vitro-in silico analysis reveals that loss of tankyrase1/2 improves bile acid handling in genetically engineered HepG2 cultures. Arch Toxicol 2025; 99:2063-2074. [PMID: 40029369 DOI: 10.1007/s00204-025-03979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
Modelling and simulation of hepatic bile acids (BA) kinetics is instrumental to understand mechanisms underlying drug-induced cholestasis (DiCho). A recent study has shown that the loss of tankyrase1/2 (TNKS1/2) matured the hepatic phenotype in vitro in terms of cellular respiration rate and metabolism. However, whether this phenotype was accompanied with more in vivo relevant hepatic BA handling was not investigated. The present study explored whether tankyrase1/2 loss improved hepatic BA handling through an integrated in vitro-in silico approach. To do so, double knockout (DKO) TNKS1/2 HepG2 cells were exposed to a 10 µM BA mixture containing chenodeoxycholic acid (CDCA), cholic acid, deoxycholic acid, and lithocholic acid. BA levels and their metabolites were subsequently quantified in medium and cell extracts using liquid chromatography-tandem mass spectrometry (LC-MSMS). The in vitro data were then used as input in an ordinary differentially equation (ODE)-based kinetics model that was solved in R, using CDCA and its metabolites as index. The analyses revealed that glycine and taurine conjugation were enhanced by 1.5- and 2.2-fold, respectively, in the HepG2-DKO cells compared to the control. Further, the mechanistic model unveiled that efflux of taurochenodeoxycholic acid was elevated. In conclusion, HepG2-DKO cells provide a robust foundation for building a sensitive in vitro model for DiCho studies. Furthermore, this study discovered that tankyrase1/2 loss improved BA metabolism and kinetics, promoting the utility of tankyrase1/2 inhibitors, like XAV-939, in future pre-clinical BA disposition interaction studies.
Collapse
Affiliation(s)
- Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- BioNotus CommV, 2845, Niel, Belgium.
| |
Collapse
|
5
|
Tang XH, Pesola G, Chen Q, Miller D, Nagy LE, McMullen MR, Schwartz RE, Tsoy S, Lim C, Chikara S, Gross SS, Trasino SE, Gudas LJ, Melis M. Ethanol causes rapid decreases in the hepatic retinoid levels shaping the early steps of alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:754-770. [PMID: 40016864 PMCID: PMC12014373 DOI: 10.1111/acer.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Chronic alcohol drinking causes hepatic vitamin A (retinoids and derivatives) decreases, which correlate with the progression and severity of alcohol-associated liver disease (ALD). However, the effects of short-term ethanol (EtOH) intake on liver retinoids and ALD are still undefined. METHODS Using high-performance liquid chromatography and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC, HPLC-MS/MS), and molecular biology techniques in mice and cultured human hepatocytes, we investigated the temporal EtOH effects on retinoids and ALD. RESULTS In female and male mice, acute EtOH intake caused hepatic retinol (ROL) and retinyl palmitate (RP) decreases within hours, whereas it did not significantly change the retinoic acid (RA) levels, and those of the RA catabolism metabolite, 4-oxo-RA. After EtOH withdrawal, the liver recovered the ROL and RP levels within 48 h, whereas RA and 4-oxo-RA levels remained almost undetectable by this time point. Compared with control diet-fed mice, hepatic ROL and RP levels remained decreased in the 10-day and 3-week-long EtOH treatments, while retinyl oleate and linoleate increased. Interestingly, some of the RA signaling receptors, Rarβ, along with Cyp26a1, revealed dramatic transcript increases during the 10-day-long experiments that attenuated over time (up to 8 weeks), reflecting impaired RA signaling. Our work also showed that primary human hepatocytes serve as a model to better define the role of EtOH in retinoid biology. CONCLUSIONS This work reveals that acute and short-term exposures to EtOH disrupt retinoid homeostasis, identifying key events in the early pathogenesis of ALD.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Glen Pesola
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Laura E. Nagy
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R. McMullen
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Sergey Tsoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Shireen Chikara
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Steven E. Trasino
- Department of Nutrition and Public Health, Hunter College, City University of New York, New York, NY, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Fukunaga I, Takebe T. In vitro liver models for toxicological research. Drug Metab Pharmacokinet 2025; 62:101478. [PMID: 40203632 DOI: 10.1016/j.dmpk.2025.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Drug-induced liver injury (DILI) presents a major challenge not only in new drug development but also in post-marketing withdrawals and the safety of food, cosmetics, and chemicals. Experimental model organisms such as the rodents have been widely used for preclinical toxicological testing. However, the tension exists associated with the ethical and sustainable use of animals in part because animals do not necessarily inform the human-specific ADME (adsorption, dynamics, metabolism and elimination) profiling. To establish alternative models in humans, in vitro hepatic tissue models have been proposed, ranging from primary hepatocytes, immortal hepatocytes, to the development of new cell resources such as stem cell-derived hepatocytes. Given the evolving number of novel alternative methods, understanding possible combinations of cell sources and culture methods will be crucial to develop the context-of-use assays. This review primarily focuses on 3D liver organoid models for conducting. We will review the relevant cell sources, bioengineering methods, selection of training compounds, and biomarkers towards the rationale design of in vitro toxicology testing.
Collapse
Affiliation(s)
- Ichiro Fukunaga
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Takebe
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Arez F, Preiss L, Gal IR, Rebelo SP, Badolo L, Brito C, Spangenberg T, Alves PM. Heterotypic spheroids as a strategy for 3D culture of cryopreserved primary human hepatocytes in stirred-tank systems. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100210. [PMID: 39805483 DOI: 10.1016/j.slasd.2025.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability. Still, PHHs from different commercial sources present variability in vitro in several parameters, including viability post-thawing, plating capacity, aggregation potential and culture longevity. Here we combine stirred-tank culture systems, which allow robust aggregation processes, and co-culture approaches with the HepaRG cell line to generate spheroids from cryopreserved PHHs. By employing small-scale stirred-tank culture systems we could cope with the scarce availability and high cost of primary material. In the optimized co-culture conditions we could generate PHH:HepaRG spheroids from 12 donors acquired from 4 different commercial sources. All PHHs showed similar aggregation profiles, forming small compact heterotypic spheroids as early as 3 days in co-culture and were maintained for at least 5 weeks in culture. The heterotypic spheroids maintained the hepatocyte polarization and identity and showed metabolization capacity for 5 main phase I metabolizing enzymes, namely CYP3A4, CYP2C9, CYP1A2, CYP2D6, and CYP2C8. Moreover, the heterotypic spheroids showed the capacity to metabolize a novel compound under clinical development, showing their potential to be employed in drug discovery applications. Overall, we present a robust aggregation strategy for cryopreserved PHHs from different suppliers, applicable for pharmacological and toxicological in vitro research.
