1
|
Nelson GM, Carswell GK, Swartz CD, Recio L, Yauk CL, Chorley BN. Early microRNA responses in rodent liver mediated by furan exposure establish dose thresholds for later adverse outcomes. Toxicol Lett 2023; 384:105-114. [PMID: 37517673 PMCID: PMC10530563 DOI: 10.1016/j.toxlet.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
To reduce reliance on long-term in vivo studies, short-term data linking early molecular-based measurements to later adverse health effects is needed. Although transcriptional-based benchmark dose (BMDT) modeling has been used to estimate potencies and stratify chemicals based on potential to induce later-life effects, dose-responsive epigenetic alterations have not been routinely considered. Here, we evaluated the utility of microRNA (miRNA) profiling in mouse liver and blood, as well as in mouse primary hepatocytes in vitro, to indicate mechanisms of liver perturbation due to short-term exposure of the known rodent liver hepatotoxicant and carcinogen, furan. Benchmark dose modeling of miRNA measurements (BMDmiR) were compared to the referent transcriptional (BMDT) and apical (BMDA) estimates. These analyses indicate a robust dose response for 34 miRNAs to furan and involvement of p53-linked pathways in furan-mediated hepatotoxicity, supporting mRNA and apical measurements. Liver-sourced miRNAs were also altered in the blood and primary hepatocytes. Overall, these results indicate mechanistic involvement of miRNA in furan carcinogenicity and provide evidence of their potential utility as accessible biomarkers of exposure and disease.
Collapse
Affiliation(s)
- Gail M Nelson
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Gleta K Carswell
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Carol D Swartz
- Inotiv Co., 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA
| | - Leslie Recio
- ScitoVation, 100 Capitola Drive Suite 106, Durham, NC 27713, USA
| | - Carole L Yauk
- Dept. Of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Brian N Chorley
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
2
|
Aryankalayil MJ, Bylicky MA, Martello S, Chopra S, Sproull M, May JM, Shankardass A, MacMillan L, Vanpouille-Box C, Dalo J, Scott KMK, Norman Coleman C. Microarray analysis identifies coding and non-coding RNA markers of liver injury in whole body irradiated mice. Sci Rep 2023; 13:200. [PMID: 36604457 PMCID: PMC9814510 DOI: 10.1038/s41598-022-26784-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Radiation injury from medical, accidental, or intentional sources can induce acute and long-term hepatic dysregulation, fibrosis, and cancer. This long-term hepatic dysregulation decreases quality of life and may lead to death. Our goal in this study is to determine acute changes in biological pathways and discover potential RNA biomarkers predictive of radiation injury. We performed whole transcriptome microarray analysis of mouse liver tissue (C57BL/6 J) 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray to identify significant expression changes in mRNAs, lncRNAs, and miRNAs, We also validated changes in specific RNAs through qRT-PCR. We used Ingenuity Pathway Analysis (IPA) to identify pathways associated with gene expression changes. We observed significant dysregulation of multiple mRNAs across all doses. In contrast, miRNA dysregulation was observed upwards of 2 Gray. The most significantly upregulated mRNAs function as tumor suppressors: Cdkn1a, Phlda3, and Eda2r. The most significantly downregulated mRNAs were involved in hemoglobin synthesis, inflammation, and mitochondrial function including multiple members of Hbb and Hba. The most significantly upregulated miRNA included: miR-34a-5p, miR-3102-5p, and miR-3960, while miR-342-3p, miR-142a-3p, and miR-223-3p were most significantly downregulated. IPA predicted activation of cell cycle checkpoint control pathways and inhibition of pathways relevant to inflammation and erythropoietin. Clarifying expression of mRNA, miRNA and lncRNA at a short time point (48 h) offers insight into potential biomarkers, including radiation markers shared across organs and animal models. This information, once validated in human models, can aid in development of bio-dosimetry biomarkers, and furthers our understanding of acute pathway dysregulation.
