1
|
Barathon F, Graindorge PH, Bescher M, Gallais I, Burel A, Morel I, Schroeder H, Grova N, Lagadic-Gossmann D, Sergent O. Key role of extracellular vesicles in the induction of necroptosis and apoptosis by a mixture of polycyclic aromatic hydrocarbons in the context of a steatohepatitis-like state. Toxicology 2025; 516:154184. [PMID: 40378907 DOI: 10.1016/j.tox.2025.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
A positive association between human exposure to environmental pollutants and progression from benign hepatic steatosis to advanced chronic liver diseases has been documented. Among chemicals found in air pollution, polycyclic aromatic hydrocarbons (PAHs) are of particular concern, due to their omnipresence in the environment. Ingestion of contaminated food is the primary route of exposure. Previous studies on the ability of PAHs to induce the pathological progression of liver steatosis have been limited to the analysis of individual PAHs. The aim of this study was therefore to examine the effects of a mixture of PAHs whose composition closely recapitulates that of contaminated food. The PAH mixture elicited both a steatohepatitis-like state in steatotic WIF-B9 hepatocytes (100 nM for 72 hours) and the progression of steatohepatitis in rats fed a lipid-enriched diet (0.8 mg/kg for 90 days). The PAH mixture induced transient necroptosis at 5 hours followed by a gradual increase in cellular apoptosis. PAH metabolism-dependent necroptosis appeared to be responsible for the development of the secondary apoptosis. Hepatocyte exposure induced a necroptosis-dependent release of extracellular vesicles (EVs), that appeared to be protective against necroptosis; however, those necroptotic EVs triggered apoptosis in recipient hepatocytes. Blocking of ASGR EV receptors with asialofetuin inhibited the interaction of EVs with hepatocytes and hence apoptosis. In conclusion, EV release seems to be crucial to avoid necroptosis, but inhibition of EV uptake can protect against apoptosis.
Collapse
Affiliation(s)
- Florian Barathon
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France.
| | | | - Maelle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France.
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France.
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, Rennes F-35000, France.
| | - Isabelle Morel
- Laboratoire de toxicologie biologique et Médico-légale, CHU Rennes, Rennes, France; INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer) UMR_A 1341, UMR_S 1317, F-35000, Rennes, France, CHU Rennes, Rennes, France.
| | - Henri Schroeder
- UMR Inserm 1256 NGERE - Lorraine University, Vandœuvre-lès-Nancy F-54500, France.
| | - Nathalie Grova
- UMR Inserm 1256 NGERE - Lorraine University, Vandœuvre-lès-Nancy F-54500, France; INRS (French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases) Department of Toxicology and Biomonitoring, France.
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France.
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes F-35000, France.
| |
Collapse
|
2
|
Siangcham T, Vivithanaporn P, Jantakee K, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sornchuer P, Sangpairoj K. Impact of Benzo(a)pyrene and Pyrene Exposure on Activating Autophagy and Correlation with Endoplasmic Reticulum Stress in Human Astrocytes. Int J Mol Sci 2025; 26:1748. [PMID: 40004212 PMCID: PMC11855727 DOI: 10.3390/ijms26041748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Benzo(a)pyrene (B(a)P) and pyrene, the most prominent subtypes of polycyclic aromatic hydrocarbons (PAHs), contaminate environments as organic pollutants. They adversely affect body systems, including degeneration of the central nervous system. This study investigated the in vitro toxic effects of B(a)P and pyrene on proliferation, endoplasmic reticulum (ER) stress induction, and autophagy in human astrocytes using U-87 MG human astrocytoma cells as a model. Both B(a)P and pyrene were toxic to U-87 MG cells in a concentration-dependent manner. Astrocytic proliferation was interfered with, enhancing S-phase cell cycle arrest. B(a)P promoted the presence of autophagic vesicles and the expression of autophagic markers LC3, beclin-1, and p62, suggesting activated autophagy. B(a)P enhanced the expression of ER stress markers BiP, PERK, and IRE1. ER stress appeared to be correlated with autophagy induction, as demonstrated by experiments using chloroquine, an autophagy inhibitor. Pyrene enhanced the expression of autophagic markers and ER stress primarily via PERK activation, although autophagic vesicles were not observed. The study demonstrates that B(a)P enhances ER stress-mediated autophagy more evidently than pyrene and affected toxicity to astrocytes. These results provide a basis for understanding the toxic effects of the main PAH substances affecting astrocytes.
