1
|
Kamano HM, Okoth MW, Kogi-Makau W, Kuloba PW, Owade JO, Njage PMK. Optimization of low-temperature nitrogen plasma in reducing fungi and aflatoxin human exposure through maize. Sci Rep 2025; 15:11707. [PMID: 40188250 PMCID: PMC11972398 DOI: 10.1038/s41598-025-95153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Globally, aflatoxin contamination in maize remains a huge burden despite many interventions put in place. The use of low-temperature plasma to decontaminate the maize is a potential solution for ensuring the safety and extended shelf life of the grain. This study optimized the parameters and investigated the efficacy of low-temperature nitrogen plasma (LTNP) in destroying fungi and reducing exposure to aflatoxins in naturally contaminated maize from an endemic region. The study generated 17 experimental runs using the Response Surface Methodology (RSM) of the Box Behnken Design (BBD) with exposure time, pressure, and ionization density as independent variables. Quantitative exposure assessment was conducted using Monte Carlo simulations followed by sensitivity and scenario analysis to study factors influencing exposure and best aflatoxin-reducing plasma parameters. The best-fitting RSM model, the linear model, indicated that increased exposure time but not pressure and power led to a corresponding statistically significant decrease in the fungal load and aflatoxin content. LTNP reduced aflatoxin contamination to levels below all the main global regulatory limits. Numerical optimization of the percent reduction in aflatoxin and fungal load indicated that an exposure time of 1793.4 s, pressure of 0.98 pascal and ionization power of 189.8 W are required to achieve an optimal reduction of aflatoxin content of 82.6% and fungal load of 96.9%. Exposure assessment indicated high exposure especially for populations with lower body weight with ρ = -0.46 between body weight and exposure. The best LTNP combinations achieved aflatoxin exposure reduction results comparable to but with markedly less variation than existing practically used decontamination methods. Further optimization studies during upscaling are recommended, incorporating independent factors such as temperature and processing volume and outcomes such as organoleptic, physical, and chemical changes in the food matrices after treatment.
Collapse
Affiliation(s)
- Hannah Mugure Kamano
- Food Technology Research Centre, Kenya Industrial Research & Development Institute, P.O Box 30650, Nairobi, 00100, Kenya
| | - Michael Wandayi Okoth
- Department of Food Science & Technology, University of Nairobi, P.O Box 29053, Nairobi, 00100, Kenya
| | - Wambui Kogi-Makau
- Department of Food Science & Technology, University of Nairobi, P.O Box 29053, Nairobi, 00100, Kenya
| | - Patrick Wafula Kuloba
- Food Technology Research Centre, Kenya Industrial Research & Development Institute, P.O Box 30650, Nairobi, 00100, Kenya
| | - Joshua Ombaka Owade
- Department of Biosystems and Agricultural Engineering, Michigan State University, Duduville Campus, P.O Box 45917 - 00100, East Lansing, Michigan, 48824, USA
| | | |
Collapse
|
2
|
Sultana T, Malik K, Raja NI, Mashwani ZUR, Hameed A, Ullah R, Alqahtani AS, Sohail. Aflatoxins in Peanut ( Arachis hypogaea): Prevalence, Global Health Concern, and Management from an Innovative Nanotechnology Approach: A Mechanistic Repertoire and Future Direction. ACS OMEGA 2024; 9:25555-25574. [PMID: 38911815 PMCID: PMC11190918 DOI: 10.1021/acsomega.4c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".
Collapse
Affiliation(s)
- Tahira Sultana
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Khafsa Malik
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Asma Hameed
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Riaz Ullah
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Sohail
- College
of Bioscience and Biotechnology, Yangzhou
University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
3
|
Badmos FO, Muhammad HL, Dabara A, Adefolalu F, Salubuyi S, Abdulkadir A, Oyetunji VT, Apeh DO, Muhammad HK, Mwanza M, Monjerezi M, Matumba L, Makun HA. Assessment of dietary exposure and levels of mycotoxins in sorghum from Niger State of Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:74-90. [PMID: 38109413 DOI: 10.1080/19440049.2023.2293998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
This study reports levels of mycotoxins in sorghum from Niger State, Nigeria, and provides a comprehensive assessment of their potential health risks by combining mycotoxin levels and dietary exposure assessment. A total of 240 samples of red and white sorghum were collected from both stores and markets across four microclimatic zones. Fungal species were identified using a dilution plate method. Aflatoxins (AFs), deoxynivalenol, nivalenol, and ochratoxin (OTA) were quantified using HPLC, whereas cyclopiazonic acid, fumonisins (FUMs) and zearalenone were quantified using ELISA. A. flavus and A. fumigatus were dominant fungal species followed by F. verticilloides, A. oryzae and P. verrucosum. Aflatoxins (mean: 29.97 µg/kg) were detected in all samples, whereas OTA (mean: 37.5 µg/kg) and FUMs (mean: 3269.8 µg/kg) were detected in 72% and 50% of the samples, respectively. Mycotoxins frequently co-occurred in binary mixtures of AFs + OTA and AFs + FUMs. Dietary exposure estimates were highest for FUMs at 230% of TDI and margin of exposures (MOEs) for both AFs and OTA (<10,000) indicating a potential risk associated with combined exposure to AFs and OTA. The Risk of hepatocellular carcinoma cases (HCC/year) attributable to AFs and OTA exposure from sorghum was estimated to be 5.99 × 105 and 0.24 × 105 cases for HBsAg + individuals based on 13.6% HBV incidence. Similarly, the HCC/year for AFs and OTA were assessed to be 3.59 × 105 and 0.14 × 105 at an 8.1% prevalence rate. Therefore, the results of this study demonstrate the high prevalence and dietary exposure to mycotoxins through sorghum consumption, raising public health and trade concerns.