Collapse
Affiliation(s)
- Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, Oeiras 2780-157, Portugal
| | - Lena Preiss
- Discovery and Development Technologies, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Isabella Ramella Gal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, Oeiras 2780-157, Portugal
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal
| | - Lassina Badolo
- Discovery and Development Technologies, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, Oeiras 2780-157, Portugal
| | - Thomas Spangenberg
- Global Health R&D of Merck Healthcare, Ares Trading S.A., (a subsidiary of Merck KGaA, Darmstadt, Germany), Route de Crassier 1, Eysins 1262, Switzerland
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, Oeiras 2780-157, Portugal.
| |
Collapse
|
8
|
Shimada H, Ikuta H, Hashimoto Y, Yabuuchi Y, Kawase A, Matzno S, Iwaki M. Enzymatic hydrolysis of acyl glucuronide metabolites in human liver microsomes correlates to the risk of idiosyncratic drug toxicity. J Pharm Sci 2025; 114:1307-1314. [PMID: 39870178 DOI: 10.1016/j.xphs.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Acyl glucuronide (AG) is a reactive metabolite that causes idiosyncratic drug toxicity (IDT). Although the instability of AG is used to predict the IDT risk of novel drug candidates, it sometimes overestimates the IDT risk. We investigated whether the rate of enzymatic AG hydrolysis in human liver microsomes (HLM) can predict the risk of IDT. We used 16 drugs classified into three categories in terms of IDT risk: drugs withdrawn from the market owing to severe IDT (withdrawn, WDN) and drugs still being on the market, regardless of IDT risk (warning, WA) or not (safe, SA). AG was incubated with HLM, and the resulting parent drugs for AG hydrolysis were quantified using HPLC. The rate of enzymatic AG hydrolysis in the HLM of WDN was higher than that in WA and SA, and no difference was observed between WA and SA. We categorized WA and SA as commercially available (CA) drugs and performed a logistic regression analysis. The rate of enzymatic AG hydrolysis in HLM significantly distinguished WDN drugs from CA drugs, with an estimated classification value of 0.189 nmol/min/mg protein. In conclusion, the rate of enzymatic AG hydrolysis in HLM may be useful for predicting the risk in drug development.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan.
| | - Hiroyuki Ikuta
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Yu Hashimoto
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Yusuke Yabuuchi
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Atsushi Kawase
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Sumio Matzno
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
9
|
Schürmeyer L, Peng C, Albrecht W, Brecklinghaus T, Baur P, Hengstler JG, Schorning K. Design of optimal concentrations for in vitro cytotoxicity experiments. Arch Toxicol 2025; 99:357-376. [PMID: 39547999 PMCID: PMC11748471 DOI: 10.1007/s00204-024-03893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Concentration-dependent cytotoxicity experiments are frequently used in toxicology. Although it has been reported that an adequate choice of concentrations improves the quality of the statistical inference substantially, a recent literature review of three major toxicological journals has shown that the corresponding methods are rarely used in toxicological practice. In this study the performance of different sets of concentrations, also called designs, are analyzed, while the overall goal is to promote the advantages of optimal design procedures and to present a user-friendly guideline for planning new cytotoxicity concentration-response experiments. We compare the frequently used log-equidistant design to a Bayesian design, which is constructed by methods of optimum design theory. Using both a dense data set of concentration-cytotoxicity data of valproic acid (VPA) and regular assay data of 104 substances, the performance of the different designs is analyzed in two scenarios, where detailed previous knowledge on VPA is available or not. The results show that it is critical to apply a specific design strategy to determine optimal concentrations for cytotoxicity testing. In particular, the Bayesian design technique with and without incorporating pre-existing knowledge of a specific test substance resulted in a more precise statistical inference than the other used designs. Finally, we present a guideline for upcoming experiments and an accessible user-friendly Shiny app (see http://shiny.statistik.tu-dortmund.de:8080/app/occe ).
Collapse
Affiliation(s)
- Leonie Schürmeyer
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, Dortmund, 44227, North Rhine-Westphalia, Germany.
| | - Chen Peng
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, North Rhine-Westphalia, Germany
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, North Rhine-Westphalia, Germany
| | - Tim Brecklinghaus
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, North Rhine-Westphalia, Germany
| | - Pauline Baur
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, Dortmund, 44227, North Rhine-Westphalia, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystraße 67, Dortmund, 44139, North Rhine-Westphalia, Germany
| | - Kirsten Schorning
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, Dortmund, 44227, North Rhine-Westphalia, Germany
| |
Collapse
|
10
|
Segovia-Zafra A, Villanueva-Paz M, Serras AS, Matilla-Cabello G, Bodoque-García A, Di Zeo-Sánchez DE, Niu H, Álvarez-Álvarez I, Sanz-Villanueva L, Godec S, Milisav I, Bagnaninchi P, Andrade RJ, Lucena MI, Fernández-Checa JC, Cubero FJ, Miranda JP, Nelson LJ. Control compounds for preclinical drug-induced liver injury assessment: Consensus-driven systematic review by the ProEuroDILI network. J Hepatol 2024; 81:630-640. [PMID: 38703829 DOI: 10.1016/j.jhep.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Idiosyncratic drug-induced liver injury (DILI) is a complex and unpredictable event caused by drugs, and herbal or dietary supplements. Early identification of human hepatotoxicity at preclinical stages remains a major challenge, in which the selection of validated in vitro systems and test drugs has a significant impact. In this systematic review, we analyzed the compounds used in hepatotoxicity assays and established a list of DILI-positive and -negative control drugs for validation of in vitro models of DILI, supported by literature and clinical evidence and endorsed by an expert committee from the COST Action ProEuroDILI Network (CA17112). METHODS Following 2020 PRISMA guidelines, original research articles focusing on DILI which used in vitro human models and performed at least one hepatotoxicity assay with positive and negative control compounds, were included. Bias of the studies was assessed by a modified 'Toxicological Data Reliability Assessment Tool'. RESULTS A total of 51 studies (out of 2,936) met the inclusion criteria, with 30 categorized as reliable without restrictions. Although there was a broad consensus on positive compounds, the selection of negative compounds lacked clarity. 2D monoculture, short exposure times and cytotoxicity endpoints were the most tested, although there was no consensus on drug concentrations. CONCLUSIONS Extensive analysis highlighted the lack of agreement on control compounds for in vitro DILI assessment. Following comprehensive in vitro and clinical data analysis together with input from the expert committee, an evidence-based consensus-driven list of 10 positive and negative control drugs for validation of in vitro models of DILI is proposed. IMPACT AND IMPLICATIONS Prediction of human toxicity early in the drug development process remains a major challenge, necessitating the development of more physiologically relevant liver models and careful selection of drug-induced liver injury (DILI)-positive and -negative control drugs to better predict the risk of DILI associated with new drug candidates. Thus, this systematic study has crucial implications for standardizing the validation of new in vitro models of DILI. By establishing a consensus-driven list of positive and negative control drugs, the study provides a scientifically justified framework for enhancing the consistency of preclinical testing, thereby addressing a significant challenge in early hepatotoxicity identification. Practically, these findings can guide researchers in evaluating safety profiles of new drugs, refining in vitro models, and informing regulatory agencies on potential improvements to regulatory guidelines, ensuring a more systematic and efficient approach to drug safety assessment.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Marina Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ana Sofia Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Gonzalo Matilla-Cabello
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ana Bodoque-García
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - Daniel E Di Zeo-Sánchez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Hao Niu
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - Ismael Álvarez-Álvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Sanz-Villanueva
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy VIC, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Sergej Godec
- Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Pierre Bagnaninchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Raúl J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain
| | - M Isabel Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - José C Fernández-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver disease, University of Southern California, Los Angeles, CA, United States.
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Leonard J Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
11
|
Jiao D, Xie L, Xing W. A pumpless liver-on-a-chip for drug hepatotoxicity analysis. Analyst 2024; 149:4675-4686. [PMID: 39086194 DOI: 10.1039/d4an00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study presents the development and validation of an innovative microfluidic liver-on-a-chip device utilizing gravity-driven perfusion for the evaluation of drug hepatotoxicity. This research involved the construction of a hydrogel-based coculture chip that integrates liver parenchymal and stellate cells within a tri-channel configuration. The assembly and operation of the liver-on-a-chip and its accompanying custom rocker were straightforward. The cells in the chip maintained high viability and continuously synthesized liver albumin over extended culture durations. Acetaminophen (APAP), a hepatic injury-inducing drug, was utilized as a positive control in hepatic toxicity assays on the chip. The liver chip exhibited hepatotoxic responses comparable to those observed in 2D models. Furthermore, in this study we evaluated the effects of two plant-derived natural compounds, aristolochic acid I (AA) and its analog aristolactam AII (AL), in both 2D cell models and the liver-on-a-chip system. AA, known for its hepatorenal toxicity, was observed to cause hepatotoxicity in both the 2D models and on the chip. The flow cytometry and mRNA sequencing results confirmed the propensity of these compounds to induce liver cell apoptosis. Notably, AL, previously considered nontoxic, provoked a significant decrease in the hepatic functionality marker albumin exclusively in the liver chip but not in 2D models, indicating the liver chip's enhanced sensitivity to toxic substances. In summary, this pumpless liver-on-a-chip is a simple yet powerful tool for drug hepatotoxicity studies.