Collapse
Affiliation(s)
- Tanapan Siangcham
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand;
| | - Kanyaluck Jantakee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
| | - Nattaya Thongsepee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Gaither KA, Garcia WL, Tyrrell KJ, Wright AT, Smith JN. Activity-Based Protein Profiling to Probe Relationships between Cytochrome P450 Enzymes and Early-Age Metabolism of Two Polycyclic Aromatic Hydrocarbons (PAHs): Phenanthrene and Retene. Chem Res Toxicol 2024; 37:711-722. [PMID: 38602333 DOI: 10.1021/acs.chemrestox.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A growing body of literature has linked early-life exposures to polycyclic aromatic hydrocarbons (PAH) with adverse neurodevelopmental effects. Once in the body, metabolism serves as a powerful mediator of PAH toxicity by bioactivating and detoxifying PAH metabolites. Since enzyme expression and activity vary considerably throughout human development, we evaluated infant metabolism of PAHs as a potential contributing factor to PAH susceptibility. We measured and compared rates of phenanthrene and retene (two primary PAH constituents of woodsmoke) metabolism in human hepatic microsomes from individuals ≤21 months of age to a pooled sample (n = 200) consisting primarily of adults. We used activity-based protein profiling (ABPP) to characterize cytochrome P450 enzymes (CYPs) in the same hepatic microsome samples. Once incubated in microsomes, phenanthrene demonstrated rapid depletion. Best-fit models for phenanthrene metabolism demonstrated either 1 or 2 phases, depending on the sample, indicating that multiple enzymes could metabolize phenanthrene. We observed no statistically significant differences in phenanthrene metabolism as a function of age, although samples from the youngest individuals had the slowest phenanthrene metabolism rates. We observed slower rates of retene metabolism compared with phenanthrene also in multiple phases. Rates of retene metabolism increased in an age-dependent manner until adult (pooled) metabolism rates were achieved at ∼12 months. ABPP identified 28 unique CYPs among all samples, and we observed lower amounts of active CYPs in individuals ≤21 months of age compared to the pooled sample. Phenanthrene metabolism correlated to CYPs 1A1, 1A2, 2C8, 4A22, 3A4, and 3A43 and retene metabolism correlated to CYPs 1A1, 1A2, and 2C8 measured by ABPP and vendor-supplied substrate marker activities. These results will aid efforts to determine human health risk and susceptibility to PAHs exposure during early life.
Collapse
Affiliation(s)
- Kari A Gaither
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Whitney L Garcia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biology, Baylor University, Waco, Texas 76706, United States
| | - Kimberly J Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
4
|
Pan S, Yu W, Zhang J, Guo Y, Qiao X, Xu P, Zhai Y. Environmental chemical TCPOBOP exposure alters milk liposomes and offspring growth trajectories in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116061. [PMID: 38340598 DOI: 10.1016/j.ecoenv.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Yang M, Lu Y, Mao W, Hao L. New insight into PAH4 induced hepatotoxicity and the dose-response assessment in rats model. CHEMOSPHERE 2024; 350:141042. [PMID: 38154670 DOI: 10.1016/j.chemosphere.2023.141042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
PAH4 (sum of benzo[a]pyrene, chrysene, benz[a]anthracene and benzo[b]fluoranthene) has been proposed as better marker than benzo[a]pyrene to assess total PAHs exposure in foodstuffs. However, the toxicological behaviors of PAH4 combined exposure remain unclear. This study aimed to investigate PAH4 toxicity effects with non-targeted metabolomics approach and evaluate the external and internal dose-response relationships based on benchmark dose (BMD) analysis. Male Sprague-Dawley rats were treated by gavage with vehicle (corn oil) or four doses of PAH4 (10, 50, 250, 1000 μg/kg·bw) for consecutive 30 days. After the final dose, the liver, blood and urine samples of rats were subsequently collected for testing. The concentrations of urinary mono-hydroxylated PAHs metabolites (OH-PAHs) including 3-hydroxybenzo[a]pyrene (3-OHB[a]P), 3-hydroxychrysene (3-OHCHR) and 3-hydroxybenz[a]anthracene (3-OHB[a]A) were determined to reflect internal PAH4 exposure. Our results showed PAH4 exposure increased relative liver weight and serum aspartate aminotransferase (AST) activity and caused hepatocyte swelling and degeneration, implying hepatotoxicity induced by PAH4. Serum metabolomics suggested PAH4 exposure perturbed lipid metabolism through upregulating the expression of glycerolipids metabolites, which was evidenced by markedly increased serum triglyceride (TG) level and hepatic TG content. Additionally, urinary OH-PAHs concentrations presented strong positive correlations with the external dose, indicating they were able to reflect PAH4 exposure. Furthermore, PAH4 exposure led to a dose-response increase of hepatic TG content, based on which the 95% lower confidence value of BMDs for external and internal doses were estimated as 5.45 μg/kg·bw and 0.11 μmol/mol·Cr, respectively. In conclusion, this study suggested PAH4 exposure could induce hepatotoxicity and lipid metabolism disorder, evaluating the involved dose-response relationships and providing a basis for the risk assessment of PAHs.