1
|
Tan W, Deng J, Qi L, Tan Z. The role of hepatic sinusoidal microenvironment in NASH: pathogenesis, animal models, and therapeutic prospects. Front Pharmacol 2025; 16:1467950. [PMID: 40356963 PMCID: PMC12066276 DOI: 10.3389/fphar.2025.1467950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
The incidence of nonalcoholic steatohepatitis (NASH) is increasing annually, posing a significant threat to human health. NASH is typified by hepatic steatosis, inflammation, and hepatocellular injury, frequently culminating in fibrosis and cirrhosis. Yet, the precise pathogenesis of NASH remains to be fully elucidated. The hepatic sinusoid, which serves as the fundamental structural and functional unit of the liver, is intricately composed of endothelial cells, Kupffer cells, and hepatic stellate cells. Consequently, the homeostasis of the hepatic sinusoidal microenvironment may exert a pivotal influence on the progression and prognosis of NASH. However, the limitations of current NASH animal models have significantly impeded advancements in understanding the disease's pathogenesis and the development of effective therapeutic interventions. In light of these challenges, this review endeavors to delve deeper into the critical role of hepatic sinusoidal microenvironment homeostasis in the pathogenesis of NASH, critically analyze the commonly employed animal models, and comprehensively summarize the most recent and promising developments in drug research and development. It is anticipated that these efforts will collectively expedite the advancement of the field of NASH research and therapeutic innovation.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangting Deng
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lingjun Qi
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, Sichuan, China
| | - Zhenghuai Tan
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Gu X, Yang H, Wu L, Fu Z, Zhou S, Zhang Z, Liu Y, Zhang M, Liu S, Lu W, Wang Q. Contribution of gut microbiota to hepatic steatosis following F-53B exposure from the perspective of glucose and fatty acid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136104. [PMID: 39405689 DOI: 10.1016/j.jhazmat.2024.136104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Altered gut microbiota is a pathogenic mechanism of 6:2 Cl-PFESA (F-53B)-induced hepatic steatosis, indicated by correlations between gut microbiota and lipid indices. However, the detailed mechanism remains unknown. In this study, adult zebrafish were exposed to 0.25, 5 and 100 μg/L F-53B for 28 days to explore how microbiota regulate hepatic lipid metabolism from the perspective of glucose and fatty acid metabolism. Results showed glucose and fatty acids were transported from blood into liver after 100 μg/L F-53B exposure, in which glucose was further transformed into acetyl-CoA and fatty acid. The accumulated fatty acids were then converted into triglycerides (TGs), inducing hepatic steatosis. Changes in the abundances of certain gut microbiota contributed to the above processes, which was verified by the fact that the levels of g_Crenobacter, g_Shewanella, and g_Vibrio restored to control levels after Lactobacillus rhamnosus GG intervention, and the levels of their related lipid indicators recovered partially towards the control levels. 0.25 and 5 μg/L F-53B had no effect on the hepatic lipid profile due to the few changed TG synthesis related indicators. Our findings provide novel insights into lipid metabolic disorders caused by F-53B exposure, highlighting the health risks linked to gut microbial dysbiosis.
Collapse
Affiliation(s)
- Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430000, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zhenliang Fu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Shibiao Zhou
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Zehui Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Yu Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
3
|
Buron N, Porceddu M, Loyant R, Martel C, Allard JA, Fromenty B, Borgne-Sanchez A. Drug-induced impairment of mitochondrial fatty acid oxidation and steatosis: assessment of causal relationship with 45 pharmaceuticals. Toxicol Sci 2024; 200:369-381. [PMID: 38676573 DOI: 10.1093/toxsci/kfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 nonsteatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-l-carnitine, palmitoyl-CoA + l-carnitine, or octanoyl- l-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate, and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, whereas dexamethasone, olanzapine, and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential, and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin, and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.