Collapse
Affiliation(s)
- Molykutty J. Aryankalayil
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Michelle A. Bylicky
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Shannon Martello
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Sunita Chopra
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Mary Sproull
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Jared M. May
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Aman Shankardass
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Laurel MacMillan
- grid.420517.50000 0004 0490 0428Gryphon Scientific, Takoma Park, MD 20912 USA
| | - Claire Vanpouille-Box
- grid.5386.8000000041936877XDepartment of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Juan Dalo
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Kevin M. K. Scott
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - C. Norman Coleman
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA ,grid.48336.3a0000 0004 1936 8075Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|
3
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
4
|
Tamgue O, Chia JE, Brombacher F. Triptolide Modulates the Expression of Inflammation-Associated lncRNA-PACER and lincRNA-p21 in Mycobacterium tuberculosis-Infected Monocyte-Derived Macrophages. Front Pharmacol 2021; 12:618462. [PMID: 33912039 PMCID: PMC8071990 DOI: 10.3389/fphar.2021.618462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Triptolide is a diterpene triepoxide, which performs its biological activities via mechanisms including induction of apoptosis, targeting of pro-inflammatory cytokines, and reshaping of the epigenetic landscape of target cells. However, the targeting of long non-coding RNAs (lncRNAs) by triptolide has not yet been investigated, despite their emerging roles as key epigenetic regulators of inflammation and immune cell function during Mycobacterium tuberculosis (Mtb) infection. Hence, we investigated whether triptolide targets inflammation-associated lncRNA-PACER and lincRNA-p21 and how this targeting associates with Mtb killing within monocyte-derived macrophages (MDMs).Using RT-qPCR, we found that triptolide induced the expression of lincRNA-p21 but inhibited the expression of lncRNA-PACER in resting MDMs in a dose- and time-dependent manner. Moreover, Mtb infection induced the expression of lincRNA-p21 and lncRNA-PACER, and exposure to triptolide before or after Mtb infection led to further increase of Mtb-induced expression of these lncRNAs in MDMs. We further found that contrary to lncRNA-PACER, triptolide time- and dose-dependently upregulated Ptgs-2, which is a proximal gene regulated by lncRNA-PACER. Also, low-concentration triptolide inhibited the expression of cytokine IL-6, a known target of lincRNA-p21. Mtb infection induced the expression of IL-6 and Ptgs-2, and triptolide treatment further increased IL-6 but decreased Ptgs-2 expression in Mtb-infected MDMs. The inverse relation between the expression of these lncRNAs and their target genes is concordant with the conception that these lncRNAs mediate, at least partially, the cytotoxic and/or anti-inflammatory activities of triptolide in both resting and activated MDMs. Using the CFU count method, we found that triptolide decreased the intracellular growth of Mtb HN878. The alamarBlue assay showed that this decreased Mtb HN878 growth was not as a result of direct targeting of Mtb HN878 by triptolide, but rather evoking MDMs’ intracellular killing mechanisms which we speculate could include triptolide-induced enhancement of MDMs’ effector killing functions mediated by lncRNA-PACER and lincRNA-p21. Altogether, these results provide proof of the modulation of lncRNA-PACER and lincRNA-p21 expression by triptolide, and a possible link between these lncRNAs, the enhancement of MDMs’ effector killing functions and the intracellular Mtb-killing activities of triptolide. These findings prompt for further investigation of the precise contribution of these lncRNAs to triptolide-induced activities in MDMs.
Collapse
Affiliation(s)
- Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Ren F, Wang J, Aniagu S, Li J, Jiang Y, Chen T. Effects of Trichloroethylene on the Expression of Long Intergenic Noncoding RNAs in B6C3F1 Mouse Liver. Chem Res Toxicol 2020; 33:1356-1363. [PMID: 31942800 DOI: 10.1021/acs.chemrestox.9b00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Trichloroethylene (TCE), a widely used industrial solvent, is a common environmental contaminant. We previously reported that TCE-induced changes in DNA methylation and miRNA expression contributed to the development of a liver tumor in mice. In this study, we investigated the role of long intergenic noncoding RNA (LincRNA), another type of epigenetic modification, in TCE hepatocarcinogenesis. Male B6C3F1 mice were gavaged with TCE at dose levels of 0, 100, 500, and 1000 mg/kg b.w. for 5 days. The expression changes of LincRNAs in liver samples from control and TCE-exposed mice were screened by microarray. When compared to the control group, 21 and 29 LincRNAs were upregulated and downregulated, respectively, in the liver of mice exposed to TCE at 1000 mg/kg b.w. In addition, TCE treatment increased the expression levels of LincRNA-GM8704 but decreased the expression levels of LiverLincs_chr17_4383_2 in a dose-dependent manner. We further found that the mRNAs that are highly correlated with the expression of LiverLincs_chr17_4383_2 are involved in a number of cancer-related signaling pathways including PPARs, cell cycle, and ErbB and p53 signaling pathways. Among the expression-correlated mRNAs, Cdkn1a was found to be a downstream target gene of LiverLincs_chr17_4383_2. To follow up on that, we also found that miR-182-5p might mediate the association between downregulation of LiverLincs_chr17_4383_2 and upregulation of Cdkn1a, leading to increased cell proliferation in TCE exposed liver cells. In conclusion, TCE induced extensive LincRNA expression changes in mouse liver, and the downregulation of LiverLincs_chr17_4383_2 might contribute to TCE hepatocarcinogenesis by interacting with miR-182-5p and Cdkn1a.