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuxuan Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Su H, Zhao D, Heidari AA, Cai Z, Chen H, Zhu J. Kernel extreme learning with harmonized bat algorithm for prediction of pyrene toxicity in rats. Basic Clin Pharmacol Toxicol 2024; 134:250-271. [PMID: 37945549 DOI: 10.1111/bcpt.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants and manufactured substances conferring toxicity to human health. The present study investigated whether pyrene, a type of PAH, harms rats. Our research provides an effective feature selection strategy for the animal dataset from Wenzhou Medical University's Experimental Animal Center to thoroughly examine the impacts of PAH toxicity on rat features. Initially, we devised a high-performance optimization method (SCBA) and added the Sobol sequence, vertical crossover and horizontal crossover mechanisms to the bat algorithm (BA). The SCBA-KELM model, which combines SCBA with the kernel extreme learning machine model (KELM), has excellent accuracy and high stability for selecting features. Benchmark function tests are then used in this research to verify the overall optimization performance of SCBA. In this paper, the feature selection performance of SCBA-KELM is verified using various comparative experiments. According to the results, the features of the genes PXR, CAR, CYP2B1/2 and CYP1A1/2 have the most impact on rats. The SCBA-KELM model's classification performance for the gene dataset was 100%, and the model's precision value for the public dataset was around 96%, as determined by the classification index. In conclusion, the model utilized in this research is anticipated to be a reliable and valuable approach for toxicological classification and assessment.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhennao Cai
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiayin Zhu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Feiertag K, Karaca M, Fischer B, Heise T, Bloch D, Opialla T, Tralau T, Kneuer C, Marx-Stoelting P. Mixture effects of co-formulants and two plant protection products in a liver cell line. EXCLI JOURNAL 2023; 22:221-236. [PMID: 36998705 PMCID: PMC10043434 DOI: 10.17179/excli2022-5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 04/01/2023]
Abstract
Plant protection products (PPPs) consist of one or more active substances and several co-formulants. Active substances provide the functionality of the PPP and are consequently evaluated according to standard test methods set by legal data requirements before approval, whereas co-formulants' toxicity is not as comprehensively assessed. However, in some cases mixture effects of active substances and co-formulants might result in increased or different forms of toxicity. In a proof-of-concept study we hence built on previously published results of Zahn et al. (2018[38]) on the mixture toxicity of Priori Xtra® and Adexar® to specifically investigate the influence of co-formulants on the toxicity of these commonly used fungicides. Products, their respective active substances in combination as well as some co-formulants were applied to human hepatoma cell line (HepaRG) in several dilutions. Cell viability analysis, mRNA expression, abundance of xenobiotic metabolizing enzymes and intracellular concentrations of active substances determined by LC-MS/MS analyses demonstrated that the toxicity of the PPPs is influenced by the presence of co-formulants in vitro. PPPs were more cytotoxic than the mix of their active substances. Gene expression profiles of cells treated with the PPPs were similar to those treated with their respective mixture combinations with marked differences. Co-formulants can cause gene expression changes on their own. LC-MS/MS analyses revealed higher intracellular concentrations of active substances in cells treated with PPPs compared to those treated with the respective active substances' mix. Proteomic data showed co-formulants can induce ABC transporters and CYP enzymes. Co-formulants can contribute to the observed increased toxicity of PPPs compared to their active substances in combination due to kinetic interactions, necessitating a more comprehensive evaluation approach.