Collapse
Affiliation(s)
- Nelly Buron
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | | | - Roxane Loyant
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Cécile Martel
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Julien A Allard
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | | |
Collapse
|
4
|
Turan Gökçe D, Arı D, Aydın O, Turhan N, Altunsoy A, Ökten RS, Akdoğan Kayhan M. Tigecycline-Associated Hepatic Steatosis After Liver Transplant: A Case Report. EXP CLIN TRANSPLANT 2024; 22:318-321. [PMID: 38742325 DOI: 10.6002/ect.2023.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Tigecycline is a parenteral glycycline antibiotic that is used to treat severe infections caused by susceptible organisms, butitis also associated with hepatotoxicity. We present 2 similar patients with hepatic steatosis possibly associated with early tigecycline after transplant. In the first case, a 61-year-old woman underwent liver transplant for acute severe hepatitis; 6 days posttransplant, because of nonroutine resistant fever, the patient received tigecycline combined with daptomycin. Retransplant was applied to the patient on day 12 posttransplant because of acute liver failure secondary to hepatic vein thrombosis. After retransplant, biochemical levels gradually increased, exceeding the upper limit of normal. In liver biopsy, the patient had macrovesicular steatosis in 70% to 80% ofthe parenchyma. In the second case, a 53-yearold woman underwent liver transplant for liver cirrhosis. Tigecycline was added to the treatment because of recurrent fever on day 6 after transplant, with treatment also comprising piperacillin-tazobactam and meropenem. On day 15 of the patient's tigecycline treatment, her liver function tests were elevated. In liver biopsy, the patient had 30% to 40% macrovesicular steatosis and canalicular cholestasis in the parenchyma, especially in zone 3. Reports of hepatic steatosis associated with early tigecycline after transplant are quite new to the literature.
Collapse
Affiliation(s)
- Dilara Turan Gökçe
- From the Department of Gastroenterology, Ankara City Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
5
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
6
|
Influence of Antibiotics on Functionality and Viability of Liver Cells In Vitro. Curr Issues Mol Biol 2022; 44:4639-4657. [PMID: 36286032 PMCID: PMC9600611 DOI: 10.3390/cimb44100317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
(1) Antibiotics are an important weapon in the fight against serious bacterial infections and are considered a common cause of drug-induced liver injury (DILI). The hepatotoxicity of many drugs, including antibiotics, is poorly analyzed in human in vitro models. (2) A standardized assay with a human hepatoma cell line was used to test the hepatotoxicity of various concentrations (Cmax, 5× Cmax, and 10× Cmax) of antibiotics. In an ICU, the most frequently prescribed antibiotics, ampicillin, cefepime, cefuroxime, levofloxacin, linezolid, meropenem, rifampicin, tigecycline, and vancomycin, were incubated with HepG2/C3A cells for 6 days. Cell viability (XTT assay, LDH release, and vitality), albumin synthesis, and cytochrome 1A2 activity were determined in cells. (3) In vitro, vancomycin, rifampicin, and tigecycline showed moderate hepatotoxic potential. The antibiotics ampicillin, cefepime, cefuroxime, levofloxacin, linezolid, and meropenem were associated with mild hepatotoxic reactions in test cells incubated with the testes Cmax concentration. Rifampicin and cefuroxime showed significantly negative effects on the viability of test cells. (4) Further in vitro studies and global pharmacovigilance reports should be conducted to reveal underlying mechanism of the hepatotoxic action of vancomycin, rifampicin, tigecycline, and cefuroxime, as well as the clinical relevance of these findings.