Collapse
Affiliation(s)
- Fei Ren
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jin Wang
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Circle, Austin, Texas 78753, United States
| | - Jianxiang Li
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yan Jiang
- Medical College, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Zhang Y, Miao Y, Shang M, Liu M, Liu R, Pan E, Pu Y, Yin L. LincRNA-p21 leads to G1 arrest by p53 pathway in esophageal squamous cell carcinoma. Cancer Manag Res 2019; 11:6201-6214. [PMID: 31308755 PMCID: PMC6613612 DOI: 10.2147/cmar.s197557] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is the fourth most common cause of cancer death in China. Long noncoding RNAs have emerged as critical regulators in cancer. Long intergenic noncoding RNA-p21, a kind of Long noncoding RNAs, LincRNA-p21 have been discussed dysregulated in several cancers, but its role in ESCC remains unknown. This study investigated the role of LincRNA-p21 in ESCC. Materials and methods: The LincRNA-p21 expression level and its association with esophageal cancer was determined in 64 tumor tissues of esophageal squamous cell carcinoma patients and cells using quantitative real-time reverse transcription PCR. Fluorescence in situ hybridization of single-RNA molecular probes was used to determine subcellular localization of LincRNA-p21. CCK8 and EdU assays were used for proliferation assay, flow cytometry was performed for apoptosis and cell-cycle distribution, and 24-well Mill cell chamber was made for measuring the abilities of migration and invasion after transfected with lentivirus-expressing LincRNA-p21 in EC109 cells. Then, quantitative real-time reverse transcription PCR and Western blot detected the expression of p21. Further, UC2288, an inhibitor of p21, was used to decrease the level of p21, and flow cytometry was used to detect cell cycle. Finally, screening for differential pathways from microarray analysis and expression of p53 and cyclin D were detected by Western blot. Results:LincRNA-p21 expression level was remarkably lower in tumor tissues versus nontumor tissues and lower in EC109 cells versus Het-1A cells. Statistical analysis found that LincRNA-p21 might enhance the risk of ESCC. We observed that LincRNA-p21 was expressed both in the nucleus and cytoplasm, and a larger proportion of LincRNA-p21 was observed in the cytoplasm. The results demonstrated that upregulating the expression of LincRNA-p21 could inhibit cell proliferation, migration, invasion, and the transition of cell cycle from G1 and promoted apoptosis of EC109. Then, we found that LincRNA-p21 promotes the expression of p21. Decreasing the level of p21 revealed that cell-cycle arrest was restored. Pathway analysis found p53 pathway was downregulated, and upregulation of LincRNA-p21 inhibited the expression of cyclin D. Conclusion: Our study suggests that LincRNA-p21 plays as a tumor inhibitor in ESCC development and LincRNA-p21 might induce G1 arrest through p53 signal pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yan Miao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Muhe Shang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Mxin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ench Pan
- Huaian Center for Disease Control and Prevention , Huaian 223001, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
Dempsey JL, Cui JY. Regulation of Hepatic Long Noncoding RNAs by Pregnane X Receptor and Constitutive Androstane Receptor Agonists in Mouse Liver. Drug Metab Dispos 2019; 47:329-339. [PMID: 30593543 PMCID: PMC6382996 DOI: 10.1124/dmd.118.085142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022] Open
Abstract
Altered expression of long noncoding RNAs (lncRNAs) by environmental chemicals modulates the expression of xenobiotic biotransformation-related genes and may serve as therapeutic targets and novel biomarkers of exposure. The pregnane X receptor (PXR/NR1I2) is a critical xenobiotic-sensing nuclear receptor that regulates the expression of many drug-processing genes, and it has similar target-gene profiles and DNA-binding motifs with another xenobiotic-sensing nuclear receptor, namely, constitutive andronstrane receptor (CAR/Nr1i3). To test our hypothesis that lncRNAs are regulated by PXR in concert with protein-coding genes (PCGs) and to compare the PXR-targeted lncRNAs with CAR-targeted lncRNAs, RNA-Seq was performed from livers of adult male C57BL/6 mice treated with corn oil, the PXR agonist PCN, or the CAR agonist 1, 4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). Among 125,680 known lncRNAs, 3843 were expressed in liver, and 193 were differentially regulated by PXR (among which 40% were also regulated by CAR). Most PXR- or CAR-regulated lncRNAs were mapped to the introns and 3'-untranslated regions (UTRs) of PCGs, as well as intergenic regions. Combining the RNA-Seq data with a published PXR chromatin immunoprecipitation coupled with high-throughput sequencing; cytochrome P450 (P450; ChIP-Seq) data set, we identified 774 expressed lncRNAs with direct PXR-DNA binding sites, and 26.8% of differentially expressed lncRNAs had changes in PXR-DNA binding after PCN exposure. De novo motif analysis identified colocalization of PXR with liver receptor homolog (LRH-1), which regulates bile acid synthesis after PCN exposure. There was limited overlap of PXR binding with an epigenetic mark for transcriptional activation (histone-H3K4-di-methylation, H3K4me2) but no overlap with epigenetic marks for transcriptional silencing [H3 lysine 27 tri-methylation (H3K27me3) and DNA methylation]. Among differentially expressed lncRNAs, 264 were in proximity of PCGs, and the lncRNA-PCG pairs displayed a high coregulatory pattern by PXR and CAR activation. This study was among the first to demonstrate that lncRNAs are regulated by PXR and CAR activation and that they may be important regulators of PCGs involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Meng SS, Xu XP, Chang W, Lu ZH, Huang LL, Xu JY, Liu L, Qiu HB, Yang Y, Guo FM. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Stem Cell Res Ther 2018; 9:280. [PMID: 30359325 PMCID: PMC6202870 DOI: 10.1186/s13287-018-1031-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/22/2018] [Accepted: 09/30/2018] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) derived from bone marrow have potent stabilizing effects for the treatment of acute respiratory distress syndrome (ARDS). However, low efficiency and survival in MSC homing to injured lung tissue remains to be solved. Therefore, the aim of this study was to assess whether large intergenic noncoding RNA (LincRNA)-p21 promote MSC migration and survival capacity through hypoxic preconditioning in vitro. Methods MSCs were cultured and divided into the normoxia culture group (20% O2) and hypoxia culture group (1% O2). To determine roles and mechanisms, lentivirus vector-mediated LincRNA-p21 knockdown of MSCs and hypoxia-inducible factor (HIF-1α) inhibitor KC7F2 were introduced. Additionally, MSC migration was analyzed by scratch test and transwell migration assays. MSC proliferation was tested by cell counting kit-8 and trypan blue dye. Apoptosis was detected by Annexin V-PE/7-AAD stained flow cytometry. Moreover, LincRNA-p21 and HIF-1α mRNA was measured by reverse transcription-polymerase chain reaction, and HIF-1α and CXCR4/7 protein were assayed by western blot (WB) or enzyme-linked immunosorbent assay (ELISA). Apoptosis protein caspase-3 and cleaved-caspase-3 were investigated by WB analysis. Considering interactions between VHL and HIF-1α under LincRNA-p21 effect, co-immunoprecipitation was detected. Results Hypoxic preconditioning MSC promoted migration capacity and MSC survival than normoxia culture group. MSCs induced by hypoxic preconditioning evoked an increase in expression of LincRNA-p21, HIF-1α, and CXCR4/7(both were chemokine stromal-derived factor-1(SDF-1) receptors). Contrarily, blockade of LincRNA-p21 by shRNA and HIF-1α inhibitor KC7F2 abrogated upregulation of hypoxic preconditioning induced CXCR4/7 in MSCs, cell migration, and survival. Furthermore, co-immunoprecipitation assay revealed that hypoxic preconditioning isolated VHL and HIF-1α protein by increasing HIF-1α expression. Conclusions Hypoxic preconditioning was identified as a promoting factor of MSC migration and survival capacity. LincRNA-p21 promotes MSC migration and survival capacity through HIF-1α/CXCR4 and CXCR7 pathway under hypoxic preconditioning in vitro.
Collapse
Affiliation(s)
- Shan-Shan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Xiu-Ping Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Zhong-Hua Lu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Li-Li Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Feng-Mei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
9
|
Huang Q, Liu Y, Dong S. Emerging roles of long non-coding RNAs in the toxicology of environmental chemicals. J Appl Toxicol 2018; 38:934-943. [PMID: 29388697 DOI: 10.1002/jat.3595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Environmental chemicals (ECs) are drawing great attention to their effects on health and their toxicological mechanisms are being investigated. Long non-coding RNA (lncRNA) is a class of RNA with more than 200 nucleotides and does not have protein coding potential. Recently, it is emerging as a star molecule that participates in a wide range of physiological and pathological processes. It has been reported to be abnormally expressed in diseases. As an epigenetic factor, lncRNAs play an important role in the response of organisms to environmental stress. Their roles in the toxicity of ECs are being identified. Altered expression profiles of lncRNAs have been explored after exposure to ECs. Various kinds of ECs are reported to disturb the expression of lncRNAs in vitro and in vivo. Then, dysregulated lncRNAs can affect the expression of target genes directly or indirectly via regulating the level of microRNAs. The network among lncRNAs, microRNAs and mRNAs can initiate or impede specific signaling pathway and lead to adverse outcome upon exposure to ECs. Recovery of the lncRNAs level by overexpression or knockdown technology diminished the effect induced by ECs. In the review, biological roles of lncRNAs are depicted. The lncRNAs involved in the toxicology are summarized. Types of ECs that have been reported to affect the expression of lncRNAs are categorized. The interaction between various types of ECs and lncRNAs is discussed.
Collapse
Affiliation(s)
- Qiansheng Huang
- Chinese Academy of Sciences, Key Lab of Urban Environment and Health, Institute of Urban Environment, Xiamen, 361021, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Yiyao Liu
- Chinese Academy of Sciences, Key Lab of Urban Environment and Health, Institute of Urban Environment, Xiamen, 361021, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Sijun Dong
- Chinese Academy of Sciences, Key Lab of Urban Environment and Health, Institute of Urban Environment, Xiamen, 361021, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| |
Collapse
|
10
|
de Conti A, Beland FA, Pogribny IP. The role of epigenomic alterations in furan-induced hepatobiliary pathologies. Food Chem Toxicol 2017; 109:677-682. [DOI: 10.1016/j.fct.2017.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
|
11
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
12
|
Tu X, Zhang Y, Zheng X, Deng J, Li H, Kang Z, Cao Z, Huang Z, Ding Z, Dong L, Chen J, Zang Y, Zhang J. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice. Sci Rep 2017; 7:2957. [PMID: 28592847 PMCID: PMC5462818 DOI: 10.1038/s41598-017-03175-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte death, as well as the following inflammatory and fibrogenic signaling cascades, is the key trigger of liver fibrosis. Here, we isolated hepatocytes from CCl4-induced fibrotic liver and found that hepatocyte lincRNA-p21 significantly increased during liver fibrosis. The increase of hepatocyte lincRNA-p21 was associated with the loss of miR-30, which can inhibit TGF-β signaling by targeting KLF11. We revealed that lincRNA-p21 modulated miR-30 availability by acting as a competing endogenous RNA (ceRNA). The physiological significance of this interaction is highlighted by the feedback loop, in which lincRNA-p21 works as a downstream effector of the TGF-β signaling to strengthen TGF-β signaling and mediate its role in promoting liver fibrosis by interacting with miR-30. In vivo results showed that knockdown of hepatocyte lincRNA-p21 greatly reduced CCl4-induced liver fibrosis and inflammation, whereas ectopic expression of miR-30 in hepatocyte exhibited the similar results. Mechanistic studies further revealed that inhibition of miR-30 impaired the effects of lincRNA-p21 on liver fibrosis. Additionally, lincRNA-p21 promoted hepatocyte apoptosis in vitro and in vivo, whereas the proliferation rate of hepatocyte was suppressed by lincRNA-p21. The pleiotropic roles of hepatocyte lincRNA-p21 suggest that it may represent an unknown paradigm in liver fibrosis and serve as a potential target for therapy.