Collapse
Affiliation(s)
- Katreece Feiertag
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Mawien Karaca
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Benjamin Fischer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tanja Heise
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tobias Opialla
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
- *To whom correspondence should be addressed: Philip Marx-Stoelting, German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Tel.: +49 30 1841226600, E-mail:
| |
Collapse
|
8
|
Chen Y, Lai B, Wei Y, Ma Q, Liang H, Yang H, Ye R, Zeng M, Wang H, Wu Y, Liu X, Guo L, Tang H. Polluting characteristics, sources, cancer risk, and cellular toxicity of PAHs bound in atmospheric particulates sampled from an economic transformation demonstration area of Dongguan in the Pearl River Delta, China. ENVIRONMENTAL RESEARCH 2022; 215:114383. [PMID: 36150442 DOI: 10.1016/j.envres.2022.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The Songshan Lake Science and Technology Industrial Park is a national economic transition demonstration area, which centers at a traditional industrial region, in Dongguan, China. We were interested in the involved atmospheric particulates-bound PAHs regarding their sources, cancer risk, and related cellular toxicity for those in other areas under comparable conditions. In this study, the daily concentrations of TSP, PM10, and PM2.5 were averaged 127.95, 95.91, and 67.62 μg/m3, and the bound PAHs were averaged 1.31, 1.22, and 0.77 ng/m3 in summer and 12.72, 20.51 and 40.27 ng/m3 in winter, respectively. The dominant PAHs were those with 5-6 rings, and 4-6 rings in summer and winter, respectively. The incremental lifetime cancer risk (ILCR) (90th percentile probability) of total PAHs was above 1.00E-06 in each age group, particularly high in adolescents. Sensitivity analysis indicated that slope factor and body weight had greater impact than exposure duration and inhalation rate on the ILCR. Moreover, treatment of human bronchial epithelial BEAS-2B cells with mixed five indicative PAHs increased the formation of ROS, DNA damage (elevation in γ-H2AX), and protein levels of CAR, PXR, CYP1A1, 1A2, 1B1, while reduced the AhR protein, with the winter mixture more potent than summer. For the sources of PAHs, the stable carbon isotope ratio analysis and diagnostic ratios consistently pointed to petroleum and fossil fuel combustion as major sources. In conclusion, our findings suggest that particulates-bound PAHs deserve serious concerns for a cancer risk in such environment, and the development of new power sources for reducing fossil fuel combustion is highly encouraged.