Collapse
Affiliation(s)
- Fatimah Omolola Badmos
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Hadiza Lami Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Achi Dabara
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Funmilola Adefolalu
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Susan Salubuyi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Abdullahi Abdulkadir
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Victor Tope Oyetunji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Daniel Ojochenemi Apeh
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
- Department of Biological Sciences, Confluence University of Science and Technology, Osara, Nigeria
| | - Hadiza Kudu Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Mulunda Mwanza
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Animal Health, Northwest University, Mafikeng, South Africa
| | - Maurice Monjerezi
- Department of Animal Health, Northwest University, Mafikeng, South Africa
- Department of Chemistry and Chemical Engineering, University of Malawi, Zomba, Malawi
| | - Limbikani Matumba
- Centre for Resilient Agri-Food Systems (CRAFS), University of Malawi, Zomba, Malawi
- Food Technology and Nutrition Group-NRC, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Hussaini Anthony Makun
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| |
Collapse
|
4
|
Guo Q, Huang X, Huang Y, Zhang Z, Li P, Yu L. Fe-N-C single-atom nanozyme-linked immunosorbent assay for quantitative detection of aflatoxin B1. J Food Compost Anal 2024; 125:105795. [DOI: 10.1016/j.jfca.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
5
|
Saha Turna N, Comstock SS, Gangur V, Wu F. Effects of aflatoxin on the immune system: Evidence from human and mammalian animal research. Crit Rev Food Sci Nutr 2023; 64:9955-9973. [PMID: 37283041 DOI: 10.1080/10408398.2023.2219336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Shortly after its discovery in 1960, aflatoxin - a group of fungal toxins or mycotoxins produced by the fungi Aspergillus flavus and A. parasiticus in food crops such as maize, peanuts and tree nuts - was found to cause liver cancer in humans and multiple animal species. Hence, regulations on maximum allowable aflatoxin levels in food worldwide have focused on protecting humans from aflatoxin's carcinogenic effects. However, aflatoxin may also have non-carcinogenic health effects (e.g., immunotoxicity) that are particularly relevant today. Our current review highlights the growing evidence that aflatoxin exposure adversely affects immunity. Here, we comprehensively evaluated human and mammalian animal studies that link aflatoxin exposure with adverse effects on the immune system. We organized the review by organism as well as by the effects on adaptive and innate immune functions. There is abundant evidence that aflatoxin exhibits immunotoxicity, and therefore may compromise the ability of both humans and animals to resist infections. However, the reported effects of aflatoxin on certain specific immune biomarkers are inconsistent in the existing literature. The extent of the immunotoxic effects of aflatoxin must be clarified, so that the contribution of such immunotoxicity to the overall burden of aflatoxin-related diseases can be established.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Venugopal Gangur
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Kortei NK, Annan T, Dzikunoo J, Agbetiameh D. Exposure assessment and risk characterization of aflatoxins intake through consumption of maize (Zea mays) in different age populations in the Volta Region of Ghana. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractAflatoxin contamination in foods is a vital health challenge for low and middle-income countries in subtropical regions. Maize (Zea mays L.), a staple food most widely grown in Africa including Ghana, and extensively consumed as much as three times per day, is a source of aflatoxin contamination owing to its susceptibility to fungal infection. Aflatoxin levels were checked against international (European Commission, EC) and local (Ghana Standards Authority, GSA) standards, and health risks associated with maize sampled from the Volta Region (Hohoe, Ho, Battor Dugame, and Keta) of Ghana were determined. Total aflatoxins (totalAFs) and the constituent aflatoxins (AFB1, AFB2, AFG1, and AFG2) were measured with High-Performance Liquid Chromatography (HPLC) with a Fluorescence Detector (FLD). Intake and Risk assessments were also conducted using deterministic models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). The degree of occurrence of aflatoxins was observed to be in decreasing order of AFG2 < AFG1 < AFB2 < AFB1 and were within the ranges of 0.78 ± 0.04 $$-$$
-
234.73 ± 3.8 µg/kg, 0.47 ± 0.03 $$-$$
-
21.6 ± 0.33 µg/kg, 1.01 ± 0.05 $$-$$
-
13.75 ± 1.2 µg/kg and 0.66 ± 0.06 $$-$$
-
5.51 ± 0.26 µg/kg respectively. Out of the 100 samples analyzed for total aflatoxins (totalAFs), 68 (68%) exceeded the limits of EC and were of range 4.98 ± 0.6 $$-$$
-
445.01 ± 8.9 µg/kg whereas 58 (58%) and ranged between 12.12 ± 1.4 $$-$$
-
445.01 ± 8.9 µg/kg exceeded GSA limits. Intake and risk assessments of total aflatoxins (totalAFs) for infants, toddlers, children, adolescents, and adults in the Volta Region were; 0.037–1.14 µg/kg bw/day, 0.35–10.81, and 1.47 -45.14 cases/10,000 person/yr respectively for Estimated Daily Intake (EDI), Margin of Exposure (MOE), and Cancer Risks. It was inferred that the consumption of maize posed potential adverse health effects on all age categories studied because all calculated MOE values were less than 10,000.
Collapse
|
7
|
Gichohi-Wainaina WN, Kumwenda NC, Harry M, Matumba L, Njoroge SMC, Okori P. Aflatoxin in cereals and groundnut from small holder farming households in Malawi. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:266-274. [PMID: 35883265 DOI: 10.1080/19393210.2022.2101069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin contamination in commonly consumed cereals and nuts may place children at higher risk of stunting and adults at risk of developing liver cancer. This study investigated knowledge on aflatoxins and the level of aflatoxin B1 contamination in commonly consumed cereals and nuts in Malawi. It also included an examination of the proportion of cereals and nuts contaminated above regulatory maximum limits. Aflatoxin contamination in samples was assessed using an enzyme-linked immunosorbent assay (ELISA) method. Less than half of all households knew that consumption of aflatoxin contaminated grain is associated with stunting and lowered immunity. Sorghum samples were the most contaminated and millet the least contaminated. Aflatoxin contamination was highest in southern Malawi and least in northern Malawi. Observed results indicate that this population is at risk of poor health due to lack of knowledge and aflatoxin exposure. Strategies to address contamination should therefore include a comprehensive education campaign to increase knowledge and promote accessible strategies.
Collapse
Affiliation(s)
- Wanjiku N Gichohi-Wainaina
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nelson C Kumwenda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Msere Harry
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Limbikani Matumba
- Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Samuel M C Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Patrick Okori
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| |
Collapse
|
8
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Underreported Human Exposure to Mycotoxins: The Case of South Africa. Foods 2022; 11:foods11172714. [PMID: 36076897 PMCID: PMC9455755 DOI: 10.3390/foods11172714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.
Collapse
|
10
|
Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna B. Global maize production, consumption and trade: trends and R&D implications. Food Secur 2022. [DOI: 10.1007/s12571-022-01288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractSince its domestication some 9,000 years ago, maize (Zea mays L.; corn) has played an increasing and diverse role in global agri-food systems. Global maize production has surged in the past few decades, propelled by rising demand and a combination of technological advances, yield increases and area expansion. Maize is already the leading cereal in terms of production volume and is set to become the most widely grown and traded crop in the coming decade. It is a versatile multi-purpose crop, primarily used as a feed globally, but also is important as a food crop, especially in sub-Saharan Africa and Latin America, besides other non-food uses. This paper reviews maize production, consumption, and international trade to examine the changing trends in global supply and demand conditions over the past quarter century and the implications for research and development (R&D), particularly in the Global South. The inclusiveness and sustainability of the ongoing transformation of agri-food systems in the Global South merit particular attention. There is a need for further investments in R&D, particularly to enhance maize’s food and livelihood security roles and to sustainably intensify maize production while staying within the planetary boundaries.
Collapse
|
11
|
Evaluation of ultraviolet irradiation effects on Aspergillus flavus and Aflatoxin B1 in maize and peanut using innovative vibrating decontamination equipment. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Saha Turna N, Wu F. Estimation of Tolerable Daily Intake (TDI) for Immunological Effects of Aflatoxin. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:431-438. [PMID: 34147038 DOI: 10.1111/risa.13770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/05/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are toxic chemicals produced by the fungi Aspergillus flavus and Aspergillus parasiticus. In warm climates, these fungi frequently contaminate crops such as maize, peanuts, tree nuts, and sunflower seeds. In many tropical and subtropical regions of the world, populations are coexposed to dietary aflatoxin and multiple infectious pathogens in food, water, and the environment. There is increasing evidence that aflatoxin compromises the immune system, which could increase infectious disease risk in vulnerable populations. Our aim was to conduct a dose-response assessment on a noncarcinogenic endpoint of aflatoxin: immunotoxicological effects. We sought to determine a noncarcinogenic tolerable daily intake (TDI) of aflatoxin, based on the existing data surrounding aflatoxin and biomarkers of immune suppression. To conduct the dose response assessment, mammalian studies were assessed for appropriateness of doses (relevant to potential human exposures) as well as goodness of data, and two appropriate mouse studies that examined decreases in leukocyte counts were selected to generate dose response curves. From these, we determined benchmark dose lower confidence limits (BMDL) as points of departure to estimate a range of TDIs for aflatoxin-related immune impairment: 0.017-0.082 μg/kg bw/day. As aflatoxin is a genotoxic carcinogen, and regulations concerning its presence in food have largely focused on its carcinogenic effects, international risk assessment bodies such as the Joint Expert Committee on Food Additives (JECFA) have never established a TDI for aflatoxin. Our work highlights the importance of the noncarcinogenic effects of aflatoxin that may have broader public health impacts, to inform regulatory standard-setting.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, USA
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, USA
| |
Collapse
|
13
|
|
14
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
15
|
de León-Martínez LD, López-Mendoza C, Terán-Figueroa Y, Flores-Ramírez R, Díaz-Barriga F, Alcántara-Quintana L. Detection of aflatoxin B1 adducts in Mexican women with cervical lesions. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cervical cancer (CC) is one of the most serious threats to the lives of women; co-factors in addition to oncogenic human papillomavirus (HPV) infection may be important in causing CC. Women in Mexico are exposed to dietary aflatoxin B1, a potent carcinogen, which may act as a co-factor, in inducing progression to CC. Scarce studies are addressing environmental risks associated with the development of CC, thus the study aimed to establish a relationship between the presence of AFB1 and the detection of human papillomavirus in the genome of Mexican women. Forty samples from cervical tissue of women infected with HPV were obtained; positive results regarding the HPV type (16 and/or 18) were found in 92.5% women and the presence of AFB1-DNA adducts were detected in 77.5% of the same positive HPV samples. Detection of AFB1-DNA adducts and genomic concentrations were correlated with the detection of two oncogenic types of HPV 16 and 18. AFB1-DNA positivity and higher genomic concentrations of AFB1-DNA adducts were correlated with an increased risk of oncogenic detection of HPV in cervical samples from women in Mexico. As a secondary objective, a hypothetical interaction of the adducts with the NRF2 pathway has been proposed, therefore activation of p62 and in turn E6 and E7 (HPV proteins) would inhibit the formation of autophagosomes, which would result in a presence or recurrence of CC.