Collapse
Affiliation(s)
- Dian Jiao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Wanli Xing
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| |
Collapse
|
12
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
13
|
Ingelman-Sundberg M, Lauschke VM. Individualized Pharmacotherapy Utilizing Genetic Biomarkers and Novel In Vitro Systems As Predictive Tools for Optimal Drug Development and Treatment. Drug Metab Dispos 2024; 52:467-475. [PMID: 38575185 DOI: 10.1124/dmd.123.001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
In the area of drug development and clinical pharmacotherapy, a profound understanding of the pharmacokinetics and potential adverse reactions associated with the drug under investigation is paramount. Essential to this endeavor is a comprehensive understanding about interindividual variations in absorption, distribution, metabolism, and excretion (ADME) genetics and the predictive capabilities of in vitro systems, shedding light on metabolite formation and the risk of adverse drug reactions (ADRs). Both the domains of pharmacogenomics and the advancement of in vitro systems are experiencing rapid expansion. Here we present an update on these burgeoning fields, providing an overview of their current status and illuminating potential future directions. SIGNIFICANCE STATEMENT: There is very rapid development in the area of pharmacogenomics and in vitro systems for predicting drug pharmacokinetics and risk for adverse drug reactions. We provide an update of the current status of pharmacogenomics and developed in vitro systems on these aspects aimed to achieve a better personalized pharmacotherapy.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
14
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
15
|
Hu C, Yang S, Zhang T, Ge Y, Chen Z, Zhang J, Pu Y, Liang G. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. ENVIRONMENT INTERNATIONAL 2024; 184:108415. [PMID: 38309193 DOI: 10.1016/j.envint.2024.108415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.
Collapse
Affiliation(s)
- Chengyu Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
16
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective. Curr Pharm Des 2024; 30:1952-1965. [PMID: 38859792 DOI: 10.2174/0113816128305296240523112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Organ-on-chip is an innovative technique that emerged from tissue engineering and microfluidic technologies. Organ-on-chip devices (OoCs) are anticipated to provide efficient explanations for dealing with challenges in pharmaceutical advancement and individualized illness therapies. Organ-on-chip is an advanced method that can replicate human organs' physiological conditions and functions on a small chip. It possesses the capacity to greatly transform the drug development process by enabling the simulation of diseases and the testing of drugs. Effective integration of this advanced technical platform with common pharmaceutical and medical contexts is still a challenge. Microfluidic technology, a micro-level technique, has become a potent tool for biomedical engineering research. As a result, it has revolutionized disciplines, including physiological material interpreting, compound detection, cell-based assay, tissue engineering, biological diagnostics, and pharmaceutical identification. This article aims to offer an overview of newly developed organ-on-a-chip systems. It includes single-organ platforms, emphasizing the most researched organs, including the heart, liver, blood arteries, and lungs. Subsequently, it provides a concise overview of tumor-on-a-chip systems and emphasizes their use in evaluating anti-cancer medications.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
18
|
Zhang S, Xu G, Wu J, Liu X, Fan Y, Chen J, Wallace G, Gu Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. SMALL METHODS 2024; 8:e2300685. [PMID: 37798902 DOI: 10.1002/smtd.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Indexed: 10/07/2023]
Abstract
In recent decades, microphysiological constructs and systems (MPCs and MPSs) have undergone significant development, ranging from self-organized organoids to high-throughput organ-on-a-chip platforms. Advances in biomaterials, bioinks, 3D bioprinting, micro/nanofabrication, and sensor technologies have contributed to diverse and innovative biofabrication tactics. MPCs and MPSs, particularly tissue chips relevant to absorption, distribution, metabolism, excretion, and toxicity, have demonstrated potential as precise, efficient, and economical alternatives to animal models for drug discovery and personalized medicine. However, current approaches mainly focus on the in vitro recapitulation of the human anatomical structure and physiological-biochemical indices at a single or a few simple levels. This review highlights the recent remarkable progress in MPC and MPS models and their applications. The challenges that must be addressed to assess the reliability, quantify the techniques, and utilize the fidelity of the models are also discussed.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoshi Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Juan Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| |
Collapse
|
19
|
Liu JS, Madruga LYC, Yuan Y, Kipper MJ, Khetani SR. Decellularized Liver Nanofibers Enhance and Stabilize the Long-Term Functions of Primary Human Hepatocytes In Vitro. Adv Healthc Mater 2023; 12:e2202302. [PMID: 36947401 PMCID: PMC11469040 DOI: 10.1002/adhm.202202302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Owing to significant differences across species in liver functions, in vitro human liver models are used for screening the metabolism and toxicity of compounds, modeling diseases, and cell-based therapies. However, the extracellular matrix (ECM) scaffold used for such models often does not mimic either the complex composition or the nanofibrous topography of native liver ECM. Thus, here novel methods are developed to electrospin decellularized porcine liver ECM (PLECM) and collagen I into nano- and microfibers (≈200-1000 nm) without synthetic polymer blends. Primary human hepatocytes (PHHs) on nanofibers in monoculture or in coculture with nonparenchymal cells (3T3-J2 embryonic fibroblasts or primary human liver endothelial cells) display higher albumin secretion, urea synthesis, and cytochrome-P450 1A2, 2A6, 2C9, and 3A4 enzyme activities than on conventionally adsorbed ECM controls. PHH functions are highest on the collagen/PLECM blended nanofibers (up to 34-fold higher CYP3A4 activity relative to adsorbed ECM) for nearly 7 weeks in the presence of the fibroblasts. In conclusion, it is shown for the first time that ECM composition and topography synergize to enhance and stabilize PHH functions for several weeks in vitro. The nanofiber platform can prove useful for the above applications and to elucidate cell-ECM interactions in the human liver.
Collapse
Affiliation(s)
- Jennifer S. Liu
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Liszt Y. C. Madruga
- Department of Chemical & Biological EngineeringColorado State UniversityFort CollinsCO80523‐1370USA
| | - Yang Yuan
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Matt J. Kipper
- Department of Chemical & Biological EngineeringColorado State UniversityFort CollinsCO80523‐1370USA
| | - Salman R. Khetani
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| |
Collapse
|
20
|
Stern S, Wang H, Sadrieh N. Microphysiological Models for Mechanistic-Based Prediction of Idiosyncratic DILI. Cells 2023; 12:1476. [PMID: 37296597 PMCID: PMC10253021 DOI: 10.3390/cells12111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system. This review summarizes the in vitro co-culture models that exploit the role of the immune system to investigate iDILI. Particularly, this review focuses on advancements in human-based 3D multicellular models attempting to supplement in vivo models that often lack predictability and display interspecies variations. Exploiting the immune-mediated mechanisms of iDILI, the inclusion of non-parenchymal cells in these hepatoxicity models, namely, Kupffer cells, stellate cells, dendritic cells, and liver sinusoidal endothelial cells, introduces heterotypic cell-cell interactions and mimics the hepatic microenvironment. Additionally, drugs recalled from the market in the US between 1996-2010 that were studies in these various models highlight the necessity for further harmonization and comparison of model characteristics. Challenges regarding disease-related endpoints, mimicking 3D architecture with different cell-cell contact, cell source, and the underlying multi-cellular and multi-stage mechanisms are described. It is our belief that progressing our understanding of the underlying pathogenesis of iDILI will provide mechanistic clues and a method for drug safety screening to better predict liver injury in clinical trials and post-marketing.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Nakissa Sadrieh
- Office of New Drugs, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
21
|
Liu JT, Doueiry C, Jiang YL, Blaszkiewicz J, Lamprecht MP, Heslop JA, Peterson YK, Carten JD, Traktman P, Yuan Y, Khetani SR, Twal WO, Duncan SA. A human iPSC-derived hepatocyte screen identifies compounds that inhibit production of Apolipoprotein B. Commun Biol 2023; 6:452. [PMID: 37095219 PMCID: PMC10125972 DOI: 10.1038/s42003-023-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.