Collapse
Affiliation(s)
- Yuting Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Bei Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China; Shenzhen Nanshan Medical Group HQ, Shenzhen, China
| | - Yixian Wei
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qiaowei Ma
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China; Dupont China Holdings LTD Guangzhou Branch, Guangzhou, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ruifang Ye
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Minjuan Zeng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanhuan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lianxian Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Huanwen Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Shi Z, Li X, Zhang YM, Zhou YY, Gan XF, Fan QY, He CQ, Shi T, Zhang SY. Constitutive androstane receptor (CAR) mediates pyrene-induced mice liver inflammatory response with increased serum amyloid A proteins and Th17 cells. Br J Pharmacol 2022; 179:5209-5221. [PMID: 35906855 DOI: 10.1111/bph.15934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The constitutive androstane receptor (CAR), a known xenobiotic sensor, plays an important role in drug metabolism by regulating numerous genes. We previously reported that pyrene, an environmental pollutant, is a CAR activator and induces mouse hepatotoxicity via CAR. Here, we investigate the molecular mechanism of inflammatory response in pyrene-caused mice liver injury. EXPERIMENTAL APPROACH Effects of pyrene on the liver were investigated in wild-type and CAR knockout (KO) mice. Levels of pyrene and its metabolite were analyzed by high performance liquid chromatography (HPLC). KEY RESULTS Serum amyloid A proteins (SAAs) were dramatically induced in the liver and serum of pyrene-exposed wild-type mice. Interleukin 17 (IL-17)-producing helper T cells (Th17 cells) and IL-17 levels were significantly increased in the liver of pyrene-exposed wild-type mice. Hepatic mRNA levels of inflammatory cytokines including IL-1β, IL-6 and TNFα, and serum IL-6 levels were significantly elevated in pyrene-treated wild-type mice. However, the above induction was not observed in CAR KO mice. CONCLUSION AND IMPLICATIONS We demonstrate that CAR plays a crucial role in pyrene-caused mice liver inflammatory response with increased SAAs and Th17 cells. Our results suggest that serum SAAs may be a convenient biomarker for early diagnosis of liver inflammatory response caused by polycyclic aromatic hydrocarbons (PAHs) including pyrene. CAR and Th17 cells may be potential targets for novel therapeutic strategy for xenobiotic-induced liver inflammatory response.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xue Li
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yu-Man Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yi-Yao Zhou
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiu-Feng Gan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiao-Ying Fan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chen-Qing He
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Tong Shi
- School of Medicine, Tongji University, Shanghai, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,School of Medicine, Taizhou University, Taizhou, China
| |
Collapse
|
10
|
Luo Y, Zhang B, Geng N, Sun S, Song X, Chen J, Zhang H. Insights into the hepatotoxicity of pyrene and 1-chloropyrene using an integrated approach of metabolomics and transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154637. [PMID: 35307418 DOI: 10.1016/j.scitotenv.2022.154637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of pyrene (Pyr) and its chlorinated species have not be comprehensively and clearly elucidated. In this study, an integrated approach of metabolomics and transcriptomics were applied to evaluate the hepatotoxicity of Pyr and 1-chloropyrene (1-Cl-Pyr) at human exposure level, using human L02 hepatocytes. After 24 h exposure to Pyr and 1-Cl-Pyr at 5-500 nM, cell viability was not significantly changed. Transcriptomics results showed that exposure to Pyr and 1-Cl-Pyr at 5 and 50 nM obviously altered the gene expression profiles, but did not significantly induce the expression of genes strongly related to the activation of aryl hydrocarbon receptor (AhR), such as CYP1A1, CYP1B1, AHR, ARNT. Pyr and 1-Cl-Pyr both induced a notable metabolic perturbation to L02 cells. Glycerophospholipid metabolism was found to be the most significantly perturbed pathway after exposure to Pyr and 1-Cl-Pyr, indicating their potential damage to the cell membrane. The other significantly perturbed pathways were identified to be oxidative phosphorylation (OXPHOS), glycolysis, and fatty acid β oxidation, all of which are related to energy production. Exposure to Pyr at 5 and 50 nM induced the up-regulation of fatty acid β oxidation and OXPHOS. The similar result was observed after exposure to 5 nM 1-Cl-Pyr. In contrast, exposure to 50 nM 1-Cl-Pyr induced the down-regulation of OXPHOS by inhibiting the activity of complex I. The obtained results suggested that the modes of action of Pyr and 1-Cl-Pyr on energy production remarkably varied not only with molecular structure change but also with exposure concentration.
Collapse
Affiliation(s)
- Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Šimečková P, Pěnčíková K, Kováč O, Slavík J, Pařenicová M, Vondráček J, Machala M. In vitro profiling of toxic effects of environmental polycyclic aromatic hydrocarbons on nuclear receptor signaling, disruption of endogenous metabolism and induction of cellular stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151967. [PMID: 34843781 DOI: 10.1016/j.scitotenv.2021.151967] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.