Collapse
Affiliation(s)
- L. Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona 7 No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - C.M. López-Mendoza
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí. Av. Niño Artillero 130 Zona Universitaria, 78240, SLP, México
| | - Y. Terán-Figueroa
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí. Av. Niño Artillero 130 Zona Universitaria, 78240, SLP, México
| | - R. Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona 7 No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona 7 No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, México
| | - L.E. Alcántara-Quintana
- Cátedra CONACYT, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí. Av. Niño Artillero 130 Zona Universitaria, 78240, SLP, México
| |
Collapse
|
16
|
Chen C, Frank K, Wang T, Wu F. Global wheat trade and Codex Alimentarius guidelines for deoxynivalenol: A mycotoxin common in wheat. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Saha Turna N, Wu F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Wei W, Liu C, Ke P, Chen X, Zhou T, Xu J, Zhou Y. Toxicological and physiological effects of successive exposure to ochratoxin A at food regulatory limits. Food Chem Toxicol 2021; 151:112128. [PMID: 33727177 DOI: 10.1016/j.fct.2021.112128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Ochratoxin A (OTA), a potent mycotoxin, is a common contaminant of agro-products, which seriously threatens food safety. The OTA regulatory limits vary from different countries/regions. However, little is known about the toxicological effects of successive exposure to regulatory levels of OTA. In this study, feedstuffs contaminated with 0.5-20 μg kg-1 OTA were evaluated in Sprague-Dawley (SD) rats. During the study, poisoning-associated behaviors, and significant differences of body weight and food intake, were not observed between OTA-treated rats and control group. However, the renal function indexes of blood urea nitrogen (BUN) and creatinine (CR) increased, and architecture destruction of glomeruli and tubuli was observed from the OTA-treated groups. The apoptosis study indicated that at a concentration of 20 μg kg-1, OTA modulated apoptosis in renal tissues via the Bcl-2/Bax pathway. The results of this study suggest that exposure to low doses of OTA successively at levels lower than the regulatory limits of certain countries could induce nephrotoxicity, and modulate apoptosis. Therefore, agencies pertaining to food safety should establish strict OTA regulatory limits for food and feedstuff.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chong Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ping Ke
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, N1G 5C9, Canada
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei 230036, China.
| |
Collapse
|
19
|
Akello J, Ortega-Beltran A, Katati B, Atehnkeng J, Augusto J, Mwila CM, Mahuku G, Chikoye D, Bandyopadhyay R. Prevalence of Aflatoxin- and Fumonisin-Producing Fungi Associated with Cereal Crops Grown in Zimbabwe and Their Associated Risks in a Climate Change Scenario. Foods 2021; 10:foods10020287. [PMID: 33572636 PMCID: PMC7912306 DOI: 10.3390/foods10020287] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
In most sub-Saharan African countries, staple cereal grains harbor many fungi and some produce mycotoxins that negatively impact health and trade. Maize and three small grain cereals (sorghum, pearl millet, and finger millet) produced by smallholder farmers in Zimbabwe during 2016 and 2017 were examined for fungal community structure, and total aflatoxin (AF) and fumonisin (FM) content. A total of 800 maize and 180 small grain samples were collected at harvest and during storage from four agroecological zones. Fusarium spp. dominated the fungi associated with maize. Across crops, Aspergillusflavus constituted the main Aspergillus spp. Small grain cereals were less susceptible to both AF and FM. AF (52%) and FM (89%) prevalence was higher in maize than in small grains (13-25% for AF and 0-32% for FM). Less than 2% of small grain samples exceeded the EU regulatory limit for AF (4 µg/kg), while <10% exceeded the EU regulatory limit for FM (1000 µg/kg). For maize, 28% and 54% of samples exceeded AF and FM Codex guidance limits, respectively. Higher AF contamination occurred in the drier and hotter areas while more FM occurred in the wetter year. AF exposure risk assessment revealed that small grain consumption posed low health risks (≤0.02 liver cancer cases/100,000 persons/year) while maize consumption potentially caused higher liver cancer rates of up to 9.2 cases/100,000 persons/year depending on the locality. Additionally, FM hazard quotients from maize consumption among children and adults were high in both years, but more so in a wet year than a dry year. Adoption of AF and FM management practices throughout the maize value chain coupled with policies supporting dietary diversification are needed to protect maize consumers in Zimbabwe from AF- and FM-associated health effects. The higher risk of health burden from diseases associated with elevated concentration of mycotoxins in preferred maize during climate change events can be relieved by increased consumption of small grains.
Collapse
Affiliation(s)
- Juliet Akello
- International Institute of Tropical Agriculture (IITA), Plot 1458B, Ngwerere Road, Chelston, Lusaka P.O. Box. 310142, Zambia; (J.A.); (C.M.M.); (D.C.)
| | | | - Bwalya Katati
- National Institute for Scientific and Industrial Research, KK Airport Road, Lusaka P.O. Box. 310158, Zambia;
| | - Joseph Atehnkeng
- IITA Malawi, Chitedze Research Station, Lilongwe P.O. Box. 30258, Malawi;
| | - Joao Augusto
- IITA Mozambique, Av. FPLM, Nampula P.O. Box. 709, Mozambique;
| | - Chama M. Mwila
- International Institute of Tropical Agriculture (IITA), Plot 1458B, Ngwerere Road, Chelston, Lusaka P.O. Box. 310142, Zambia; (J.A.); (C.M.M.); (D.C.)
| | - George Mahuku
- IITA Tanzania, Dar es Salaam P.O. Box. 34441, Tanzania;
| | - David Chikoye
- International Institute of Tropical Agriculture (IITA), Plot 1458B, Ngwerere Road, Chelston, Lusaka P.O. Box. 310142, Zambia; (J.A.); (C.M.M.); (D.C.)
| | - Ranajit Bandyopadhyay
- IITA Nigeria, Oyo Road, Ibadan P.M.B. 5320, Nigeria;
- Correspondence: ; Tel.: +234-806-868-1854
| |
Collapse
|
20
|
Adaku Chilaka C, Mally A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods 2020; 9:E1585. [PMID: 33139646 PMCID: PMC7693847 DOI: 10.3390/foods9111585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany;
| | | |
Collapse
|
21
|
Migwi B, Mutegi C, Mburu J, Wagacha J, Cotty P, Bandyopadhyay R, Manyong VM. Assessment of willingness-to-pay for Aflasafe KE01, a native biological control product for aflatoxin management in Kenya. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1951-1962. [PMID: 33026964 DOI: 10.1080/19440049.2020.1817571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Contamination of key staples with aflatoxins compromises the quality of food and feed, impedes trade, and negatively affects the health of consumers whereas acute exposure can be fatal. This study used the Contingent Valuation Method (CVM) on a sample of 480 farmers in counties prone to aflatoxin contamination to assess the willingness to pay (WTP) by farmers for Aflasafe KE01, a promising biological control product for the management of aflatoxin contamination of key staples in Kenya, compare its cost with that of a similar product in use in Nigeria, and determine factors likely to affect its adoption. Four hundred and eighty households from four counties identified as aflatoxin hotspots in Kenya were purposively selected and interviewed using a semi-structured questionnaire. The mean WTP per kilogram of Aflasafe KE01, using Contingent Valuation Method in the four counties ranged from Kenya Shillings (Ksh) 113 to 152/kg compared to a cost of Ksh. 130/kg, the price of a similar product, AflasafeTM, in Nigeria. Factors that positively influenced farmers' WTP included information from crop extension services and access to credit. To facilitate the adoption of Aflasafe KE01 or any other biocontrol product in Kenya and elsewhere, there is a need for increased education efforts through extension services to farmers about aflatoxins. Strategies to ensure that the biocontrol product is integrated into the credit scheme of the technological packages to farmers need to be considered.