Collapse
Affiliation(s)
- Jui-Tung Liu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Caren Doueiry
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yu-Lin Jiang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Josef Blaszkiewicz
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mary Paige Lamprecht
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yuri K Peterson
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Juliana Debrito Carten
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paula Traktman
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yang Yuan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Grùthan Biosciences LLC, Hollywood, SC, 29449, USA.
| |
Collapse
|
22
|
McDuffie D, Barr D, Helm M, Baumert T, Agarwal A, Thomas E. Physiomimetic In Vitro Human Models for Viral Infection in the Liver. Semin Liver Dis 2023; 43:31-49. [PMID: 36402129 PMCID: PMC10005888 DOI: 10.1055/a-1981-5944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viral hepatitis is a leading cause of liver morbidity and mortality globally. The mechanisms underlying acute infection and clearance, versus the development of chronic infection, are poorly understood. In vitro models of viral hepatitis circumvent the high costs and ethical considerations of animal models, which also translate poorly to studying the human-specific hepatitis viruses. However, significant challenges are associated with modeling long-term infection in vitro. Differentiated hepatocytes are best able to sustain chronic viral hepatitis infection, but standard two-dimensional models are limited because they fail to mimic the architecture and cellular microenvironment of the liver, and cannot maintain a differentiated hepatocyte phenotype over extended periods. Alternatively, physiomimetic models facilitate important interactions between hepatocytes and their microenvironment by incorporating liver-specific environmental factors such as three-dimensional ECM interactions and co-culture with non-parenchymal cells. These physiologically relevant interactions help maintain a functional hepatocyte phenotype that is critical for sustaining viral hepatitis infection. In this review, we provide an overview of distinct, novel, and innovative in vitro liver models and discuss their functionality and relevance in modeling viral hepatitis. These platforms may provide novel insight into mechanisms that regulate viral clearance versus progression to chronic infections that can drive subsequent liver disease.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Madeline Helm
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - Thomas Baumert
- Inserm Research Institute for Viral and Liver Diseases, University of Strasbourg, Strasbourg, France
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
24
|
Torrents S, Grau-Vorster M, Vives J. Potency Assays: The 'Bugaboo' of Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:29-38. [PMID: 37258782 DOI: 10.1007/978-3-031-30040-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Substantially manipulated cell-based products for human use are considered medicines and therefore regulatory authorities require extensive characterisation in terms of identity, purity and potency. The latter critical quality attribute is probably the most challenging to identify and measure, requiring provision that potency assays should reflect the intended mechanism of action and demonstrate the drugs' biological effect. However, in most cases, the mechanisms involved are not fully understood, making the definition and validation of suitable potency tests difficult, a 'bugaboo' quest to be feared. Although it is evident that much work is still needed in the scientific arena, the present chapter focuses on strategies currently used by developers of cell- and gene-based therapies to demonstrate potency of innovative medicines, the regulatory framework and need for standardisation seeking to demystify critical factors to consider when designing a potency assay.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
25
|
Deguchi S, Takayama K. State-of-the-art liver disease research using liver-on-a-chip. Inflamm Regen 2022; 42:62. [PMID: 36494740 PMCID: PMC9733013 DOI: 10.1186/s41232-022-00248-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
To understand disease pathophysiologies, models that recapitulate human functions are necessary. In vitro models that consist of human cells are preferred to ones using animal cells, because organ functions can vary from species to species. However, conventional in vitro models do not recapitulate human organ functions well. Organ-on-a-chip technology provides a reliable in vitro model of the functional units of human organs. Organ-on-a-chip technology uses microfluidic devices and their accessories to impart organ functions to human cells. Using microfluidic devices, we can co-culture multiple cell types that compose human organs. Moreover, we can culture human cells under physiologically relevant stresses, such as mechanical and shear stresses. Current organ-on-a-chip technology can reproduce the functions of several organs including the liver. Because it is difficult to maintain the function of human hepatocytes, which are the gold standard of in vitro liver models, under conventional culture conditions, the application of liver-on-a-chips to liver disease research is expected. This review introduces the current status and future prospects of liver-on-a-chips in liver disease research.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
- Department of Medical Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004 Japan
| |
Collapse
|
26
|
Valdiviezo A, Brown GE, Michell AR, Trinconi CM, Bodke VV, Khetani SR, Luo YS, Chiu WA, Rusyn I. Reanalysis of Trichloroethylene and Tetrachloroethylene Metabolism to Glutathione Conjugates Using Human, Rat, and Mouse Liver in Vitro Models to Improve Precision in Risk Characterization. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117009. [PMID: 36445294 PMCID: PMC9707501 DOI: 10.1289/ehp12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Both trichloroethylene (TCE) and tetrachloroethylene (PCE) are high-priority chemicals subject to numerous human health risk evaluations by a range of agencies. Metabolism of TCE and PCE determines their ultimate toxicity; important uncertainties exist in quantitative characterization of metabolism to genotoxic moieties through glutathione (GSH) conjugation and species differences therein. OBJECTIVES This study aimed to address these uncertainties using novel in vitro liver models, interspecies comparison, and a sensitive assay for quantification of GSH conjugates of TCE and PCE, S-(1,2-dichlorovinyl)glutathione (DCVG) and S-(1,2,2-trichlorovinyl) glutathione (TCVG), respectively. METHODS Liver in vitro models used herein were suspension, 2-D culture, and micropatterned coculture (MPCC) with primary human, rat, and mouse hepatocytes, as well as human induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep). RESULTS We found that, although efficiency of metabolism varied among models, consistent with known differences in their metabolic capacity, formation rates of DCVG and TCVG generally followed the patterns human ≥ rat ≥ mouse , and primary hepatocytes > iHep . Data derived from MPCC were most consistent with estimates from physiologically based pharmacokinetic models calibrated to in vivo data. DISCUSSION For TCE, the new data provided additional empirical support for inclusion of GSH conjugation-mediated kidney effects as critical for the derivation of noncancer toxicity values. For PCE, the data reduced previous uncertainties regarding the extent of TCVG formation in humans; this information was used to update several candidate kidney-specific noncancer toxicity values. Overall, MPCC-derived data provided physiologically relevant estimates of GSH-mediated metabolism of TCE and PCE to reduce uncertainties in interspecies extrapolation that constrained previous risk evaluations, thereby increasing the precision of risk characterizations of these high-priority toxicants. https://doi.org/10.1289/EHP12006.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Grace E. Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Ashlin R. Michell
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | | | - Vedant V. Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
27
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
28
|
McDuffie D, Barr D, Agarwal A, Thomas E. Physiologically relevant microsystems to study viral infection in the human liver. Front Microbiol 2022; 13:999366. [PMID: 36246284 PMCID: PMC9555087 DOI: 10.3389/fmicb.2022.999366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hepatitis is a leading cause of liver disease and mortality. Infection can occur acutely or chronically, but the mechanisms that govern the clearance of virus or lack thereof are poorly understood and merit further investigation. Though cures for viral hepatitis have been developed, they are expensive, not readily accessible in vulnerable populations and some patients may remain at an increased risk of developing hepatocellular carcinoma (HCC) even after viral clearance. To sustain infection in vitro, hepatocytes must be fully mature and remain in a differentiated state. However, primary hepatocytes rapidly dedifferentiate in conventional 2D in vitro platforms. Physiologically relevant or physiomimetic microsystems, are increasingly popular alternatives to traditional two-dimensional (2D) monocultures for in vitro studies. Physiomimetic systems reconstruct and incorporate elements of the native cellular microenvironment to improve biologic functionality in vitro. Multiple elements contribute to these models including ancillary tissue architecture, cell co-cultures, matrix proteins, chemical gradients and mechanical forces that contribute to increased viability, longevity and physiologic function for the tissue of interest. These microsystems are used in a wide variety of applications to study biological phenomena. Here, we explore the use of physiomimetic microsystems as tools for studying viral hepatitis infection in the liver and how the design of these platforms is tailored for enhanced investigation of the viral lifecycle when compared to conventional 2D cell culture models. Although liver-based physiomimetic microsystems are typically applied in the context of drug studies, the platforms developed for drug discovery purposes offer a solid foundation to support studies on viral hepatitis. Physiomimetic platforms may help prolong hepatocyte functionality in order to sustain chronic viral hepatitis infection in vitro for studying virus-host interactions for prolonged periods.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