Collapse
|
7
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
8
|
Zareifi DS, Chaliotis O, Chala N, Meimetis N, Sofotasiou M, Zeakis K, Pantiora E, Vezakis A, Matsopoulos GK, Fragulidis G, Alexopoulos LG. A network-based computational and experimental framework for repurposing compounds towards the treatment of Non-Alcoholic Fatty Liver Disease. iScience 2022; 25:103890. [PMID: 35252807 PMCID: PMC8889147 DOI: 10.1016/j.isci.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most common liver pathologies, however, none approved condition-specific therapy yet exists. The present study introduces a drug repositioning (DR) approach that combines in vitro steatosis models with a network-based computational platform, constructed upon genomic data from diseased liver biopsies and compound-treated cell lines, to propose effectively repositioned therapeutic compounds. The introduced in silico approach screened 20′000 compounds, while complementary in vitro and proteomic assays were developed to test the efficacy of the 46 in silico predictions. This approach successfully identified six compounds, including the known anti-steatogenic drugs resveratrol and sirolimus. In short, gallamine triethiotide, diflorasone, fenoterol, and pralidoxime ameliorate steatosis similarly to resveratrol/sirolimus. The implementation holds great potential in reducing screening time in the early drug discovery stages and in delivering promising compounds for in vivo testing. A computational and experimental drug-screening platform for NAFLD was created This framework evaluates in silico and validates in vitro a great number of compounds 20′000 compounds were screened in silico and 21 were selected for validation Six compounds reversed fully or partially the steatotic phenotype
Collapse
Affiliation(s)
- Danae Stella Zareifi
- School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece
| | - Odysseas Chaliotis
- School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece
| | - Nafsika Chala
- School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece
| | - Nikos Meimetis
- School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece
| | - Maria Sofotasiou
- School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece
| | - Konstantinos Zeakis
- School of Electrical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Eirini Pantiora
- 2nd Department of Surgery, Aretaieio Hospital, University of Athens, School of Medicine, 11528, Athens, Greece
| | - Antonis Vezakis
- 2nd Department of Surgery, Aretaieio Hospital, University of Athens, School of Medicine, 11528, Athens, Greece
| | - George K. Matsopoulos
- School of Electrical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Georgios Fragulidis
- 2nd Department of Surgery, Aretaieio Hospital, University of Athens, School of Medicine, 11528, Athens, Greece
| | - Leonidas G. Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 15780 Athens, Greece
- ProtATonce Ltd, Patriarchou Grigoriou & Neapoleos Demokritos Science Park, Building#27, Agia Paraskevi GR15343, Greece
- Corresponding author
| |
Collapse
|
9
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
NALBANT A, ŞAKUL BU, YÜCEL F. Investigation of Changes in Liver Microanatomy in the Steatosis Model Created by Permanent Canula in Rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.948391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: The knowledge of nonalcoholic fatty liver disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH) is limited to the findings from available suitable models for this disease. A number of rodent models have been described in which relevant liver pathology develops in an appropriate metabolic context. In this experimental study, it was aimed to create a new liver fat model by giving fat from the portal vein of rats and to visualize the changes in the liver with advanced microscopic techniques.
Methods: 28 female rats were used in the study. Permanent intraabdominal cannulas were inserted into the portal vein of the rats. Rats were randomly divided four group. Intralipid 20% substance was injected through cannula to the experimental groups during the test period. Control group received saline at the same rate. At the end of the experiment, the animals were visualized with a laser speckle microscope and livers were divided into sections according to the stereological method. The sections were painted with Hematoxylin-Eosin, Oil red o, Masson trichoma, Bodipy, Nile red. Sections were evaluated under a microscope.
Results: Ballooning, inflammation and fibrosis were observed in the 2 week intralipid group. In the 1 week intralipid group, the rate of parenchyma decreased while the sinusoid rate increased, and sinusoid rate increased significantly in the 2 week intralipid (p˂0.05).
Conclusion: According to the findings, steatohepatitis was detected in the 2 week intralipid, whereas only steatosis was observed in the 1 week intralipid. Thus, it was concluded that the newly formed rat model causes steatosis.