Collapse
Affiliation(s)
- Xiaolong Tu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Xiuxiu Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Jia Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Huanan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhipeng Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China.
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China. .,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, 210093, P.R. China.
| |
Collapse
|
13
|
Abstract
Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
14
|
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98:2-10. [DOI: 10.1016/j.fct.2016.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 02/09/2023]
|
15
|
Webster AF, Lambert IB, Yauk CL. Toxicogenomics Case Study: Furan. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Development of pragmatic methodologies for human health risk assessment is required to address current regulatory challenges. We applied three toxicogenomic approaches—quantitative, predictive, and mechanistic—to a case study in mice exposed for 3 weeks to the hepatocarcinogen furan. We modeled the dose response of a variety of transcriptional endpoints and found that they produced benchmark doses similar to the furan-dependent cancer benchmark doses. Meta-analyses showed strong similarity between furan-dependent gene expression changes and those associated with several hepatic pathologies. Molecular pathways facilitated the development of a molecular mode of action for furan-induced hepatocellular carcinogenicity. Finally, we compared transcriptomic profiles derived from formalin-fixed and paraffin-embedded (FFPE) samples with those from high-quality frozen samples to evaluate whether archival samples are a viable option for toxicogenomic studies. The advantage of using FFPE tissues is that they are very well characterized (phenotypically); the disadvantage is that formalin degrades biomacromolecules, including RNA. We found that FFPE samples can be used for toxicogenomics using a ribo-depletion RNA-seq protocol. Our case study demonstrates the utility of toxicogenomics data to human health risk assessment, the potential of archival FFPE tissue samples, and identifies viable strategies toward the reduction of animal usage in chemical testing.
Collapse
Affiliation(s)
- A. Francina Webster
- Department of Biology, Carleton University 1125 Colonel By Drive Ottawa ON Canada
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture 50 Colombine Driveway Ottawa ON Canada
| | - Iain B. Lambert
- Department of Biology, Carleton University 1125 Colonel By Drive Ottawa ON Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture 50 Colombine Driveway Ottawa ON Canada
| |
Collapse
|
16
|
Wu J, Li X, Xu Y, Yang T, Yang Q, Yang C, Jiang Y. Identification of a long non-coding RNA NR_026689 associated with lung carcinogenesis induced by NNK. Oncotarget 2016; 7:14486-98. [PMID: 26908441 PMCID: PMC4924730 DOI: 10.18632/oncotarget.7475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are thought to be important epigenetic regulators involved in the development of a variety of cancers. Alterations in lncRNA expression are associated with exposure to chemical carcinogens. However, it is still unclear whether lncRNA expression during lung carcinogenesis is induced by chemical carcinogens. In this study, using NNK-induced rat lung cancer model established by our previous study, we determined the lncRNA expression profiles, and an alteration in lncRNA expression was observed in lung cancer tissues and blood in the NNK treatment group. Using quantitative reverse-transcription PCR (qRT-PCR), five differentially expressed lncRNAs were further detected and validated. We identified a novel lncRNA, NR_026689, which showed increased expression in lung cancer tissues induced by NNK and the alteration of lncRNA NR_026689 was specifically observed in lung tissue. The level of NR_026689 was determined and significantly increased in rat whole blood at the 10th and 20th week after NNK treatment to evaluate it as a potential early marker for lung cancer. Together, these findings suggest that lncRNA NR_026689 may be a potential early biomarker for lung cancer and is associated with lung carcinogenesis induced by NNK.