Collapse
Affiliation(s)
- Bernard Migwi
- Department of Agricultural Economics, University of Nairobi , Nairobi, Kenya
| | - Charity Mutegi
- International Institute of Tropical Agriculture (IITA) , Nairobi, Kenya
| | - John Mburu
- Department of Agricultural Economics, University of Nairobi , Nairobi, Kenya
| | - John Wagacha
- School of Biological Sciences, University of Nairobi , Nairobi, Kenya
| | - Peter Cotty
- United States Department of Agriculture, Agriculture Research Services , Tucson, AZ, USA.,School of Food Science and Engineering, Ocean University of China , Qingdao, China
| | | | - Victor M Manyong
- International Institute of Tropical Agriculture (IITA) , Dar -es-salaam, Tanzania
| |
Collapse
|
22
|
Wang Y, Jiang J, Fotina H, Zhang H, Chen J. Advances in Antibody Preparation Techniques for Immunoassays of Total Aflatoxin in Food. Molecules 2020; 25:molecules25184113. [PMID: 32916811 PMCID: PMC7571119 DOI: 10.3390/molecules25184113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin (AF) contamination is a major concern in the food and feed industry because of its prevalence and toxicity. Improved aflatoxin detection methods are still needed. Immunoassays are an important method for total aflatoxin (TAF) analysis in food due to its technical advantages such as high specificity, sensitivity, and simplicity, but require high-quality antibodies. Here, we first review the three ways to prepare high-quality antibodies for TAF immunoassay, second, compare the advantages and disadvantages of antigen synthesis methods for B-group and G-group aflatoxins, and third, describe the status of novel genetic engineering antibodies. This review can provide new methods and ideas for the development of TAF immunoassays.
Collapse
Affiliation(s)
- Yanan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
- Correspondence: (J.J.); (H.F.); Tel.: +86-135-2508-3536 (J.J.)
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Correspondence: (J.J.); (H.F.); Tel.: +86-135-2508-3536 (J.J.)
| | - Haitang Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
| | - Junjie Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
| |
Collapse
|
23
|
Zavala-Franco A, Arámbula-Villa G, Ramírez-Noguera P, Salazar AM, Sordo M, Marroquín-Cardona A, Figueroa-Cárdenas JDD, Méndez-Albores A. Aflatoxin detoxification in tortillas using an infrared radiation thermo-alkaline process: Cytotoxic and genotoxic evaluation. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Ncube J, Maphosa M. Current state of knowledge on groundnut aflatoxins and their management from a plant breeding perspective: Lessons for Africa. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
García-Díaz M, Gil-Serna J, Patiño B, García-Cela E, Magan N, Medina Á. Assessment of the Effect of Satureja montana and Origanum virens Essential Oils on Aspergillus flavus Growth and Aflatoxin Production at Different Water Activities. Toxins (Basel) 2020; 12:toxins12030142. [PMID: 32106532 PMCID: PMC7150974 DOI: 10.3390/toxins12030142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 02/08/2023] Open
Abstract
Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essential to search for new control methods to prevent these toxins entering the food chain. Several essential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although their efficiency is strongly influenced by the environmental conditions. In this work, the effectiveness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were determined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. However, only S. montana essential oil was able to significantly affect aflatoxin production, although the inhibition percentages widely differed among water activities. The most significant reduction was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the highest levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to study the interaction of the new control compounds with environmental factors before their application in food matrices, and in vitro ecophysiological studies are a good option since they provide accurate and rapid results.
Collapse
Affiliation(s)
- Marta García-Díaz
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (B.P.)
| | - Jessica Gil-Serna
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (B.P.)
- Correspondence: (J.G.-S.); (Á.M.)
| | - Belén Patiño
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (B.P.)
| | - Esther García-Cela
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Bedford MK43 0AL, UK; (E.G.-C.); (N.M.)
- Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL109AB, UK
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Bedford MK43 0AL, UK; (E.G.-C.); (N.M.)
| | - Ángel Medina
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Bedford MK43 0AL, UK; (E.G.-C.); (N.M.)
- Correspondence: (J.G.-S.); (Á.M.)
| |
Collapse
|
26
|
Benkerroum N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1215. [PMID: 32070028 PMCID: PMC7068566 DOI: 10.3390/ijerph17041215] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
This review aims to update the main aspects of aflatoxin production, occurrence and incidence in selected countries, and associated aflatoxicosis outbreaks. Means to reduce aflatoxin incidence in crops were also presented, with an emphasis on the environmentally-friendly technology using atoxigenic strains of Aspergillus flavus. Aflatoxins are unavoidable widespread natural contaminants of foods and feeds with serious impacts on health, agricultural and livestock productivity, and food safety. They are secondary metabolites produced by Aspergillus species distributed on three main sections of the genus (section Flavi, section Ochraceorosei, and section Nidulantes). Poor economic status of a country exacerbates the risk and the extent of crop contamination due to faulty storage conditions that are usually suitable for mold growth and mycotoxin production: temperature of 22 to 29 °C and water activity of 0.90 to 0.99. This situation paralleled the prevalence of high liver cancer and the occasional acute aflatoxicosis episodes that have been associated with these regions. Risk assessment studies revealed that Southeast Asian (SEA) and Sub-Saharan African (SSA) countries remain at high risk and that, apart from the regulatory standards revision to be more restrictive, other actions to prevent or decontaminate crops are to be taken for adequate public health protection. Indeed, a review of publications on the incidence of aflatoxins in selected foods and feeds from countries whose crops are classically known for their highest contamination with aflatoxins, reveals that despite the intensive efforts made to reduce such an incidence, there has been no clear tendency, with the possible exception of South Africa, towards sustained improvements. Nonetheless, a global risk assessment of the new situation regarding crop contamination with aflatoxins by international organizations with the required expertise is suggested to appraise where we stand presently.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
27
|
Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol 2020; 10:2908. [PMID: 31998250 PMCID: PMC6962185 DOI: 10.3389/fmicb.2019.02908] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to Earth's changing climate, the ongoing and foreseeable spreading of mycotoxigenic Aspergillus species has increased the possibility of mycotoxin contamination in the feed and food production chain. These harmful mycotoxins have aroused serious health and economic problems since their first appearance. The most potent Aspergillus-derived mycotoxins include aflatoxins, ochratoxins, gliotoxin, fumonisins, sterigmatocystin, and patulin. Some of them can be found in dairy products, mainly in milk and cheese, as well as in fresh and especially in dried fruits and vegetables, in nut products, typically in groundnuts, in oil seeds, in coffee beans, in different grain products, like rice, wheat, barley, rye, and frequently in maize and, furthermore, even in the liver of livestock fed by mycotoxin-contaminated forage. Though the mycotoxins present in the feed and food chain are well documented, the human physiological effects of mycotoxin exposure are not yet fully understood. It is known that mycotoxins have nephrotoxic, genotoxic, teratogenic, carcinogenic, and cytotoxic properties and, as a consequence, these toxins may cause liver carcinomas, renal dysfunctions, and also immunosuppressed states. The deleterious physiological effects of mycotoxins on humans are still a first-priority question. In food production and also in the case of acute and chronic poisoning, there are possibilities to set suitable food safety measures into operation to minimize the effects of mycotoxin contaminations. On the other hand, preventive actions are always better, due to the multivariate nature of mycotoxin exposures. In this review, the occurrence and toxicological features of major Aspergillus-derived mycotoxins are summarized and, furthermore, the possibilities of treatments in the medical practice to heal the deleterious consequences of acute and/or chronic exposures are presented.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Madar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
de León-Martínez LD, Solis-Mercado J, Rodríguez-Aguilar M, Díaz-Barriga F, Ortíz DG, Flores-Ramírez R. Assessment of aflatoxin B1-lysine adduct in serum of infant population of the Huasteca Potosina, México – a pilot study. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2019.2457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxins are mycotoxins considered to be highly toxic and produce adverse effects on human health. These compounds, mainly aflatoxin B1 (AFB1), have been classified as human carcinogens, due to its association with the development of hepatocellular carcinoma. In Mexico, the study of aflatoxins has been focused on the evaluation of products of the basic basket, particularly on maize, which is the basis of the Mexican diet. On the other hand, most of these studies have been conducted in urban areas. Indigenous populations may be exposed to a higher risk than urban ones due to the high consumption of tortillas, the harvest and the storage conditions of their food; hence, AFB1 is frequently found contaminating maize, which is the main food source for Mexicans. There is scarce evidence of exposure in vulnerable populations, such as children. Therefore, the main objective of this research was to conduct a pilot study for the evaluation of exposure to AFB1 through the AFB1-lys adduct in 31 serum samples of children from indigenous communities in Mexico. AFB1-lys was measured by High Pressure Liquid Chromatography with fluorescence detector (HPLC-FLD), with limits of detection and quantification of 3.5 and 4.7 pg/ml, respectively. Results from this pilot study revealed that 13% of children were of short stature, 9.7% presented overweight and 6.5% obesity. 45% of the children presented detectable concentrations of AFB1-lys adduct, with a median (minimum-maximum) of 5.6 (4.8-6.5) pg of AFB1-lys adduct/mg of albumin. The AFB1-lysine exposure biomarker is an important tool for the surveillance of aflatoxins and their effects on health, so, following this intervention, it would be necessary to monitor the exposure of vulnerable populations to aflatoxins, especially in rural areas where foods are more contaminated.