Collapse
|
11
|
Shen X, Liang X, Ji X, You J, Zhuang X, Song Y, Yin H, Zhao M, Zhao L. CD36 and DGAT2 facilitate the lipid-lowering effect of chitooligosaccharides via fatty acid intake and triglyceride synthesis signaling. Food Funct 2021; 12:8681-8693. [PMID: 34351342 DOI: 10.1039/d1fo01472b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study examined the impact of chitobiose (GlcN)2 and chitotriose (GlcN)3 on lipid accumulation modification and their inhibitory functionalities. (GlcN)2 and (GlcN)3 significantly inhibited the total cholesterol (TC), triglyceride (TG), and low-density lipid cholesterol (LDL-c) levels in the liver of the ob/ob-/- mice fed a non-high-fat diet. This phenomenon was associated with a reduction in the mRNA and protein expression of TG synthesis and fatty acid uptake-related signaling, significantly affecting the cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2). Furthermore, the CD36 and DGAT2 genes were overexpressed by constructing a plasmid and transfecting it into HepG2 cells, after which the phenotypic traits of lipid accumulation were assessed in vitro. Consequently, it was evident that (GlcN)2 and (GlcN)3 reduced the overexpression of these proteins and relieved cellular lipid accumulation. In conclusion, these results indicated that (GlcN)2 and (GlcN)3 acted positively against NAFLD while regulating steatosis in the non-high-fat diet NAFLD model. The potential NAFLD treatment strategies, such as targeting CD36 and DGAT2 signaling, could provide scientific insight into further applying food-derived ingredients to reduce the risk of high-fat metabolism.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinyi Liang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiangshan You
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinye Zhuang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Yudong Song
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China. and Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| |
Collapse
|
12
|
Allard J, Bucher S, Massart J, Ferron PJ, Le Guillou D, Loyant R, Daniel Y, Launay Y, Buron N, Begriche K, Borgne-Sanchez A, Fromenty B. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol 2021; 37:151-175. [PMID: 32535746 PMCID: PMC8012331 DOI: 10.1007/s10565-020-09537-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Simon Bucher
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Julie Massart
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
- HCS Pharma, 250 rue Salvador Allende, 59120 Loos, France
| | - Dounia Le Guillou
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Roxane Loyant
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Yoann Daniel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Nelly Buron
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Karima Begriche
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Annie Borgne-Sanchez
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
13
|
Makena W, Hambolu JO, Timbuak JA, Umana UE, Iliya AI, Dibal NI. Mormodica charantia L. fruit and Genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function. J Diabetes Metab Disord 2020; 19:1303-1310. [PMID: 33553029 PMCID: PMC7843820 DOI: 10.1007/s40200-020-00648-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study was aimed at evaluating the role of Momordica charantia L. fruit and Genistein on beta cell, insulin resistance/sensitivity and lipid profile in type 2 diabetic rats. METHODS Thirty-five (35) albino rats were divided into seven (7) groups of 5 rats each comprising of five (5) non-diabetic and thirty (30) diabetic rats. Groups 1 and 2 served as the normal control and diabetic control groups respectively and received distill water, groups 3 and 4 received Mormodica charantia L. at 250 mg/kg and 500 mg/kg respectively. Groups 5 and 6 received Genistein at 10 mg/kg and 20 mg/kg respectively while group 7 received Metformin at 500 mg/kg the experiment lasted for four weeks. All the rats were euthanized at the end of the fourth week. RESULTS Lipid profile, glucose and insulin levels were determined from the analysis of serum parameters and the histology of the pancreas. A significant reduction (p < 0.05) in blood glucose levels was noticed in rats that received Momordica charantia L. (MC) and genistein when compared with diabetic control rats. A significant decrease (p < 0.05) in cholesterol, triglyceride, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) levels were also noted in rats that received MC and Genistein when compared with the diabetic control rats. MC and Genistein significantly increased (P < 0.05) serum insulin level compared to the diabetic control rats. MC and Genistein significantly decreased (p < 0.05) homeostatic model assessment-insulin resistance (HOMA-IR) level compared with the diabetic control group. Pancreas of rats that received MC and Genistein showed regenerating beta-cells. CONCLUSION Momordica charantia L. fruit and Genistein were able to enhance beta cell function and prevent lipid accumulation and insulin resistance in type 2 diabetic rats.
Collapse
Affiliation(s)
- Wusa Makena
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State Nigeria
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State Nigeria
| | - Joseph O. Hambolu
- Department of Veterinary Anatomy, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - James A. Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State Nigeria
| | - Uduak E. Umana
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Abdullahi I. Iliya
- Department of Human Anatomy, Federal University Dutse, Dutse, Jigawa State Nigeria
| | - Nathan I. Dibal
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|
14
|
Strobel B, Düchs MJ, Blazevic D, Rechtsteiner P, Braun C, Baum-Kroker KS, Schmid B, Ciossek T, Gottschling D, Hartig JS, Kreuz S. A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synth Biol 2020; 9:1292-1305. [PMID: 32427483 DOI: 10.1021/acssynbio.9b00410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy holds great potential for future medical applications. However, to facilitate safer and broader applicability and to enable patient-centric care, therapeutic protein expression should be controllable, ideally by an orally administered drug. The use of protein-based systems is considered rather undesirable, due to potential immunogenicity and the limited coding space of AAV. Ligand-dependent riboswitches, in contrast, are small and characterized by an attractive mode-of-action based on mRNA-self-cleavage, independent of coexpressed foreign protein. While a promising approach, switches available to date have only shown moderate potency in animals. In particular, ON-switches that induce transgene expression upon ligand administration so far have achieved rather disappointing results. Here we present the utilization of the previously described tetracycline-dependent ribozyme K19 for controlling AAV-mediated transgene expression in mice. Using this tool switch, we provide first proof for the feasibility of clinically desired key features, including multiorgan functionality, potent regulation (up to 15-fold induction), reversibility, and the possibility to fine-tune and repeatedly induce expression. The systematic assessment of ligand and reporter protein plasma levels further enabled the characterization of pharmacokinetic-pharmacodynamic relationships. Thus, our results strongly support future efforts to develop engineered riboswitches for applications in clinical gene therapy.