Collapse
Affiliation(s)
- Pavlína Šimečková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Ondrej Kováč
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Josef Slavík
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Martina Pařenicová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic.
| |
Collapse
|
12
|
Cho H, Choi I, Kim SK, Baik S, Ryu CS. LC-MS-based assay of granisetron 7-hydroxylation activity for the evaluation of CYP1A1 induction from diesel particulate matter-exposed hepatic and respiratory cell lines. Food Chem Toxicol 2022; 161:112829. [PMID: 35093429 DOI: 10.1016/j.fct.2022.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Particulate matter (PM) generally consists of aggregated particles containing trace metals and polycyclic aromatic hydrocarbons (PAHs). Cytochrome P450 (CYP) 1A1, one of the extensively investigated biomarkers, is highly inducible when PAHs activate the aryl hydrocarbon receptor (AhR). The present study focused on developing a LC-MS/MS-based assay to evaluate CYP1A1 induction potential following PM exposure. This assay adapted a CYP1A1 selective reaction of granisetron 7-hydroxylation in response to an AhR inducer, 6-formylindolo[3,2-b]carbazole (FICZ), in HepaRG and A549 cell lines. Exposure to FICZ (10 nM) increased the levels of granisetron 7-hydroxylation significantly, whereas no elevation of ethoxyresorufin-O-deethylation (EROD) activity was found in HepaRG cells. In A549 cells, granisetron 7-hydroxylation showed a better dose-response from 0 to 10000 nM FICZ treatment than EROD. EROD Additionally, the application of the assay with diesel PM exposure showed a concentration-dependent induction of CYP1A1 in HepaRG, A549, and human nasal epithelial cells. The granisetron assay has better selectivity for CYP1A1 than the conventional EROD assay, which is overlapped reaction with CYP1A2 and CYP1B1, with high correlations between AhR activation and CYP1A1 mRNA levels. Accompanying the great application potential to different organs and cell culture systems, future studies will implement the granisetron assay for the respiratory toxicity evaluation.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Ian Choi
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| |
Collapse
|
13
|
Associations of exposure to polycyclic aromatic hydrocarbons and kidney stones in U.S. general population: results from the National Health and Nutrition Examination Survey 2007-2016. World J Urol 2021; 40:545-552. [PMID: 34716773 DOI: 10.1007/s00345-021-03847-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE It has been reported that polycyclic aromatic hydrocarbons (PAHs) exposure was associated with the increasing risk of various diseases. Utilizing the data from the general population of the U.S., we tried to assess the association between PAHs exposure and KS. METHODS The dataset was extracted from National Health and Nutrition Examination Survey (NHANES) 2007-2016. The hydroxylated metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) were detected as representative of urinary PAHs. Ranking-based PAHs score was used to evaluate the total PAHs exposure burden. Multivariable logistic regression analyses were performed to assess the association between PAHs exposure and KS after adjusting a series of confounding factors. RESULTS 8975 eligible participants were included. In multivariable logistic regression analyses, after adjusting confounding variables, 2-hydroxynaphthalene (OR 1.38, 1.16-1.65; p = 0.038) and 9-hydroxyfluorene (OR 1.39, 1.06-1.84, p = 0.019) were still observed to have significant positive correlations with the prevalence of KS, respectively. The incidence of KS increased significantly with the increase of total PAHs burden (p for trend = 0.011). Significant interaction effects were observed in the subgroup of gender (p for interaction < 0.05). Among female participants, PAHs exposure was more significantly correlated with KS. Higher 2-hydroxynaphthalene (OR 1.94, 1.39-2.70; p < 0.001), 1-hydroxyphenanthrene (OR 1.57, 1.07-2.30; p = 0.022) and 2-hydroxyphenanthrene (OR 1.85, 1.11-3.06; p = 0.018) were significantly associated with the increased incidence of KS in women. CONCLUSIONS There is a significant association between a high level of PAHs exposure and increased prevalence of KS. In particular, in the female population, the relationship between PAHs exposure and KS is especially significant.