Collapse
Affiliation(s)
- L. Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - J. Solis-Mercado
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - M. Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - D. Guzmán Ortíz
- Departamento de Biotecnología y Bioquímica Centro de Investigación de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Campus Guanajuato, Irapuato, México
| | - R. Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| |
Collapse
|
29
|
Matumba L, Kimanya M, Chunga-Sambo W, Munthali M, Ayalew A. Probabilistic dietary based estimation of the burden of aflatoxin-induced hepatocellular carcinoma among adult Malawians. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The risk of aflatoxin-induced hepatocellular carcinoma (HCC) among adults (average body weight of 60 kg) in Malawi was assessed based on aflatoxin B1 (AFB1) exposure through groundnut and maize consumption, by Monte Carlo simulation. The risk (cases per year per 100,000 people) of aflatoxin-induced HCC was estimated based on the AFB1 exposures estimated by this study and hepatitis B virus infection prevalence published for Malawi. AFB1 exposures were estimated by probabilistically combining data of AFB1 contamination in 338 groundnut and 604 maize samples with data of per capita groundnut and maize consumption in 274 households. Aflatoxins in the samples were analysed using validated LC-MS/MS, HPLC and VICAM based methods. The groundnut and maize consumption survey was based on household expenditure technique. The simulated mean AFB1 exposures through consumption of groundnuts, maize, and combination thereof were 28±65, 42±174, and 71±211 ng/kg. body weight (bw)/day, respectively. The estimated HCC risks were 1.26±2.72, 1.86±6.66 and 3.10±6.85 cases per 100,000 persons per year, respectively. Further, hypothetical eradication of hepatitis B virus (HBV) reduced the risk of HCC by 78%. This reaffirms the need for integrating HBV vaccination in the fight of aflatoxin induced HCC.
Collapse
Affiliation(s)
- L. Matumba
- Food Technology and Nutrition Group, Lilongwe University of Agriculture and Natural Resources, (LUANAR), NRC campus, P.O. Box 143, Lilongwe, Malawi
| | - M. Kimanya
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
- Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela – African Institution of Science and Technology, Arusha, Tanzania
| | - W. Chunga-Sambo
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
| | - M. Munthali
- Department of Agricultural Research Services, Chitedze Agricultural Research Station, P.O. Box 158, Lilongwe, Malawi
| | - A. Ayalew
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
| |
Collapse
|
30
|
Nabwire WR, Ombaka J, Dick CP, Strickland C, Tang L, Xue KS, Wang JS. Aflatoxin in household maize for human consumption in Kenya, East Africa. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 13:45-51. [PMID: 31775581 DOI: 10.1080/19393210.2019.1690053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study is to determine the occurrence and level of aflatoxins (AFs) contamination in freshly harvested maize for human consumption in rural Kenya. Maize kernels and freshly milled maize flour (n = 338) were collected from households in Siaya and Makueni counties. While both counties are representatives of different environmental and climate conditions, Makueni County is the area with reported outbreaks of aflatoxicosis. Samples were analysed for AFB1, AFB2, AFG1, and AFG2 using Ultra High-Pressure Liquid Chromatography with Fluorescence detection. AFs were detected in 100% of the samples with the range of 2.14-411 µg/kg. The geometric mean of total AFs in all samples from Makueni County is 62.5 μg/kg with 95% CI: 53.7, 71.4 while in Siaya County is 52.8 μg/kg with 95% CI: 44.0, 61.7. This study showed that AFs contamination is prevalent in maize-based foods in the region.
Collapse
Affiliation(s)
- Wangia Ruth Nabwire
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - James Ombaka
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Christian Strickland
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Kathy Siyu Xue
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
García-Díaz M, Patiño B, Vázquez C, Gil-Serna J. A Novel Niosome-Encapsulated Essential Oil Formulation to Prevent Aspergillus flavus Growth and Aflatoxin Contamination of Maize Grains During Storage. Toxins (Basel) 2019; 11:toxins11110646. [PMID: 31698851 PMCID: PMC6891554 DOI: 10.3390/toxins11110646] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.
Collapse
|
32
|
de Almeida L, Williams R, Soares DM, Nesbitt H, Wright G, Erskine W. Aflatoxin levels in maize and peanut and blood in women and children: The case of Timor-Leste. Sci Rep 2019; 9:13158. [PMID: 31511633 PMCID: PMC6739342 DOI: 10.1038/s41598-019-49584-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Aflatoxins are toxic fungal metabolites produced by Aspergillus sp. with carcinogenic properties that are a common food contaminant of many crops including maize and peanuts. In Timor-Leste malnutrition and children's stunting are frequent and maize and peanuts are staple foods. This study aimed to provide information on aflatoxin exposure nationally. The study measured levels of aflatoxin in locally-produced maize and peanuts (296 samples) and of aflatoxin-albumin conjugate in blood samples of women and young children (514 and 620 respectively) across all municipalities. The average concentration of aflatoxin in the grain samples was low with most maize (88%) and peanut (92%) samples - lower than European Commission tolerated aflatoxin level. Although aflatoxin-albumin conjugate was detected in more than 80% of blood samples, the average concentration in children and adults of 0.64 and 0.98 pg mg-1 alb, respectively, is much lower than in other similar rural-based countries. Although low in concentration, blood aflatoxin levels and aflatoxin contamination levels in maize across municipalities were correlated significantly for mothers (R2 = 37%, n = 495) but not for children (R2 = 10%). It is unlikely that the consumption of aflatoxin contaminated grain is a causative factor in the current level of malnutrition and stunting affecting Timor-Leste children.
Collapse
Affiliation(s)
- Luis de Almeida
- AI-Com, Ministry of Agriculture and Fisheries, PO Box 221, Comoro-Dili, Timor-Leste.,Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment & Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Robert Williams
- AI-Com, Ministry of Agriculture and Fisheries, PO Box 221, Comoro-Dili, Timor-Leste.,Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment & Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | - Harry Nesbitt
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment & Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Graeme Wright
- Peanut Company of Australia (PCA), 133 Haly Street, Kingaroy, Qld, 4610, Australia
| | - William Erskine
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment & Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
33
|
A Polyphasic Approach Aids Early Detection of Potentially Toxigenic Aspergilli in Soil. Microorganisms 2019; 7:microorganisms7090300. [PMID: 31470555 PMCID: PMC6781248 DOI: 10.3390/microorganisms7090300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
Key chili and maize growing areas of Pakistan were selected for a focused baseline study of the levels of Aspergillus spp. Investigations were undertaken using a combination of molecular and culture-based techniques. Samples investigated included soil samples, one-year-old corn cobs, and fresh chili from selected locations. Aspergillus strains obtained from corn cobs were screened using coconut milk agar, resulting in one strain that was positive for aflatoxin production. Whole genome sequencing (WGS) with low coverage techniques were employed to screen the isolates for differences in the ribosomal RNA gene cluster and mitochondrial genome, with the aflatoxigenic strain proving to have a distinctive profile. Finally, strains were subjected to matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in order to obtain a proteomic ‘fingerprint’ which was used to distinguish the aflatoxigenic strain from the other isolates. The next generation sequencing (NGS) study was broadened to incorporate metabarcoding with ITS rRNA for determining the microbial biodiversity of the soil samples and presumptive screening for the presence of aflatoxigenic strains. Using information gleaned from the WGS results, a putative aflatoxigenic operational taxonomic unit (OTU) was observed in four of the 15 soil samples screened by metabarcoding. This method may have beneficial applications in early detection and surveillance programs in agricultural soils and commodities.