Collapse
Affiliation(s)
- Benjamin Strobel
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Matthias J. Düchs
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Philipp Rechtsteiner
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Bernhard Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Thomas Ciossek
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dirk Gottschling
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| |
Collapse
|
15
|
Oppedisano F, Muscoli C, Musolino V, Carresi C, Macrì R, Giancotta C, Bosco F, Maiuolo J, Scarano F, Paone S, Nucera S, Zito MC, Scicchitano M, Ruga S, Ragusa M, Palma E, Tavernese A, Mollace R, Bombardelli E, Mollace V. The Protective Effect of Cynara Cardunculus Extract in Diet-Induced NAFLD: Involvement of OCTN1 and OCTN2 Transporter Subfamily. Nutrients 2020; 12:E1435. [PMID: 32429274 PMCID: PMC7284543 DOI: 10.3390/nu12051435] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia and insulin-resistance are often associated with Non-Alcoholic Fatty Liver Disease (NAFLD) thereby representing a true issue worldwide due to increased risk of developing cardiovascular and systemic disorders. Although clear evidence suggests that circulating fatty acids contribute to pathophysiological mechanisms underlying NAFLD and hyperlipidemia, further studies are required to better identify potential beneficial approaches for counteracting such a disease. Recently, several artichoke extracts have been used for both reducing hyperlipidemia, insulin-resistance and NAFLD, though the mechanism is unclear. Here we used a wild type of Cynara Cardunculus extract (CyC), rich in sesquiterpens and antioxidant active ingredients, in rats fed a High Fat Diet (HFD) compared to a Normal Fat Diet (NFD). In particular, in rats fed HFD for four consecutive weeks, we found a significant increase of serum cholesterol, triglyceride and serum glucose. This effect was accompanied by increased body weight and by histopathological features of liver steatosis. The alterations of metabolic parameters found in HFDs were antagonised dose-dependently by daily oral supplementation of rats with CyC 10 and 20 mg/kg over four weeks, an effect associated to significant improvement of liver steatosis. The effect of CyC (20 mg/kg) was also associated to enhanced expression of both OCTN1 and OCTN2 carnitine-linked transporters. Thus, present data suggest a contribution of carnitine system in the protective effect of CyC in diet-induced hyperlipidemia, insulin-resistance and NAFLD.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
- San Raffaele IRCCS, 00199 Rome, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Caterina Giancotta
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Sara Paone
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Monica Ragusa
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Ezio Bombardelli
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (C.M.); (V.M.); (C.C.); (R.M.); (C.G.); (F.B.); (J.M.); (F.S.); (S.P.); (S.N.); (M.C.Z.); (M.S.); (S.R.); (M.R.); (E.P.); (A.T.); (R.M.); (E.B.)