Collapse
Affiliation(s)
- Jianjun Wu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xun Li
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yiqin Xu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Ti Yang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Qiaoyuan Yang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Chengfeng Yang
- Department of Physiology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
17
|
Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJB, Kudo M, Sakuragi N. MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 2015; 5:6049-62. [PMID: 25153722 PMCID: PMC4171612 DOI: 10.18632/oncotarget.2157] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MicroRNA-101 has been implicated as a tumor suppressor miRNA in human tumors. However, its potential functional impact and the underlying mechanisms in endometrial cancer progression have not been determined. Here, we report that in aggressive endometrial cancer cells, re-expression of microRNA-101 leads to inhibition of cell proliferation and induction of apoptosis and senescence. Ectopic overexpression of microRNA-101 attenuates the epithelial-mesenchymal transition-associated cancer cell migration and invasion, abrogates the sphere-forming capacity and enhances chemosensitivity to paclitaxel. Algorithm and microarray-based strategies identifies potential microRNA-101 targets. Among these, we validated EZH2, MCL-1 and FOS as direct targets of miR-101 and silencing of these genes mimics the tumor suppressive effects observed on promoting microRNA-101 function. Importantly, further results suggest an inverse correlation between low miR-101 and high EZH2, MCL-1 and FOS expression in EC specimens. We conclude that, as a crucial tumor suppressor, microRNA-101 suppresses cell proliferation, invasiveness and self-renewal in aggressive endometrial cancer cells via modulating multiple critical oncogenes. The microRNA-101-EZH2/MCL-1/FOS axis is a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Yosuke Konno
- Department of Gynecology, Hokkaido University, Sapporo, Japan; These authors contributed equally to this work
| | - Peixin Dong
- Department of Women's Health Educational System, Hokkaido University, Sapporo, Japan; These authors contributed equally to this work
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China; These authors contributed equally to this work
| | - Fumihiko Suzuki
- Department of Obstetrics and Gynecology, Tohoku University, Sendai, Japan; These authors contributed equally to this work
| | - Jiabin Lu
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Muyan Cai
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | | | | | | | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University, Sapporo, Japan
| | - Masataka Kudo
- Department of Gynecology, Hokkaido University, Sapporo, Japan
| | - Noriaki Sakuragi
- Department of Gynecology, Hokkaido University, Sapporo, Japan; Department of Women's Health Educational System, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Webster AF, Zumbo P, Fostel J, Gandara J, Hester SD, Recio L, Williams A, Wood CE, Yauk CL, Mason CE. Mining the Archives: A Cross-Platform Analysis of Gene Expression Profiles in Archival Formalin-Fixed Paraffin-Embedded Tissues. Toxicol Sci 2015; 148:460-72. [PMID: 26361796 PMCID: PMC4659533 DOI: 10.1093/toxsci/kfv195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for transcriptomic research. However, use of FFPE samples in genomic studies has been limited by technical challenges resulting from nucleic acid degradation. Here we evaluated gene expression profiles derived from fresh-frozen (FRO) and FFPE mouse liver tissues preserved in formalin for different amounts of time using 2 DNA microarray protocols and 2 whole-transcriptome sequencing (RNA-seq) library preparation methodologies. The ribo-depletion protocol outperformed the other methods by having the highest correlations of differentially expressed genes (DEGs), and best overlap of pathways, between FRO and FFPE groups. The effect of sample time in formalin (18 h or 3 weeks) on gene expression profiles indicated that test article treatment, not preservation method, was the main driver of gene expression profiles. Meta- and pathway analyses indicated that biological responses were generally consistent for 18 h and 3 week FFPE samples compared with FRO samples. However, clear erosion of signal intensity with time in formalin was evident, and DEG numbers differed by platform and preservation method. Lastly, we investigated the effect of time in paraffin on genomic profiles. Ribo-depletion RNA-seq analysis of 8-, 19-, and 26-year-old control blocks resulted in comparable quality metrics, including expected distributions of mapped reads to exonic, untranslated region, intronic, and ribosomal fractions of the transcriptome. Overall, our results indicate that FFPE samples are appropriate for use in genomic studies in which frozen samples are not available, and that ribo-depletion RNA-seq is the preferred method for this type of analysis in archival and long-aged FFPE samples.
Collapse
Affiliation(s)
- A Francina Webster
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Canada
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065
| | - Jennifer Fostel
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jorge Gandara
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065
| | - Susan D Hester
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Leslie Recio
- ILS, Inc., PO Box 13501, Research Triangle Park, North Carolina 27709
| | - Andrew Williams
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Charles E Wood
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Carole L Yauk
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada;
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065; The Feil Family Brain and Mind Research Institute (BMRI), 413 East 69th Street, New York, New York 10021; and The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, 1305 York Avenue, New York, New York 10065
| |
Collapse
|
19
|
LincRNA-p21: Implications in Human Diseases. Int J Mol Sci 2015; 16:18732-40. [PMID: 26270659 PMCID: PMC4581268 DOI: 10.3390/ijms160818732] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/04/2015] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases.