Collapse
|
14
|
Stoddard EG, Nag S, Martin J, Tyrrell KJ, Gibbins T, Anderson KA, Shukla AK, Corley R, Wright AT, Smith JN. Exposure to an Environmental Mixture of Polycyclic Aromatic Hydrocarbons Induces Hepatic Cytochrome P450 Enzymes in Mice. Chem Res Toxicol 2021; 34:2145-2156. [PMID: 34472326 DOI: 10.1021/acs.chemrestox.1c00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 enzymes (CYPs) play an important role in bioactivating or detoxifying polycyclic aromatic hydrocarbons (PAHs), common environmental contaminants. While it is widely accepted that exposure to PAHs induces CYPs, effectively increasing rates of xenobiotic metabolism, dose- and time-response patterns of CYP induction are not well-known. In order to better understand dose- and time-response relationships of individual CYPs following induction, we exposed B6129SF1/J mice to single or repeated doses (2-180 μmol/kg/d) of benzo[a]pyrene (BaP) or Supermix-10, a mixture of the top 10 most abundant PAHs found at the Portland Harbor Superfund Site. In hepatic microsomes from exposed mice, we measured amounts of active CYPs using activity-based protein profiling and total CYP expression using global proteomics. We observed rapid Cyp1a1 induction after 6 h at the lowest PAH exposures and broad induction of many CYPs after 3 daily PAH doses at 72 h following the first dose. Using samples displaying Cyp1a1 induction, we observed significantly higher metabolic affinity for BaP metabolism (Km reduced 3-fold), 3-fold higher intrinsic clearance, but no changes to the Vmax. Mice dosed with the highest PAH exposures exhibited 1.7-5-fold higher intrinsic clearance rates for BaP compared to controls and higher Vmax values indicating greater amounts of enzymes capable of metabolizing BaP. This study demonstrates exposure to PAHs found at superfund sites induces enzymes in dose- and time-dependent patterns in mice. Accounting for specific changes in enzyme profiles, relative rates of PAH bioactivation and detoxification, and resulting risk will help translate internal dosimetry of animal models to humans and improve risk assessments of PAHs at superfund sites.
Collapse
Affiliation(s)
- Ethan G Stoddard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Subhasree Nag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jude Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kimberly J Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Teresa Gibbins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard Corley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
15
|
Tao LP, Li X, Zhao MZ, Shi JR, Ji SQ, Jiang WY, Liang QJ, Lei YH, Zhou YY, Cheng R, Shi Z, Deng W, Zhu J, Zhang SY. Chrysene, a four-ring polycyclic aromatic hydrocarbon, induces hepatotoxicity in mice by activation of the aryl hydrocarbon receptor (AhR). CHEMOSPHERE 2021; 276:130108. [PMID: 33711793 DOI: 10.1016/j.chemosphere.2021.130108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic global environmental pollutants and cause harmful effects on human health. Here, we evaluated adverse effects of chrysene, which is a four-ring PAH and an important member of 16 priority PAHs, on the liver. Chrysene was detected in some common raw and cooked Chinese food samples. Hepatotoxicity including increased relative liver weight, hepatocyte swelling and degeneration, and elevated serum alanine aminotransferase (ALT) levels were observed in chrysene-exposed C57BL/6 mice. Glutamine treatment effectively ameliorated chrysene-induced mice liver injury by decreasing serum ALT levels. Chrysene induced mice hepatic glutathione depletion and oxidative DNA damage with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Hepatic expression levels of the aryl hydrocarbon receptor (AhR), AhR-related target genes including CYP1A1, CYP1A2 and CYP1B1, and AhR nuclear translocator (ARNT) were significantly increased in chrysene-exposed C57BL/6 mice. Chrysene induced mice hepatic mRNA levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-mediated phase II detoxifying and antioxidant enzymes including NQO1, UGT1A1, UGT1A6, SULT1A1, GSTm1, GSTm3, Catalase (CAT), GPx1, and SOD2. We found that chrysene had toxic effects including increased relative liver weight and elevated serum ALT levels on AhR+/+ mice but not AhR-/- mice. Chrysene significantly induced hepatic mRNA levels of CYP1A1 and CYP1A2 in AhR+/+ mice but not AhR-/- mice. To our knowledge, this study is the first to demonstrate that hepatotoxicity causes by chrysene is dependent on AhR, and Nrf2 plays an important regulation role in protection against oxidative liver injury induced by chrysene.