- San Raffaele IRCCS, 00199 Rome, Italy
| |
Collapse
|
16
|
Effect of zinc oxide nanoparticles on broilers' performance and health status. Trop Anim Health Prod 2020; 52:2043-2054. [PMID: 32016879 DOI: 10.1007/s11250-020-02229-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
The current study investigated the effects of zinc oxide nanoparticles (ZONPs) and oxytetracycline (OTC) supplementation on broilers' behavior, performance, carcass quality, biochemical parameters, and intestinal microbial populations and birds' response to Newcastle disease (ND) vaccine. A total of 336 seven-day-old IR broiler chicks were randomly allotted to six dietary treatments containing 0, 10, 20, 30 and 40 ppm ZONPs or 50 ppm OTC. Each diet was fed to 7 replicates (8 birds/pen). The results clarified that 10 ppm ZONPs significantly improved the body weight gain and feed conversion in comparison to the control. No changes in behavior were recorded. The 10 ppm and 30 ppm ZONPs and OTC significantly reduced the gizzard weight in comparison to the control. While, 10 ppm ZONPs significantly increased the spleen weight, and all ZONPs doses increased bursa weight in comparison to the control and OTC groups. 20 ppm ZONPs increased the eviscerated yield and edible yield in comparison to the control and OTC groups. 40 ppm ZONPs increased pH, reduced meat color and overall acceptability in comparison to the control. In addition, results revealed that the 20 ppm ZONPs increased Calcium (Ca), High density low cholesterol (HDL-C), reduced urea (UA) and triglyceride (TG). Also, 40 ppm ZONPs and OTC increased creatinine (Cr) and reduced ND-HI titer in comparison to the control. For microbial population, OTC group was significantly lower than ZONPs groups in the total anaerobic, aerobic and lactobacilli count. In conclusion, the dietary inclusion of ZONPs can be applied as antibiotic growth promoter substitutions in broilers' diet. However, further investigations are still needed.
Collapse
|
17
|
Yong HY, Larrouy-Maumus G, Zloh M, Smyth R, Ataya R, Benton CM, Munday MR. Early detection of metabolic changes in drug-induced steatosis using metabolomics approaches. RSC Adv 2020; 10:41047-41057. [PMID: 35519189 PMCID: PMC9057704 DOI: 10.1039/d0ra06577c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Steatosis is the accumulation of triglycerides in hepatic cells wherein fats exceed 5% of the entire liver weight. Although steatotic liver damage is reversible due to the liver's regenerative capability, protracted damage often and typically leads to irreversible conditions such as cirrhosis and hepatocellular carcinoma (HCC). Therefore, early steatotic detection is critical for preventing progression to advanced liver diseases. This also becomes particularly important given the higher prevalence of drug usage, as drugs are a frequent cause of liver damage. Currently, the recommendation to diagnose steatosis is using liver enzymes and performing a liver biopsy. Liver biopsy remains the gold standard method of detection, but the procedure is invasive and an unreliable diagnostic tool. Non-invasive, specific and sensitive diagnostic solutions such as biomarkers are therefore needed for the early detection of steatosis. Our aim is to identify changes in urinary metabolites in tetracycline-induced hepatic steatotic rats at different stages of the diseases using metabolomic-based techniques. Sprague Dawley male rats are treated by intraperitoneal injection (I.P.) with either 62.5 mg kg−1 or 125 mg kg−1 tetracycline, an antibiotic previously known to induce steatosis. We analyse the metabolic profile of the urinary tetracycline induced hepatic steatotic rats using 1H nuclear magnetic resonance (NMR), 2D 1H–1H TOCSY (total correlation spectroscopy) and electrospray liquid chromatography-mass spectrometry (ESI-LC-MS/MS) based metabolomics. The combined analysis of haematoxylin & eosin (H&E), oil red O (ORO) and direct measurement of triglyceride content in the liver tissues of the control samples against 125 mg kg−1 and 62.5 mg kg−1 treated samples, reveals that 125 mg kg−1 tetracycline exposure potentially induces steatosis. The combination of 1H NMR, 2D 1H–1H TOCSY and ESI-LC-MS/MS alongside multivariate statistical analysis, detected a total of 6 urinary metabolites changes, across 6 metabolic pathways. Furthermore, lysine concentration correlates with liver damage as tetracycline dose concentration increases, whilst both H&E and ORO fail to detect hepatocellular damage at the lowest dose concentration. We conclude that the combination of 1H NMR and ESI-LC-MS/MS suggests that these are suitable platforms for studying the pathogenesis of steatosis development, prior to morphological alterations observed in staining techniques and offer a more detailed description of the severity of the steatotic disease. Urinary metabolic profiling of tetracycline induced hepatic steatotic rats were investigated using 1H nuclear magnetic resonance, 2D 1H–1H total correlation spectroscopy and electrospray liquid chromatography-mass spectrometry based metabolomics.![]()
Collapse
Affiliation(s)
- Helena Y Yong
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection
- Department of Life Science
- Faculty of Natural Sciences
- Imperial College London
- UK
| | - Mire Zloh
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | - Rosemary Smyth
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | - Rayan Ataya
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| | | | - Michael R. Munday
- Department of Pharmaceutical and Biological Chemistry
- University of London
- UK
| |
Collapse
|
18
|
Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Research Progress on the Animal Models of Drug-Induced Liver Injury: Current Status and Further Perspectives. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1283824. [PMID: 31119149 PMCID: PMC6500714 DOI: 10.1155/2019/1283824] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major concern in clinical studies as well as in postmarketing surveillance. It is necessary to establish an animal model of DILI for thorough investigation of mechanisms of DILI and searching for protective medications. This article reviews the current status and future perspective on establishment of DILI models based on different hepatotoxic drugs, as well as the underlying mechanisms of liver function damage induced by specific medicine. Therefore, information from this article can help researchers make a suitable selection of animal models for further study.