Collapse
|
34
|
Liverpool-Tasie LSO, Turna NS, Ademola O, Obadina A, Wu F. The occurrence and co-occurrence of aflatoxin and fumonisin along the maize value chain in southwest Nigeria. Food Chem Toxicol 2019; 129:458-465. [DOI: 10.1016/j.fct.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/31/2022]
|
35
|
Githang'a D, Wangia RN, Mureithi MW, Wandiga SO, Mutegi C, Ogutu B, Agweyu A, Wang JS, Anzala O. The effects of aflatoxin exposure on Hepatitis B-vaccine induced immunity in Kenyan children. Curr Probl Pediatr Adolesc Health Care 2019; 49:117-130. [PMID: 31103452 PMCID: PMC7116700 DOI: 10.1016/j.cppeds.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Globally, approximately three million children die each year from vaccine preventable infectious diseases mainly in developing countries. Despite the success of the expanded immunization program, not all infants and children around the world develop the same protective immune response to the same vaccine. A vaccine must induce a response over the basal immune response that may be driven by population-specific, environmental or socio-economic factors. Mycotoxins like aflatoxins are immune suppressants that are confirmed to interfere with both cell-mediated and acquired immunity. The mechanism of aflatoxin toxicity is through the binding of the bio-activated AFB1-8, 9-epoxide to cellular macromolecules. METHODS We studied Hepatitis B surface antibodies [anti-HBs] levels to explore the immune modulation effects of dietary exposure to aflatoxins in children aged between one and fourteen years in Kenya. Hepatitis B vaccine was introduced for routine administration for Kenyan infants in November 2001. To assess the effects of aflatoxin on immunogenicity of childhood vaccines Aflatoxin B1-lysine in blood serum samples were determined using High Performance Liquid Chromatography with Fluorescence detection while anti-HBs were measured using Bio-ELISA anti-HBs kit. RESULTS The mean ± SD of AFB1-lysine adducts in our study population was 45.38 ± 87.03 pg/mg of albumin while the geometric mean was 20.40 pg/mg. The distribution of AFB1-lysine adducts was skewed to the right. Only 98/205 (47.8%) of the study population tested positive for Hepatitis B surface antibodies. From regression analysis, we noted that for every unit rise in serum aflatoxin level, anti-HBs dropped by 0.91 mIU/ml (-0.9110038; 95% C.I -1.604948, -0.21706). CONCLUSION Despite high coverage of routine immunization, less than half of the study population had developed immunity to HepB. Exposure to aflatoxin was high and weakly associated with low anti-HBs antibodies. These findings highlight a potentially significant role for environmental factors that may contribute to vaccine effectiveness warranting further research.
Collapse
Affiliation(s)
- D Githang'a
- KAVI - Institute of Clinical Research, University of Nairobi, Kenya; Department of Medical Microbiology, School of Medicine, College of Health Sciences, University of Nairobi, Kenya.
| | - R N Wangia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - M W Mureithi
- KAVI - Institute of Clinical Research, University of Nairobi, Kenya; Department of Medical Microbiology, School of Medicine, College of Health Sciences, University of Nairobi, Kenya
| | - S O Wandiga
- Department of Chemistry, College of Biological and Physical Sciences, University of Nairobi, Kenya
| | - C Mutegi
- International Institute of Tropical Agriculture [IITA], P.O BOX 30772-00100, Nigeria
| | - B Ogutu
- Centre for Clinical Research-Kenya Medical Research Institute, Kenya
| | - A Agweyu
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640 - 00100, Nairobi, Kenya
| | - J-S Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - O Anzala
- KAVI - Institute of Clinical Research, University of Nairobi, Kenya; Department of Medical Microbiology, School of Medicine, College of Health Sciences, University of Nairobi, Kenya
| |
Collapse
|
36
|
Udovicki B, Djekic I, Gajdos Kljusuric J, Papageorgiou M, Skendi A, Djugum J, Rajkovic A. Exposure assessment and risk characterization of aflatoxins intake through consumption of maize products in the adult populations of Serbia, Croatia and Greece. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:940-951. [PMID: 31009320 DOI: 10.1080/19440049.2019.1600748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The main objective of this research was to perform an exposure assessment of aflatoxins intake through consumption of maize products in Serbia, Croatia, and Greece. Food consumption survey of maize-based products has been performed during 2017 in the three countries with at least 1,000 interviewees per country covering their dietary habits and body weight. Values for the concentration of aflatoxins were extracted from available research published in the last ten years. Finally, a Monte Carlo analysis of 100,000 iterations was performed to estimate the intake of aflatoxins from consumption of maize-based products. Results revealed that the estimated average exposure of adults to aflatoxins, from maize consumption, in each of the three countries was between 0.44 ng kg-1 bw day-1 and 5.59 ng kg-1 bw day-1. Margin of exposure values for the mean exposure levels, in all three countries, were between 30 and 389. Estimations for hepatocellular carcinoma cases/year/105 individuals, depending on the HBsAg+ prevalence, were 0.075-0.098, 0.006-0.008 and 0.020-0.026 for Serbia, Croatia and Greece, respectively.
Collapse
Affiliation(s)
- Bozidar Udovicki
- a Department of Food Safety and Quality Management , Faculty of Agriculture, University of Belgrade , Belgrade , Republic of Serbia
| | - Ilija Djekic
- a Department of Food Safety and Quality Management , Faculty of Agriculture, University of Belgrade , Belgrade , Republic of Serbia
| | - Jasenka Gajdos Kljusuric
- b Department of Process Engineering, Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - Maria Papageorgiou
- c Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Thessaloniki , Greece
| | - Adriana Skendi
- c Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Thessaloniki , Greece
| | - Jelena Djugum
- b Department of Process Engineering, Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia.,d Ministry of Agriculture , Zagreb , Croatia
| | - Andreja Rajkovic
- a Department of Food Safety and Quality Management , Faculty of Agriculture, University of Belgrade , Belgrade , Republic of Serbia.,e Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering , Ghent University , Ghent , Belgium
| |
Collapse
|
37
|
Alsharif AMA, Choo YM, Tan GH. Detection of Five Mycotoxins in Different Food Matrices in the Malaysian Market by Using Validated Liquid Chromatography Electrospray Ionization Triple Quadrupole Mass Spectrometry. Toxins (Basel) 2019; 11:toxins11040196. [PMID: 30935130 PMCID: PMC6520768 DOI: 10.3390/toxins11040196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are common food contaminants which cause poisoning and severe health risks to humans and animals. The present study applied chemometric approach in liquid chromatography-tandem mass spectrometry (LC-MS/MS) optimization for simultaneous determination of mycotoxins, i.e., aflatoxins B1, B2, G1, and G2, and ochratoxin A. The validated quick, easy, cheap, effective, rugged, and safe (QuEChERS)-LC-MS/MS method was used to study the occurrence of mycotoxins in 120 food matrices. The recovery ranges from 81.94% to 101.67% with relative standard deviation (RSD) lesser than 11%. Through the developed method, aflatoxins were detected in raisin, pistachio, peanut, wheat flour, spice, and chili samples with concentration ranges from 0.45 to 16.93 µg/kg. Trace concentration of ochratoxin A was found in wheat flour and peanut samples which ranged from 1.2 to 3.53 µg/kg. Some of the tested food samples contained mycotoxins of above the European legal maximum limit.