29
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
30
|
Brecklinghaus T, Albrecht W, Duda J, Kappenberg F, Gründler L, Edlund K, Marchan R, Ghallab A, Cadenas C, Rieck A, Vartak N, Tolosa L, Castell JV, Gardner I, Halilbasic E, Trauner M, Ullrich A, Zeigerer A, Demirci Turgunbayer Ö, Damm G, Seehofer D, Rahnenführer J, Hengstler JG. In vitro/in silico prediction of drug induced steatosis in relation to oral doses and blood concentrations by the Nile Red assay. Toxicol Lett 2022; 368:33-46. [PMID: 35963427 DOI: 10.1016/j.toxlet.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The accumulation of lipid droplets in hepatocytes is a key feature of drug-induced liver injury (DILI) and can be induced by a subset of hepatotoxic compounds. In the present study, we optimized and evaluated an in vitro technique based on the fluorescent dye Nile Red, further named Nile Red assay to quantify lipid droplets induced by the exposure to chemicals. The Nile Red assay and a cytotoxicity test (CTB assay) were then performed on cells exposed concentration-dependently to 60 different compounds. Of these, 31 were known to induce hepatotoxicity in humans, and 13 were reported to also cause steatosis. In order to compare in vivo relevant blood concentrations, pharmacokinetic models were established for all compounds to simulate the maximal blood concentrations (Cmax) at therapeutic doses. The results showed that several hepatotoxic compounds induced an increase in lipid droplets at sub-cytotoxic concentrations. To compare how well (1) the cytotoxicity test alone, (2) the Nile Red assay alone, and (3) the combination of the cytotoxicity test and the Nile Red assay (based on the lower EC10 of both assays) allow the differentiation between hepatotoxic and non-hepatotoxic compounds, a previously established performance metric, the Toxicity Separation Index (TSI) was calculated. In addition, the Toxicity Estimation Index (TEI) was calculated to determine how well blood concentrations that cause an increased DILI risk can be estimated for hepatotoxic compounds. Our findings indicate that the combination of both assays improved the TSI and TEI compared to each assay alone. In conclusion, the study demonstrates that inclusion of the Nile Red assay into in vitro test batteries may improve the prediction of DILI compounds.
Collapse
Affiliation(s)
- Tim Brecklinghaus
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany.
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Julia Duda
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Lisa Gründler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Adrian Rieck
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Nachiket Vartak
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe, Valencia, Spain
| | - José V Castell
- Experimental Hepatology Unit, Health Research Institute La Fe, Valencia, Spain; Biochemistry Department, University of Valencia and CIBEREHD
| | | | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anett Ullrich
- Primacyt Cell Culture Technology GmbH, Schwerin, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Özlem Demirci Turgunbayer
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany; Department of Biology, Faculty of Science, Dicle University, 21280, Diyarbakır, Turkey
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany.
| |
Collapse
|
31
|
Jia X, Wen X, Russo DP, Aleksunes LM, Zhu H. Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129193. [PMID: 35739723 PMCID: PMC9262097 DOI: 10.1016/j.jhazmat.2022.129193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA.
| |
Collapse
|
32
|
Abstract
Liver regeneration is a well-orchestrated process that is typically studied in animal models. Although previous animal studies have offered many insights into liver regeneration, human biology is less well understood. To this end, we developed a three-dimensional (3D) platform called structurally vascularized hepatic ensembles for analyzing regeneration (SHEAR) to model multiple aspects of human liver regeneration. SHEAR enables control over hemodynamic alterations to mimic those that occur during liver injury and regeneration and supports the administration of biochemical inputs such as cytokines and paracrine interactions with endothelial cells. We found that exposing the endothelium-lined channel to fluid flow led to increased secretion of regeneration-associated factors. Stimulation with relevant cytokines not only amplified the secretory response, but also induced cell-cycle entry of primary human hepatocytes (PHHs) embedded within the device. Further, we identified endothelial-derived mediators that are sufficient to initiate proliferation of PHHs in this context. Collectively, the data presented here underscore the importance of multicellular models that can recapitulate high-level tissue functions and demonstrate that the SHEAR device can be used to discover and validate conditions that promote human liver regeneration.
Collapse
|
33
|
Yan L, Messner CJ, Tian M, Gou X, Suter-Dick L, Zhang X. Evaluation of dioxin induced transcriptomic responses in a 3D human liver microtissue model. ENVIRONMENTAL RESEARCH 2022; 210:112906. [PMID: 35181307 DOI: 10.1016/j.envres.2022.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional human liver microtissue model provides a promising method for predicting the human hepatotoxicity of environmental chemicals. However, the dynamics of transcriptional responses of 3D human liver microtissue model to dioxins exposure remain unclear. Herein, time-series transcriptomic analysis was used to characterize modulation of gene expression over 14 days in 3D human liver microtissues exposed to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD, 31 nM, 10 ng/ml). Changes in gene expression and modulation of biological pathways were evaluated at several time points. The results showed that microtissues stably expressed genes related to toxicological pathways (e.g. highly of genes involved in external stimuli and maintenance of cell homeostasis pathways) during the 14-day culture period. Furthermore, a weekly phenomenon pattern was observed for the number of the differentially expressed genes in microtissues exposed to TCDD at each time point. TCDD led to an induction of genes involved in cell cycle regulation at day three. Metabolic pathways were the main significantly induced pathways during the subsequent days, with the immune/inflammatory response enriched on the fifth day, and the cellular response to DNA damage was identified at the end of the exposure. Finally, relevant transcription patterns identified in microtissues were compared with published data on rodent and human cell-line studies to elucidate potential species-specific responses to TCDD over time. Cell development and cytochrome P450 pathway were mainly affected after a 3-day exposure, with the DNA damage response identified at the end of exposure in the human microtissue system but not in mouse/rat primary hepatocytes models. Overall, the 3D human liver microtissue model is a valuable tool to predict the toxic effects of environmental chemicals with a relatively long exposure.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Catherine Jane Messner
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
34
|
Shimada H, Ikuta H, Kumazawa K, Nomi M, Shiojiri M, Kawase A, Iwaki M. Relationship between the risk of idiosyncratic drug toxicity and formation and degradation profiles of acyl-glucuronide metabolites of nonsteroidal anti-inflammatory drugs in rat liver microsomes. Eur J Pharm Sci 2022; 174:106193. [PMID: 35447304 DOI: 10.1016/j.ejps.2022.106193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 01/17/2023]
Abstract
Acyl glucuronides (AGs) are considered to cause idiosyncratic drug toxicity (IDT), and evaluating the chemical instability of AGs may be useful for predicting the IDT risk of novel drug candidates. However, AGs show variations in their chemical instability, degree of formation, and enzymatic hydrolysis. Therefore, we evaluated the degree of AG formation, enzymatic hydrolysis, and chemical instability in liver microsomes and their relationship with IDT risk. Nonsteroidal anti-inflammatory drugs (NSAIDs) were classified into three categories in terms of their IDT risk as parent drugs: safe (SA), warning (WA), and withdrawn (WDN). To evaluate the enzymatic and non-enzymatic degradation of AG, the parent drugs were incubated with rat liver microsomes in the absence or presence of AG hydrolase inhibitors. The degree of AG formation and disappearance was considered as the rate constant. For all NSAIDs investigated, the number of AGs formed notably increased following addition of AG hydrolase inhibitors. Particularly, AG was produced by WDN drugs at a lower level than that produced by WA and SA drugs in the absence of AG hydrolase inhibitors but was significantly increased after adding AG hydrolase inhibitors. The rate constants of AG formation and non-enzymatic AG disappearance did not significantly differ among the WDN, WA, and SA drugs, whereas the rate constant of enzymatic AG disappearance of WDN drugs tended to be higher than those of WA and SA drugs. In conclusion, we evaluated the enzymatic degradation and chemical instability of AG by simultaneously producing it in liver microsomes. This method enables evaluation of AG degradation without preparing AG. Moreover, we determined the relationship between enzymatic AG degradation in rat liver microsomes and IDT risk.