Collapse
|
20
|
Pundhir S, Gorodkin J. Differential and coherent processing patterns from small RNAs. Sci Rep 2015; 5:12062. [PMID: 26166713 PMCID: PMC4499813 DOI: 10.1038/srep12062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Post-transcriptional processing events related to short RNAs are often reflected in their read profile patterns emerging from high-throughput sequencing data. MicroRNA arm switching across different tissues is a well-known example of what we define as differential processing. Here, short RNAs from the nine cell lines of the ENCODE project, irrespective of their annotation status, were analyzed for genomic loci representing differential or coherent processing. We observed differential processing predominantly in RNAs annotated as miRNA, snoRNA or tRNA. Four out of five known cases of differentially processed miRNAs that were in the input dataset were recovered and several novel cases were discovered. In contrast to differential processing, coherent processing is observed widespread in both annotated and unannotated regions. While the annotated loci predominantly consist of ~24 nt short RNAs, the unannotated loci comparatively consist of ~17 nt short RNAs. Furthermore, these ~17 nt short RNAs are significantly enriched for overlap to transcription start sites and DNase I hypersensitive sites (p-value < 0.01) that are characteristic features of transcription initiation RNAs. We discuss how the computational pipeline developed in this study has the potential to be applied to other forms of RNA-seq data for further transcriptome-wide studies of differential and coherent processing.
Collapse
Affiliation(s)
- Sachin Pundhir
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| |
Collapse
|
21
|
de Conti A, Kobets T, Tryndyak V, Burnett SD, Han T, Fuscoe JC, Beland FA, Doerge DR, Pogribny IP. Persistence of furan-induced epigenetic aberrations in the livers of F344 rats. Toxicol Sci 2015; 144:217-26. [PMID: 25539665 PMCID: PMC4372661 DOI: 10.1093/toxsci/kfu313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Furan is a heterocyclic organic compound produced in the chemical manufacturing industry and also found in a broad range of food products, including infant formulas and baby foods. Previous reports have indicated that the adverse biological effects of furan, including its liver tumorigenicity, may be associated with epigenetic abnormalities. In the present study, we investigated the persistence of epigenetic alterations in rat liver. Male F344 rats were treated by gavage 5 days per week with 8 mg furan/kg body weight (bw)/day for 90 days. After the last treatment, rats were divided randomly into 4 groups; 1 group of rats was sacrificed 24 h after the last treatment, whereas other groups were maintained without further furan treatment for an additional 90, 180, or 360 days. Treatment with furan for 90 days resulted in alterations in histone lysine methylation and acetylation, induction of base-excision DNA repair genes, suggesting oxidative damage to DNA, and changes in the gene expression in the livers. A majority of these furan-induced molecular changes was transient and disappeared after the cessation of furan treatment. In contrast, histone H3 lysine 9 and H3 lysine 56 showed a sustained and time-depended decrease in acetylation, which was associated with formation of heterochromatin and altered gene expression. These results indicate that furan-induced adverse effects may be mechanistically related to sustained changes in histone lysine acetylation that compromise the ability of cells to maintain and control properly the expression of genetic information.
Collapse
Affiliation(s)
- Aline de Conti
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Tetyana Kobets
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Sarah D Burnett
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Tao Han
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - James C Fuscoe
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Frederick A Beland
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Daniel R Doerge
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Igor P Pogribny
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
22
|
Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 2015; 6:e1700. [PMID: 25789975 PMCID: PMC4385943 DOI: 10.1038/cddis.2015.67] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
LincRNA-p21 is a long noncoding RNA and a transcriptional target of p53 and HIF-1α. LincRNA-p21 regulates gene expression in cis and trans, mRNA translation, protein stability, the Warburg effect, and p53-dependent apoptosis and cell cycle arrest in doxorubicin-treated mouse embryo fibroblasts. p53 plays a key role in the response of skin keratinocytes to UVB-induced DNA damage by inducing cell cycle arrest and apoptosis. In skin cancer development, UVB-induced mutation of p53 allows keratinocytes upon successive UVB exposures to evade apoptosis and cell cycle arrest. We hypothesized that lincRNA-p21 has a key functional role in UVB-induced apoptosis and/or cell cycle arrest in keratinocytes and loss of lincRNA-p21 function results in the evasion of apoptosis and/or cell cycle arrest. We observed that lincRNA-p21 transcripts are highly inducible by UVB in mouse and human keratinocytes in culture and in mouse skin in vivo. LincRNA-p21 is regulated at the transcriptional level in response to UVB, and the UVB induction of lincRNA-p21 in keratinocytes and in vivo in mouse epidermis is primarily through a p53-dependent pathway. Knockdown of lincRNA-p21 blocked UVB-induced apoptosis in mouse and human keratinocytes, and lincRNA-p21 was responsible for the majority of UVB-induced and p53-mediated apoptosis in keratinocytes. Knockdown of lincRNA-p21 had no effect on cell proliferation in untreated or UVB-treated keratinocytes. An early event in skin cancer is the mutation of a single p53 allele. We observed that a mutant p53+/R172H allele expressed in mouse epidermis (K5Cre+/tg;LSLp53+/R172H) showed a significant dominant-negative inhibitory effect on UVB-induced lincRNA-p21 transcription and apoptosis in epidermis. We conclude lincRNA-p21 is highly inducible by UVB and has a key role in triggering UVB-induced apoptotic death. We propose that the mutation of a single p53 allele provides a pro-oncogenic function early in skin cancer development through a dominant inhibitory effect on UVB-induced lincRNA-p21 expression and the subsequent evasion of UVB-induced apoptosis.