Collapse
Affiliation(s)
- Ali Mohamed Ali Alsharif
- Department of Chemistry, Faculty of Science, University of Mala, Kuala Lumpur 50603, Malaysia.
- Arab Centre for Desertification and Development of Saharian Societies, Murzuk 999116, Libya.
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Mala, Kuala Lumpur 50603, Malaysia.
| | - Guan-Huat Tan
- Department of Chemistry, Faculty of Science, University of Mala, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
38
|
Wielogorska E, Mooney M, Eskola M, Ezekiel CN, Stranska M, Krska R, Elliott C. Occurrence and Human-Health Impacts of Mycotoxins in Somalia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2052-2060. [PMID: 30694057 DOI: 10.1021/acs.jafc.8b05141] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycotoxins are secondary metabolites produced by various molds that contaminate many staple foods and cause a broad range of detrimental health effects in animals and humans through chronic exposure or acute toxicity. As such, the worldwide contamination of food and feed with mycotoxins is a significant problem, especially in sub-Saharan Africa. In this study, mycotoxin occurrence in staple foods consumed in Somalia was determined. A total of 140 samples (42 maize, 40 sorghum, and 58 wheat) were collected from a number of markets in Mogadishu, Somalia, and analyzed by a UPLC-MS/MS multimycotoxin method that could detect 77 toxins. All of the maize samples tested contained eight or more mycotoxins, with aflatoxin B1 (AFB1) and fumonisin B1 (FB1) levels reaching up to 908 and 17 322 μg/kg, respectively, greatly exceeding the European Union limits and guidance values. The average probable daily intake of fumonisins (FB1 and FB2) was 16.70 μg per kilogram of body weight (kg bw) per day, representing 835% of the recommended provisional maximum tolerable daily intake value of 2 μg/(kg bw)/day. A risk characterization revealed a mean national margin of exposure of 0.62 for AFB1 with an associated risk of developing primary liver cancer estimated at 75 cancers per year per 100 000 people for white-maize consumption alone. The results clearly indicate that aflatoxin and fumonisin exposure is a major public-health concern and that risk-management actions require prioritization in Somalia.
Collapse
Affiliation(s)
- Ewa Wielogorska
- School of Pharmacy , Queen's University Belfast , Belfast , Northern Ireland BT9 7BL , United Kingdom
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
| | - Mark Mooney
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
| | - Mari Eskola
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences, Vienna (BOKU) , Konrad Lorenz Straße 20 , 3430 Tulln , Austria
| | - Chibundu N Ezekiel
- Department of Microbiology , Babcock University , Ilishan Remo , Ogun State Nigeria
| | - Milena Stranska
- Department of Food Analysis and Nutrition , University of Chemistry and Technology , 166 28 Prague , Czech Republic
| | - Rudolf Krska
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences, Vienna (BOKU) , Konrad Lorenz Straße 20 , 3430 Tulln , Austria
| | - Chris Elliott
- Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences , Queen's University Belfast , Belfast , Northern Ireland BT9 5BN , United Kingdom
| |
Collapse
|
39
|
Pittman ME. Hepatocellular carcinoma: a practical review for the surgical pathologist. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.mpdhp.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Inner-filter effect based fluorescence-quenching immunochromotographic assay for sensitive detection of aflatoxin B1 in soybean sauce. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
42
|
Probabilistic health risk assessment for dietary exposure to aflatoxin in peanut and peanut products in Taiwan. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Camiletti BX, Moral J, Asensio CM, Torrico AK, Lucini EI, Giménez-Pecci MDLP, Michailides TJ. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. PHYTOPATHOLOGY 2018; 108:818-828. [PMID: 29384448 DOI: 10.1094/phyto-07-17-0255-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maize (Zea mays L.) is a highly valuable crop in Argentina, frequently contaminated with the mycotoxins produced by Aspergillus flavus. Biocontrol products formulated with atoxigenic (nontoxic) strains of this fungal species are well known as an effective method to reduce this contamination. In the present study, 83 A. flavus isolates from two maize regions of Argentina were characterized and evaluated for their ability to produce or lack of producing mycotoxins in order to select atoxigenic strains to be used as potential biocontrol agents (BCA). All of the isolates were tested for aflatoxin and cyclopiazonic acid (CPA) production in maize kernels and a liquid culture medium. Genetic diversity of the nonaflatoxigenic isolates was evaluated by analysis of vegetative compatibility groups (VCG) and confirmation of deletions in the aflatoxin biosynthesis cluster. Eight atoxigenic isolates were compared for their ability to reduce aflatoxin and CPA contamination in maize kernels in coinoculation tests. The A. flavus population was composed of 32% aflatoxin and CPA producers and 52% CPA producers, and 16% was determined as atoxigenic. All of the aflatoxin producer isolates also produced CPA. Aflatoxin and CPA production was significantly higher in maize kernels than in liquid medium. The 57 nonaflatoxigenic strains formed six VCG, with AM1 and AM5 being the dominant groups, with a frequency of 58 and 35%, respectively. In coinoculation experiments, all of the atoxigenic strains reduced aflatoxin from 54 to 83% and CPA from 60 to 97%. Members of group AM1 showed a greater aflatoxin reduction than members of AM5 (72 versus 66%) but no differences were detected in CPA production. Here, we described for the first time atoxigenic isolates of A. flavus that show promise to be used as BCA in maize crops in Argentina. This innovating biological control approach should be considered, developed further, and used by the maize industry to preserve the quality properties and food safety of maize kernels in Argentina.
Collapse
Affiliation(s)
- Boris X Camiletti
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Juan Moral
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Claudia M Asensio
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Ada Karina Torrico
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Enrique I Lucini
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - María de la Paz Giménez-Pecci
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Themis J Michailides
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| |
Collapse
|
44
|
Microbiological Quality and Risk Assessment for Aflatoxins in Groundnuts and Roasted Cashew Nuts Meant for Human Consumption. J Toxicol 2018; 2018:1308748. [PMID: 30046306 PMCID: PMC6038661 DOI: 10.1155/2018/1308748] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022] Open
Abstract
Nuts are one of the commonly consumed snacks but poor handling and storage practices can make them prone to foodborne infections. The study aimed at assessing the microbiological quality and risk assessment for aflatoxins in groundnuts and cashew nuts consumed in selected locations in Nigeria. The moisture content, colony counts, incidence of pathogenic bacteria, aflatoxin contamination, and risk assessment for aflatoxins were evaluated using standard methods. The moisture content and total viable count ranged from 5.00–8.60% and 5.5–89 × 103 cfug−1, respectively, while the fungal count was between 4–24 × 103 and 1.0–4.5 × 102 cfug−1, respectively. Eleven fungal species belonging to 5 genera were isolated from the nuts, with Aspergillus flavus, Rhizopus oryzae, and Fusarium oxysporum having the highest percentage occurrence of 50%. In addition, the aflatoxin concentration ranged 0.1–6.8 and 29–33.78 ng kg−1 for cashew nuts and groundnuts, respectively. The margin of exposure (MOE) to aflatoxin contamination was 6.10 for groundnuts and 1000 for cashew nuts and the nuts consumers were at a risk of exposure to foodborne diseases and aflatoxin contamination with mean exposure values of 27.96 and 0.17 ng kg−1bwday−1, respectively. The risk of primary liver cancer for groundnuts and cashew nuts consumers was also estimated to be 1.38 and 0.01 canceryear−1100,000−1person, respectively. This calls for mitigation measures from appropriate governmental organizations.