Collapse
Affiliation(s)
- Hiroaki Shimada
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Hiroyuki Ikuta
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | | | - Manato Nomi
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Mayumi Shiojiri
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Atsushi Kawase
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan; Pharmaceutical Research and Technology Institute, Kindai University, Osaka 577-8502, Japan; Antiaging Center, Kindai University, Osaka 577-8502, Japan.
| |
Collapse
|
35
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
36
|
Al-Badr AA. Danazol. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2022; 47:149-326. [PMID: 35396014 DOI: 10.1016/bs.podrm.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A comprehensive profile of danazol describing the nomenclatures, formulae, elemental composition, appearance, uses and applications is presented. The profile contains the method which was utilized for the preparation of the drug substance and its respective scheme is outlined. The physical characteristics of the drug including the solubility, X-ray powder diffraction pattern, differential scanning calorimetry, thermal behavior and spectroscopic studies are described. The methods which were used for the analysis of the drug substance in bulk drug and/or in pharmaceutical formulations including the compendial, spectrophotometric, electrochemical and the chromatographic methods are reported. The stability, toxicity, pharmacokinetics, bioavailability, drug evaluation and monitoring, comparisons, pharmacology, in addition to several compiled reviews on the drug substance which were involved. Finally, two hundred and seventy-nine references are listed at the end of this profile.
Collapse
Affiliation(s)
- Abdullah A Al-Badr
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Janani G, Priya S, Dey S, Mandal BB. Mimicking Native Liver Lobule Microarchitecture In Vitro with Parenchymal and Non-parenchymal Cells Using 3D Bioprinting for Drug Toxicity and Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10167-10186. [PMID: 35171571 DOI: 10.1021/acsami.2c00312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioengineering an in vitro liver model recapitulating the native liver microarchitecture consisting of parenchymal and non-parenchymal cells is crucial in achieving cellular crosstalk and hepatic metabolic functions for accurate hepatotoxicity prediction. Bioprinting holds the promise of engineering constructs with precise control over the spatial distribution of multiple cells. Two distinct tissue-specific liver extracellular matrix (ECM)-based bioinks with excellent printability and rheological attributes are formulated for supporting parenchymal and non-parenchymal cells. A physiologically relevant human vascularized liver model is bioprinted with a novel liver ECM-based bioink laden with human adipose mesenchymal stem cell-derived hepatocyte-like cells (HLCs), human umbilical vein endothelial cells (HUVECs), and human hepatic stellate cells (HHSCs) using an extrusion-based bioprinting approach and validated for hepatotoxicity assessment. The HLC/HUVEC/HHSC-laden liver model resembles native alternate cords of hepatocytes with a functional sinusoidal lumen-like network in both horizontal and vertical directions, demonstrating enhanced albumin production, urea synthesis, and cytochrome P450 (CPR) activity. Furthermore, the liver model is evaluated for drug toxicity assessment following 24 h exposure to different concentrations of (i) non-hepatotoxicants aspirin and dexamethasone, (ii) idiosyncratic hepatotoxicant trovafloxacin mesylate, and (iii) clinical hepatotoxicant acetaminophen and troglitazone. A follow-up cell viability and metabolic competence evaluation by estimating DNA concentration, lactate dehydrogenase activity, and CPR activity revealed a dose-dependent clinically relevant hepatotoxic response. These results corroborated that the developed clinically relevant vascularized liver model is affordable and would aid pharmaceutical companies in speeding up the drug development and provide a robust platform for hepatotoxicity screening.
Collapse
Affiliation(s)
- G Janani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Smriti Priya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
38
|
Naito Y, Yoshinouchi Y, Sorayama Y, Kohara H, Kitano S, Irie S, Matsusaki M. Constructing vascularized hepatic tissue by cell-assembled viscous tissue sedimentation method and its application for vascular toxicity assessment. Acta Biomater 2022; 140:275-288. [PMID: 34826641 DOI: 10.1016/j.actbio.2021.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023]
Abstract
In vitro Construction of the liver sinusoidal structure using artificial tissue is an important but worthwhile challenge, particularly for assessing the risk of diseases such as sinusoidal obstruction syndrome (SOS). Current models are unsuitable for evaluating the toxicity because of lacking sinusoidal capillary. In this study, we developed a vascularized hepatic tissue (VHT) using a unique tissue engineering technique, the cell assembled viscous tissue by sedimentation (CAViTs) method. The "viscous bodies" created using the CAViTs method exhibited significant self-assembly within 6 h after seeding, promoting cell-cell interaction. The level of albumin secreted by the VHT was four times higher than that of 2D-coculture and maintained for 1 month. The gene expression pattern of the VHT was closer to that of total human liver, compared with the 2D system. Quantitative evaluations of the vascular structure of VHT treated with two typical SOS-inducing compounds, monocrotaline and retrorsine, revealed higher sensitivity (IC50 = 40.35 µM), 19.92 times higher than the cell-viability assay. Thus, VHT represents an innovative in vitro model that mimics the vessel network structure and could become a useful tool for the early screening of compounds associated with a risk of vascular toxicity. STATEMENT OF SIGNIFICANCE: Mimicking sinusoidal structures in in vitro liver model is important to consider from the perspective of predicting hepatotoxicity such like sinusoidal obstruction syndrome (SOS). However, it was difficult to reconstruct the vascular structure within the hepatocyte-rich environment. In this study, we constructed a vascularized hepatic tissue in a high-throughput manner by a unique method using collagen and heparin, and evaluated its applicability to toxicity assessment. Vessel morphology analysis of the model treated by monocrotaline, which is a well-known SOS-inducing compound, could predict the toxicity with higher sensitivity. To the best of our knowledge, this is the first report to provide vascularized hepatic tissues using sinusoidal endothelial cells at least for demonstrating applicability to the evaluation of SOS induction risk.
Collapse
|
39
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
40
|
Van Ness KP, Cesar F, Yeung CK, Himmelfarb J, Kelly EJ. Microphysiological systems in absorption, distribution, metabolism, and elimination sciences. Clin Transl Sci 2022; 15:9-42. [PMID: 34378335 PMCID: PMC8742652 DOI: 10.1111/cts.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
The use of microphysiological systems (MPS) to support absorption, distribution, metabolism, and elimination (ADME) sciences has grown substantially in the last decade, in part driven by regulatory demands to move away from traditional animal-based safety assessment studies and industry desires to develop methodologies to efficiently screen and characterize drugs in the development pipeline. The past decade of MPS development has yielded great user-driven technological advances with the collective fine-tuning of cell culture techniques, fluid delivery systems, materials engineering, and performance enhancing modifications. The rapid advances in MPS technology have now made it feasible to evaluate critical ADME parameters within a stand-alone organ system or through interconnected organ systems. This review surveys current MPS developed for liver, kidney, and intestinal systems as stand-alone or interconnected organ systems, and evaluates each system for specific performance criteria recommended by regulatory authorities and MPS leaders that would render each system suitable for evaluating drug ADME. Whereas some systems are more suitable for ADME type research than others, not all system designs were intended to meet the recently published desired performance criteria and are reported as a summary of initial proof-of-concept studies.