Collapse
|
23
|
Marrone AK, Beland FA, Pogribny IP. Noncoding RNA response to xenobiotic exposure: an indicator of toxicity and carcinogenicity. Expert Opin Drug Metab Toxicol 2014; 10:1409-22. [PMID: 25171492 DOI: 10.1517/17425255.2014.954312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Human exposure to certain environmental and occupational chemicals is one of the major risk factors for noncommunicable diseases, including cancer. Therefore, it is desirable to take advantage of subtle exposure-related adverse cellular events for early disease detection and to identify potential dangers caused by new and currently under-evaluated drugs and chemicals. Nongenotoxic events due to carcinogen/toxicant exposure are a general hallmark of sustained cellular stress leading to tumorigenesis. These processes are globally regulated via noncoding RNAs (ncRNAs). Tumorigenesis-associated genotoxic and nongenotoxic events lead to the altered expression of ncRNAs and may provide a mechanistic link between chemical exposure and tumorigenesis. Current advances in toxicogenomics are beginning to provide valuable insight into gene-chemical interactions at the transcriptome level. AREAS COVERED In this review, we summarize recent information about the impact of xenobiotics on ncRNAs. Evidence highlighted in this review suggests a critical role of ncRNAs in response to carcinogen/toxicant exposure. EXPERT OPINION Benefits for the use of ncRNAs in carcinogenicity assessment include remarkable tissue specificity, early appearance, low baseline variability, and their presence and stability in biological fluids, which suggests that the incorporation of ncRNAs in the evaluation of cancer risk assessment may enhance substantially the efficiency of toxicity and carcinogenicity testing.
Collapse
Affiliation(s)
- April K Marrone
- Commissioner Fellow, Research Chemist,National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|
24
|
Webster AF, Williams A, Recio L, Yauk CL. Gene expression analysis of livers from female B6C3F1 mice exposed to carcinogenic and non-carcinogenic doses of furan, with or without bromodeoxyuridine (BrdU) treatment. GENOMICS DATA 2014; 2:117-22. [PMID: 26484082 PMCID: PMC4536026 DOI: 10.1016/j.gdata.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/28/2022]
Abstract
Standard methodology for identifying chemical carcinogens is both time-consuming and resource intensive. Researchers are actively investigating how new technologies can be used to identify chemical carcinogens in a more rapid and cost-effective manner. Here we performed a toxicogenomic case study of the liver carcinogen furan. Full study and mode of action details were previously published in the Journal of Toxicology and Applied Pharmacology. Female B6C3F1 mice were sub-chronically treated with two non-carcinogenic (1 and 2 mg/kg bw) and two carcinogenic (4 and 8 mg/kg bw) doses of furan for 21 days. Half of the mice in each dose group were also treated with 0.02% bromodeoxyuridine (BrdU) for five days prior to sacrifice [13]. Agilent gene expression microarrays were used to measure changes in liver gene and long non-coding RNA expression (published in Toxicological Sciences). Here we describe the experimental and quality control details for the microarray data. We also provide the R code used to analyze the raw data files, produce fold change and false discovery rate (FDR) adjusted p values for each gene, and construct hierarchical clustering between datasets.
Collapse
Affiliation(s)
- Anna Francina Webster
- Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada ; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Leslie Recio
- ILS, P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
| |
Collapse
|
25
|
Conti AD, Kobets T, Escudero-Lourdes C, Montgomery B, Tryndyak V, Beland FA, Doerge DR, Pogribny IP. Dose- and time-dependent epigenetic changes in the livers of Fisher 344 rats exposed to furan. Toxicol Sci 2014; 139:371-80. [PMID: 24614236 DOI: 10.1093/toxsci/kfu044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The presence of furan in common cooked foods along with evidence from experimental studies that lifetime exposure to furan causes liver tumors in rats and mice has caused concern to regulatory public health agencies worldwide; however, the mechanisms of the furan-induced hepatocarcinogenicity remain unclear. The goal of the present study was to investigate whether or not long-term exposure to furan causes epigenetic alterations in rat liver. Treating of male Fisher 344 rats by gavage 5 days per week with 0, 0.92, 2.0, or 4.4 mg furan/kg body weight (bw)/day resulted in dose- and time-dependent epigenetic changes consisting of alterations in DNA methylation and histone lysine methylation and acetylation, altered expression of chromatin modifying genes, and gene-specific methylation. Specifically, exposure to furan at doses 0.92, 2.0, or 4.4 mg furan/kg bw/day caused global DNA demethylation after 360 days of treatment. There was also a sustained decrease in the levels of histone H3 lysine 9 and H4 lysine 20 trimethylation after 180 and 360 days of furan exposure, and a marked reduction of histone H3 lysine 9 and H3 lysine 56 acetylation after 360 days at 4.4 mg/kg bw/day. These histone modification changes were accompanied by a reduced expression of Suv39h1, Prdm2, and Suv4-20h2 histone methyltransferases and Ep300 and Kat2a histone acetyltransferases. Additionally, furan at 2.0 and 4.4 mg/kg bw/day induced hypermethylation-dependent down-regulation of the Rassf1a gene in the livers after 180 and 360 days. These findings indicate possible involvement of dose- and time-dependent epigenetic modifications in the furan hepatotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, 72079 USA
| | | | | | | | | | | | | | | |
Collapse
|