Collapse
|
45
|
Manda P, Adépo AJB, Kouassi M’bengue A, Konan M, Verdier N’gbe J, Doumbia M, Toutou T, Djédjé Dano S. Évaluation du rôle de l’aflatoxine B1 dans l’apparition du carcinome hépatocellulaire en Côte d’Ivoire : étude préliminaire. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2018. [DOI: 10.1016/j.toxac.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Jeyaramraja P, Meenakshi SN, Woldesenbet F. Relationship between drought and preharvest aflatoxin contamination in groundnut (Arachis hypogaea L.). WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Groundnut is a commercial oilseed crop that is prone to infection by Aspergillus flavus or Aspergillus parasiticus. Drought impairs the defence mechanism of the plant and favours the production of aflatoxin by the fungus. Aflatoxin is a carcinogen and its presence in food and feed causes significant economic loss. The answer to the question, ‘how drought tolerance and aflatoxin resistance are related?’ is not clear. In this review paper, the relationship of drought and preharvest aflatoxin contamination (AC), the relationship of drought tolerance traits and AC, and the approaches to enhance resistance to AC are discussed using up-to-date literature. Factors leading to AC are drought, high geocarposphere temperature, kernel/pod damage, and reduced phytoalexin synthesis by the plant. If the fungus colonises a kernel with reduced water activity, the plant cannot synthesise phytoalexin and then, the fungus synthesises aflatoxin. Breeding for resistance to AC is complicated because aflatoxin concentration is costly to measure, highly variable, and influenced by the environment. Since drought tolerant cultivars have resistance to AC, traits of drought tolerance have been used as indirect selection tools for reduced AC. The genetics of aflatoxin resistance mechanisms have not been made clear as the environment influences the host-pathogen relationship. Host-pathogen interactions under the influence of environment should be studied at molecular level to identify plant resistant factors using the tools of genomics, proteomics, and metabolomics in order to develop cultivars with durable resistance. Many candidate genes involved in host-pathogen interactions have been identified due to improvements in fungal expressed sequence tags, microarrays, and genome sequencing techniques. Moreover, research projects are underway on identifying genes coding for antifungal compounds, resistance associated proteins and quantitative trait loci associated with aflatoxin resistance. This review is expected to help those who wish to work on reducing AC in groundnuts.
Collapse
Affiliation(s)
- P.R. Jeyaramraja
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| | - S. Nithya Meenakshi
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, Tamilnadu, India
| | - F. Woldesenbet
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| |
Collapse
|
47
|
Nugraha A, Khotimah K, Rietjens IM. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem Toxicol 2018; 113:134-144. [DOI: 10.1016/j.fct.2018.01.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 11/30/2022]
|
48
|
Incidence of Cancer in Shenzhen, Guangdong Province during 2001-2015: A Retrospective Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101137. [PMID: 28953262 PMCID: PMC5664638 DOI: 10.3390/ijerph14101137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
Cancer is a serious public health issue and the leading cause of death around the world. This article aimed to estimate the cancer incidence and the trend in standardized cancer incidence in Shenzhen, Guangdong province, South China during 2001–2015 by analyzing the cancer data of the population-based cancer registry in Shenzhen. Data were collected from the cancer registry in Shenzhen, which was conducted during 2001–2015. In this registry, the crude incidence rates, age-specific incidence rates, age-standardized incidence rates and cumulative incidence rates were calculated in every five years. Trends for standardized incidence rates of cancers were analyzed by using the joinpoint regression analysis. In total, 33,374.3 thousand person-years (17,593.9 thousand for males and 15,780.4 thousand for females) were monitored over this time period. The number of new cancer cases during 2001–2015 was 59,218 (30,144 and 29,074 for males and females, respectively). The crude incidence during 2001–2005 was 136.44 per 100,000 persons, while the age-standardized rates by Chinese standard population (ASR-China) and by world standard population (ASR-world) were 165.13 and 212.48 per 100,000 persons, respectively. The crude incidence during 2006–2010 was 179.01 per 100,000 persons, while the ASR-China and ASR-world were 168.08 and 214.44 per 100,000 persons, respectively. The crude incidence during 2011–2015 was 196.53 per 100,000 persons, while the ASR-China and ASR-world were 171.44 and 219.99 per 100,000 persons, respectively. During 2001 and 2015, the joinpoint regression analysis showed that the ASR-China of cancer had an overall increase of 0.96% per year and 0.84% per year for males and females respectively, although both of these values (males and females) were non-significant increases. The leading cancer types during 2011–2015 were lung, colorectal, thyroid gland, breast, liver, stomach, cervix, nasopharynx, leukemia and lymphoma. For males, the top five common cancers were lung, liver, colorectal, stomach and thyroid gland. For females, the top five common cancers were breast, thyroid gland, lung, colorectal and cervix. The results of this study showed a heavy cancer burden among the population of Shenzhen, China. Future researches of the etiology and prevention of cancers should be planned in order to reduce the incidence associated with cancers in the future.
Collapse
|
49
|
Misihairabgwi JM, Ezekiel CN, Sulyok M, Shephard GS, Krska R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Crit Rev Food Sci Nutr 2017; 59:43-58. [PMID: 28799776 DOI: 10.1080/10408398.2017.1357003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major staple foods in Southern Africa are prone to mycotoxin contamination, posing health risks to consumers and consequent economic losses. Regional climatic zones favor the growth of one or more main mycotoxin producing fungi, Aspergillus, Fusarium and Penicillium. Aflatoxin contamination is mainly reported in maize, peanuts and their products, fumonisin contamination in maize and maize products and patulin in apple juice. Lack of awareness of occurrence and risks of mycotoxins, poor agricultural practices and undiversified diets predispose populations to dietary mycotoxin exposure. Due to a scarcity of reports in Southern Africa, reviews on mycotoxin contamination of foods in Africa have mainly focused on Central, Eastern and Western Africa. However, over the last decade, a substantial number of reports of dietary mycotoxins in South Africa have been documented, with fewer reports documented in Botswana, Lesotho, Malawi, Mozambique, Zambia and Zimbabwe. Despite the reported high dietary levels of mycotoxins, legislation for their control is absent in most countries in the region. This review presents an up-to-date documentation of the epidemiology of mycotoxins in agricultural food commodities and discusses the implications on public health, current and recommended mitigation strategies, legislation, and challenges of mycotoxin research in Southern Africa.
Collapse
Affiliation(s)
- J M Misihairabgwi
- a Department of Biochemistry and Microbiology, School of Medicine , University of Namibia , Windhoek, Namibia. P. Bag 13301, Windhoek , Namibia
| | - C N Ezekiel
- b Department of Microbiology , Babcock University, Ilishan Remo , Ogun State , Nigeria
| | - M Sulyok
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| | - G S Shephard
- d Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology , Cape Peninsula University of Technology , PO Box 1906, Bellville , South Africa
| | - R Krska
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| |
Collapse
|
50
|
Adetunji MC, Atanda OO, Ezekiel CN. Risk Assessment of Mycotoxins in Stored Maize Grains Consumed by Infants and Young Children in Nigeria. CHILDREN (BASEL, SWITZERLAND) 2017; 4:E58. [PMID: 28698507 PMCID: PMC5532550 DOI: 10.3390/children4070058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022]
Abstract
Maize is a major complimentary food for infants (0-4years) and young children (5-12years) in Nigeria. In this study, we assessed the risk of exposure of infants and young children (IYC) to some major mycotoxins in stored maize grains from five agro-ecological zones of Nigeria. The probable daily intake approach was employed to determine exposure to five mycotoxins while the margin of exposure (MOE) and population at risk of primary hepatocellular carcinoma approaches were used to characterize the risk of consuming aflatoxin contaminated maize. Infants and young children in the Derived Savannah zone are more exposed to aflatoxins, ochratoxins, and zearalenone while those in the Northern Guinea Savanna zone are mainly exposed to deoxynivalenol and fumonisins. The mean national MOE for infants and children were 0.12 and 0.3 respectively while the risk of developing primary liver cancer was estimated at 152.7 and 61.1 cancer/year/100,000 population of infants and children, respectively. Infants and young children consuming mycotoxin contaminated maize in Nigeria are therefore vulnerable to the adverse health effects. Mycotoxin contamination of maize is still a challenge in Nigeria; mitigation efforts should target the value chain and stricter tolerable limits should be enforced.
Collapse
Affiliation(s)
- Modupeade C Adetunji
- Department of Biological Sciences, McPherson University, Seriki Sotayo, 110117, Ogun State, Nigeria.
| | - Olusegun O Atanda
- Department of Biological Sciences, McPherson University, Seriki Sotayo, 110117, Ogun State, Nigeria.
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, 121103, Ogun State, Nigeria.
| |
Collapse
|