Collapse
Affiliation(s)
- Kirk P. Van Ness
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Francine Cesar
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Catherine K. Yeung
- Department of PharmacyUniversity of WashingtonSeattleWashingtonUSA
- Kidney Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| | | | - Edward J. Kelly
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
- Kidney Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
41
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
42
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
43
|
Xiao RR, Lv T, Tu X, Li P, Wang T, Dong H, Tu P, Ai X. An integrated biomimetic array chip for establishment of collagen-based 3D primary human hepatocyte model for prediction of clinical drug-induced liver injury. Biotechnol Bioeng 2021; 118:4687-4698. [PMID: 34478150 DOI: 10.1002/bit.27931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) is a leading cause of therapy failure in the clinic and also contributes much to acute liver failure cases. Investigations of predictive sensitivity in animal models have limitations due to interspecies differences. Previously reported in vitro models of liver injury based on primary human hepatocytes (PHHs) cannot meet the requirements of high physiological fidelity, low cost, simple operation, and high throughput with improved sensitivity. Herein, we developed an integrated biomimetic array chip (iBAC) for establishing extracellular matrix (ECM)-based models. A collagen-based 3D PHH model was constructed on the iBAC as a case for the prediction of clinical DILI at throughput. The iBAC has a three-layer structure with a core component of 3D implanting holes. At an initial cell seeding numbers of 5000-10,000, the collagen-based 3D PHH model was optimized with improved and stabilized liver functionality, including cell viability, albumin, and urea production. Moreover, basal activities of most metabolic enzymes on the iBAC were maintained for at least 12 days. Next, a small-scale hepatotoxicity screening indicated that the 3D PHH model on the iBAC was more sensitive for predicting hepatotoxicity than the 2D PHH model on the plate. Finally, a large-scale screening of liver toxicity using 122 clinical drugs further demonstrated that the collagen-based 3D PHH model on the iBAC had superior predictive sensitivity compared to all previously reported in vitro models. These results indicated the importance of 3D collagen for liver physiological functionality and hepatotoxicity prediction. We anticipant it being a promising tool for risk assessment of drug-induced hepatotoxicity with a widespread acceptance in drug industry.
Collapse
Affiliation(s)
| | - Tian Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xia Tu
- Discovery Biology Unit, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Peiwen Li
- R&D Department, Beijing Daxiang Biotech, Beijing, China
| | - Tiantian Wang
- Discovery Biology Unit, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Haiheng Dong
- Discovery Biology Unit, WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
44
|
Ware BR, Liu JS, Monckton CP, Ballinger KR, Khetani SR. Micropatterned Coculture With 3T3-J2 Fibroblasts Enhances Hepatic Functions and Drug Screening Utility of HepaRG Cells. Toxicol Sci 2021; 181:90-104. [PMID: 33590212 DOI: 10.1093/toxsci/kfab018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human liver models are useful for assessing compound metabolism/toxicity; however, primary human hepatocyte (PHH) lots are limited and highly variable in quality/viability. In contrast, cell lines, such as HepaRG, are cheaper and more reproducible surrogates for initial compound screening; however, hepatic functions and sensitivity for drug outcomes need improvement. Here, we show that HepaRGs cocultured with murine embryonic 3T3-J2 fibroblasts, previously shown to induce PHH functions, could address such limitations. We either micropatterned HepaRGs or seeded them "randomly" onto collagen-coated plates before 3T3-J2 coculture. Micropatterned cocultures (HepaRG-MPCCs) secreted 2- to 4-fold more albumin and displayed more stable cytochrome P450 activities than HepaRG conventional confluent monocultures (HepaRG-CCs) and HepaRG micropatterned hepatocytes (HepaRG-MPHs) for 4 weeks, even when excluding dimethyl sulfoxide from the medium. Furthermore, HepaRG-MPCCs had the most albumin-only positive cells (hepatic), lowest cytokeratin 19 (CK19)-only positive cells (cholangiocytic), and highest mean albumin intensity per cell than HepaRG random cocultures and monocultures; however, 80%-84% of HepaRGs remained bipotential (albumin+/CK19+) across all models. The 3T3-J2s also induced higher albumin in HepaRG spheroids than HepaRG-only spheroids. Additionally, although rifampin induced CYP3A4 in HepaRG-MPCCs and HepaRG-CCs, only HepaRG-MPCCs showed the dual omeprazole-mediated CYP1A2/3A4 induction as with PHHs. Lastly, when treated for 6 days with 47 drugs and evaluated for albumin and ATP to make binary hepatotoxicity calls, HepaRG-MPCCs displayed a sensitivity of 54% and specificity of 100% (70%/100% in PHH-MPCCs), whereas HepaRG-CCs misclassified several hepatotoxins. Ultimately, HepaRG-MPCCs could be a more cost-effective and reproducible model than PHHs for executing a tier 1 compound screen.
Collapse
Affiliation(s)
- Brenton R Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jennifer S Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Chase P Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Kimberly R Ballinger
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Salman R Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
45
|
Lam DTUH, Dan YY, Chan YS, Ng HH. Emerging liver organoid platforms and technologies. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:27. [PMID: 34341842 PMCID: PMC8329140 DOI: 10.1186/s13619-021-00089-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Building human organs in a dish has been a long term goal of researchers in pursue of physiologically relevant models of human disease and for replacement of worn out and diseased organs. The liver has been an organ of interest for its central role in regulating body homeostasis as well as drug metabolism. An accurate liver replica should contain the multiple cell types found in the organ and these cells should be spatially organized to resemble tissue structures. More importantly, the in vitro model should recapitulate cellular and tissue level functions. Progress in cell culture techniques and bioengineering approaches have greatly accelerated the development of advance 3-dimensional (3D) cellular models commonly referred to as liver organoids. These 3D models described range from single to multiple cell type containing cultures with diverse applications from establishing patient-specific liver cells to modeling of chronic liver diseases and regenerative therapy. Each organoid platform is advantageous for specific applications and presents its own limitations. This review aims to provide a comprehensive summary of major liver organoid platforms and technologies developed for diverse applications.
Collapse
Affiliation(s)
- Do Thuy Uyen Ha Lam
- Laboratory of precision disease therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Yun-Shen Chan
- Laboratory of precision disease therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Huck-Hui Ng
- Laboratory of precision disease therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117559, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117597, Singapore.
| |
Collapse
|
46
|
Kang W, Podtelezhnikov AA, Tanis KQ, Pacchione S, Su M, Bleicher KB, Wang Z, Laws GM, Griffiths TG, Kuhls MC, Chen Q, Knemeyer I, Marsh DJ, Mitra K, Lebron J, Sistare FD. Development and Application of a Transcriptomic Signature of Bioactivation in an Advanced In Vitro Liver Model to Reduce Drug-induced Liver Injury Risk Early in the Pharmaceutical Pipeline. Toxicol Sci 2021; 177:121-139. [PMID: 32559289 DOI: 10.1093/toxsci/kfaa094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early risk assessment of drug-induced liver injury (DILI) potential for drug candidates remains a major challenge for pharmaceutical development. We have previously developed a set of rat liver transcriptional biomarkers in short-term toxicity studies to inform the potential of drug candidates to generate a high burden of chemically reactive metabolites that presents higher risk for human DILI. Here, we describe translation of those NRF1-/NRF2-mediated liver tissue biomarkers to an in vitro assay using an advanced micropatterned coculture system (HEPATOPAC) with primary hepatocytes from male Wistar Han rats. A 9-day, resource-sparing and higher throughput approach designed to identify new chemical entities with lower reactive metabolite-forming potential was qualified for internal decision making using 93 DILI-positive and -negative drugs. This assay provides 81% sensitivity and 90% specificity in detecting hepatotoxicants when a positive test outcome is defined as the bioactivation signature score of a test drug exceeding the threshold value at an in vitro test concentration that falls within 3-fold of the estimated maximum drug concentration at the human liver inlet following highest recommended clinical dose administrations. Using paired examples of compounds from distinct chemical series and close structural analogs, we demonstrate that this assay can differentiate drugs with lower DILI risk. The utility of this in vitro transcriptomic approach was also examined using human HEPATOPAC from a single donor, yielding 68% sensitivity and 86% specificity when the aforementioned criteria are applied to the same 93-drug test set. Routine use of the rat model has been adopted with deployment of the human model as warranted on a case-by-case basis. This in vitro transcriptomic signature-based strategy can be used early in drug discovery to derisk DILI potential from chemically reactive metabolites by guiding structure-activity relationship hypotheses and candidate selection.