Collapse
|
20
|
Wang S, Wang J, Liu Y, Li H, Wang Q, Huang Z, Liu W, Shi P. Trivalent Chromium Supplementation Ameliorates Oleic Acid-Induced Hepatic Steatosis in Mice. Biol Trace Elem Res 2019; 187:192-201. [PMID: 29797206 DOI: 10.1007/s12011-018-1368-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Trivalent chromium [Cr(III)] is recognized as an essential trace element for human health, whereas its effect on hepatic lipid metabolism has not yet been fully understood. This study aimed to investigate the beneficial effects and potential mechanisms of Cr(III) on hepatic steatosis in an oleic acid (OA) induced mice model. Mice were fed with high OA for 12 weeks to induce lipid accumulation, and co-administrated with Cr(III) supplementation. Indexes of liver lipid accumulation, associated lipid genes expression, fatty acids (FAs) profile and inflammatory cytokines were analyzed. The data showed that Cr(III) supplementation could attenuate disease progress of hepatic steatosis and protect liver from high OA. After Cr(III) supplementation, elevated body weight and liver injury in steatosis mice were reversed, excessive lipid accumulation and FAs were also reduced. The up-regulation of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2) following steatosis induction were inhibited by Cr(III). Cr(III) reduced the content of pro-inflammatory cytokines (IL-1β and TNF-α, IL-12) and restored the level of anti-inflammatory cytokine (IL-10) to the control values. Our results suggest that Cr(III) supplementation is a novel strategy for alleviating OA-induced hepatic steatosis.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yajing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai, 200083, China
| | - Qiao Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai, 201620, China
| | - Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai, 201620, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai, 200083, China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
21
|
Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Goda K, Saito K, Muta K, Kobayashi A, Saito Y, Sugai S. Ether-phosphatidylcholine characterized by consolidated plasma and liver lipidomics is a predictive biomarker for valproic acid-induced hepatic steatosis. J Toxicol Sci 2018; 43:395-405. [DOI: 10.2131/jts.43.395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Keisuke Goda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | - Kyotaka Muta
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Akio Kobayashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences
| | - Shoichiro Sugai
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO Inc
| |
Collapse
|
23
|
Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, Yu W, Zhao Z, Huang M, Jin J. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol 2017; 324:12-25. [PMID: 28366540 DOI: 10.1016/j.taap.2017.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xupeng Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weipeng Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiheng Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yibei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weibang Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Cui H, Yang S, Zheng M, Liu R, Zhao G, Wen J. High-salt intake negatively regulates fat deposition in mouse. Sci Rep 2017; 7:2053. [PMID: 28515432 PMCID: PMC5435674 DOI: 10.1038/s41598-017-01560-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/20/2017] [Indexed: 01/14/2023] Open
Abstract
High-salt (HS) intake contributes to hypertension and cardiopathy, but the effect of HS on fat deposition is controversial. Feed intake, fat mass, the percentage of abdominal fat, heat production, rate of oxygen consumption and the respiratory exchange ratio of mice on a HS diet were significantly decreased (P < 0.01 or 0.05) compared with mice on a normal-salt (NS) diet. An in vitro experiment with differentiating pre-adipocytes showed reduced fat deposition in the presence of high concentrations of NaCl (>0.05 M). Abdominal fat mRNA profiles and protein measurements showed that 5 known genes involved in lipolysis were up-regulated significantly and 9 genes related to lipogenesis were down-regulated in HS mice. Abundant genes and some proteins (ATP2a1, AGT, and ANGPTL4) related to calcium ion metabolism or the renin-angiotensin system (RAS) were differentially expressed between HS and NS mice. Of special interest, CREB1 phosphorylation (S133 and S142), a key factor involved in calcium signaling and other pathways, was up-regulated in HS mice. By IPA analysis, a network mediated by calcium was established providing the molecular mechanisms underlying the negative effect of HS on fat deposition.