Collapse
Affiliation(s)
- Wen Kang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Ming Su
- Safety Assessment & Laboratory Animal Resources
| | | | - Zhibin Wang
- Safety Assessment & Laboratory Animal Resources
| | | | | | | | - Qing Chen
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Ian Knemeyer
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486
| | | | | | - Jose Lebron
- Safety Assessment & Laboratory Animal Resources
| | | |
Collapse
|
47
|
Monckton CP, Brown GE, Khetani SR. Latest impact of engineered human liver platforms on drug development. APL Bioeng 2021; 5:031506. [PMID: 34286173 PMCID: PMC8286174 DOI: 10.1063/5.0051765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of drug attrition, which is partly due to differences between preclinical animals and humans in metabolic pathways. Therefore, in vitro human liver models are utilized in biopharmaceutical practice to mitigate DILI risk and assess related mechanisms of drug transport and metabolism. However, liver cells lose phenotypic functions within 1–3 days in two-dimensional monocultures on collagen-coated polystyrene/glass, which precludes their use to model the chronic effects of drugs and disease stimuli. To mitigate such a limitation, bioengineers have adapted tools from the semiconductor industry and additive manufacturing to precisely control the microenvironment of liver cells. Such tools have led to the fabrication of advanced two-dimensional and three-dimensional human liver platforms for different throughput needs and assay endpoints (e.g., micropatterned cocultures, spheroids, organoids, bioprinted tissues, and microfluidic devices); such platforms have significantly enhanced liver functions closer to physiologic levels and improved functional lifetime to >4 weeks, which has translated to higher sensitivity for predicting drug outcomes and enabling modeling of diseased phenotypes for novel drug discovery. Here, we focus on commercialized engineered liver platforms and case studies from the biopharmaceutical industry showcasing their impact on drug development. We also discuss emerging multi-organ microfluidic devices containing a liver compartment that allow modeling of inter-tissue crosstalk following drug exposure. Finally, we end with key requirements for engineered liver platforms to become routine fixtures in the biopharmaceutical industry toward reducing animal usage and providing patients with safe and efficacious drugs with unprecedented speed and reduced cost.
Collapse
Affiliation(s)
- Chase P Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Grace E Brown
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
48
|
Davidson MD, Khetani SR. Intermittent Starvation Extends the Functional Lifetime of Primary Human Hepatocyte Cultures. Toxicol Sci 2021; 174:266-277. [PMID: 31977024 DOI: 10.1093/toxsci/kfaa003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Primary human hepatocyte (PHH) cultures have become indispensable to mitigate the risk of adverse drug reactions in human patients. In contrast to dedifferentiating monocultures, coculture with nonparenchymal cells maintains PHH functions for 2-4 weeks. However, because the functional lifespan of PHHs in vivo is 200-400 days, it is desirable to further prolong PHH functions in vitro toward modeling chronic drug exposure and disease progression. Fasting has benefits on the longevity of organisms and the health of tissues such as the liver. We hypothesized that a culturing protocol that mimics dynamic fasting/starvation could activate starvation pathways and prolong PHH functional lifetime. To mimic starvation, serum and hormones were intermittently removed from the culture medium of micropatterned cocultures (MPCCs) containing PHHs organized onto collagen domains and surrounded by 3T3-J2 murine fibroblasts. A weekly 2-day starvation optimally prolonged PHH functional lifetime for 6+ weeks in MPCCs versus a decline after 3 weeks in nonstarved controls. The 2-day starvation also enhanced the functions of PHH monocultures for 2 weeks, suggesting direct effects on PHHs. In MPCCs, starvation activated 5' adenosine monophosphate-activated protein kinase (AMPK) and restricted fibroblast overgrowth onto PHH islands, thereby maintaining hepatic polarity. The effects of starvation on MPCCs were partially recapitulated by activating AMPK using metformin or growth arresting fibroblasts via mitomycin-C. Lastly, starved MPCCs demonstrated lower false positives for drug toxicity tests and higher drug-induced cytochrome-P450 activities versus nonstarved controls even after 5 weeks. In conclusion, intermittent serum/hormone starvation extends PHH functional lifetime toward enabling clinically relevant drug screening.
Collapse
Affiliation(s)
- Matthew D Davidson
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
49
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
50
|
Dirven H, Vist GE, Bandhakavi S, Mehta J, Fitch SE, Pound P, Ram R, Kincaid B, Leenaars CHC, Chen M, Wright RA, Tsaioun K. Performance of preclinical models in predicting drug-induced liver injury in humans: a systematic review. Sci Rep 2021; 11:6403. [PMID: 33737635 PMCID: PMC7973584 DOI: 10.1038/s41598-021-85708-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/02/2021] [Indexed: 01/28/2023] Open
Abstract
Drug-induced liver injury (DILI) causes one in three market withdrawals due to adverse drug reactions, causing preventable human suffering and massive financial loss. We applied evidence-based methods to investigate the role of preclinical studies in predicting human DILI using two anti-diabetic drugs from the same class, but with different toxicological profiles: troglitazone (withdrawn from US market due to DILI) and rosiglitazone (remains on US market). Evidence Stream 1: A systematic literature review of in vivo studies on rosiglitazone or troglitazone was conducted (PROSPERO registration CRD42018112353). Evidence Stream 2: in vitro data on troglitazone and rosiglitazone were retrieved from the US EPA ToxCast database. Evidence Stream 3: troglitazone- and rosiglitazone-related DILI cases were retrieved from WHO Vigibase. All three evidence stream analyses were conducted according to evidence-based methodologies and performed according to pre-registered protocols. Evidence Stream 1: 9288 references were identified, with 42 studies included in analysis. No reported biomarker for either drug indicated a strong hazard signal in either preclinical animal or human studies. All included studies had substantial limitations, resulting in "low" or "very low" certainty in findings. Evidence Stream 2: Troglitazone was active in twice as many in vitro assays (129) as rosiglitazone (60), indicating a strong signal for more off-target effects. Evidence Stream 3: We observed a fivefold difference in both all adverse events and liver-related adverse events reported, and an eightfold difference in fatalities for troglitazone, compared to rosiglitazone. In summary, published animal and human trials failed to predict troglitazone's potential to cause severe liver injury in a wider patient population, while in vitro data showed marked differences in the two drugs' off-target activities, offering a new paradigm for reducing drug attrition in late development and in the market. This investigation concludes that death and disability due to adverse drug reactions may be prevented if mechanistic information is deployed at early stages of drug development by pharmaceutical companies and is considered by regulators as a part of regulatory submissions.
Collapse
Affiliation(s)
- Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | | - Breanne Kincaid
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Little Rock, AK, USA
| | - Robert A Wright
- Basic Science Informationist, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|