Collapse
Affiliation(s)
- Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Shuyan Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
25
|
Evaluation of the Potential Risk of Drugs to Induce Hepatotoxicity in Human-Relationships between Hepatic Steatosis Observed in Non-Clinical Toxicity Study and Hepatotoxicity in Humans. Int J Mol Sci 2017; 18:ijms18040810. [PMID: 28417920 PMCID: PMC5412394 DOI: 10.3390/ijms18040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 11/17/2022] Open
Abstract
In the development of drugs, we sometimes encounter fatty change of the hepatocytes (steatosis) which is not accompanied by degenerative change in the liver in non-clinical toxicity studies. In this study, we investigated the relationships between fatty change of the hepatocytes noted in non-clinical toxicity studies of compound X, a candidate compound in drug development, and mitochondrial dysfunction in order to estimate the potential risk of the compound to induce drug-induced liver injury (DILI) in humans. We conducted in vivo and in vitro exploratory studies for this purpose. In vivo lipidomics analysis was conducted to investigate the relationships between alteration of the hepatic lipids and mitochondrial dysfunction. In the liver of rats treated with compound X, triglycerides containing long-chain fatty acids, which are the main energy source of the mitochondria, accumulated. Accumulation of these triglycerides was considered to be related to the inhibition of mitochondrial respiration based on the results of in vitro mitochondria toxicity studies. In conclusion, fatty change of the hepatocytes (steatosis) in non-clinical toxicity studies of drug candidates can be regarded as a critical finding for the estimation of their potential risk to induce DILI in humans when the fatty change is induced by mitochondrial dysfunction.
Collapse
|
26
|
Abstract
INTRODUCTION Drug induced steatohepatitis (DISH), a form of drug induced liver injury (DILI) is characterized by intracellular accumulation of lipids in hepatocytes and subsequent inflammatory events, in some ways similar to the pathology seen with other metabolic, viral and genetic causes of non alcoholic fatty liver disease and steatohepatitis (NAFLD and NASH). Areas covered: This paper provides a comprehensive review of the main underlying mechanisms by which various drugs cause DISH, and outlines existing preclinical tools to predict it and study underlying pathways involved. The translational hurdles of these models are discussed, with the example of an organotypic liver system designed to address them. Finally, we describe the clinical assessment and management of DISH. Expert Opinion: The complexity of the interconnected mechanistic pathways underlying DISH makes it important that preclinical evaluation of drugs is done in a physiologically and metabolically relevant context. Advanced organotypic tissue models, coupled with translational functional biomarkers and next-generational pan-omic measurements, may offer the best shot at gathering mechanistic knowledge and potential of a drug causing steatohepatitis. Ultimately this information could also help predict, detect or guide the development of specific treatments for DISH, which is an unmet need as of today.
Collapse
Affiliation(s)
- Ajit Dash
- a HemoShear Therapeutics LLC , Charlottesville , VA , USA
| | | | - Arun J Sanyal
- b Department of Internal Medicine, School of Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | | |
Collapse
|
27
|
Wang S, Wang J, Zhang X, Hu L, Fang Z, Huang Z, Shi P. Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis. Biometals 2016; 29:881-92. [DOI: 10.1007/s10534-016-9960-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022]
|
28
|
DJ-1 deficiency alleviates steatosis in cultured hepatocytes. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|