Collapse
Affiliation(s)
- Li-Ping Tao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Li
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ming-Zhu Zhao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Ru Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Si-Qi Ji
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Yuan Jiang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiu-Ju Liang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu-Hang Lei
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi-Yao Zhou
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rong Cheng
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhe Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhai Deng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiayin Zhu
- Laboratory of Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
16
|
Goedtke L, John A, Lampen A, Seidel A, Braeuning A, Hessel-Pras S. Mixture effects of food-relevant polycyclic aromatic hydrocarbons on the activation of nuclear receptors and gene expression, benzo[a]pyrene metabolite profile and DNA damage in HepaRG cells. Food Chem Toxicol 2021; 147:111884. [DOI: 10.1016/j.fct.2020.111884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023]
|
17
|
Goedtke L, Sprenger H, Hofmann U, Schmidt FF, Hammer HS, Zanger UM, Poetz O, Seidel A, Braeuning A, Hessel-Pras S. Polycyclic Aromatic Hydrocarbons Activate the Aryl Hydrocarbon Receptor and the Constitutive Androstane Receptor to Regulate Xenobiotic Metabolism in Human Liver Cells. Int J Mol Sci 2020; 22:ijms22010372. [PMID: 33396476 PMCID: PMC7796163 DOI: 10.3390/ijms22010372] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants produced by incomplete combustion of organic matter. They induce their own metabolism by upregulating xenobiotic-metabolizing enzymes such as cytochrome P450 monooxygenase 1A1 (CYP1A1) by activating the aryl hydrocarbon receptor (AHR). However, previous studies showed that individual PAHs may also interact with the constitutive androstane receptor (CAR). Here, we studied ten PAHs, different in carcinogenicity classification, for their potential to activate AHR- and CAR-dependent luciferase reporter genes in human liver cells. The majority of investigated PAHs activated AHR, while non-carcinogenic PAHs tended to activate CAR. We further characterized gene expression, protein abundancies and activities of the AHR targets CYP1A1 and 1A2, and the CAR target CYP2B6 in human HepaRG hepatoma cells. Enzyme induction patterns strongly resembled the profiles obtained at the receptor level, with AHR-activating PAHs inducing CYP1A1/1A2 and CAR-activating PAHs inducing CYP2B6. In summary, this study provides evidence that beside well-known activation of AHR, some PAHs also activate CAR, followed by subsequent expression of respective target genes. Furthermore, we found that an increased PAH ring number is associated with AHR activation as well as the induction of DNA double-strand breaks, whereas smaller PAHs activated CAR but showed no DNA-damaging potential.
Collapse
Affiliation(s)
- Lisa Goedtke
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Heike Sprenger
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany; (U.H.); (U.M.Z.)
| | - Felix F. Schmidt
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Ulrich M. Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany; (U.H.); (U.M.Z.)
| | - Oliver Poetz
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer Foundation, Lurup 4, 22927 Grosshansdorf, Germany;
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Stefanie Hessel-Pras
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
- Correspondence: ; Tel.: +49-30-18412-25203
| |
Collapse
|
18
|
van Meteren N, Lagadic-Gossmann D, Podechard N, Gobart D, Gallais I, Chevanne M, Collin A, Burel A, Dupont A, Rault L, Chevance S, Gauffre F, Le Ferrec E, Sergent O. Extracellular vesicles released by polycyclic aromatic hydrocarbons-treated hepatocytes trigger oxidative stress in recipient hepatocytes by delivering iron. Free Radic Biol Med 2020; 160:246-262. [PMID: 32791186 DOI: 10.1016/j.freeradbiomed.2020.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
A growing body of evidences indicate the major role of extracellular vesicles (EVs) as players of cell communication in the pathogenesis of liver diseases. EVs are membrane-enclosed vesicles released by cells into the extracellular environment. Oxidative stress is also a key component of liver disease pathogenesis, but no role for hepatocyte-derived EVs has yet been described in the development of this process. Recently, some polycyclic aromatic hydrocarbons (PAHs), widespread environmental contaminants, were demonstrated to induce EV release from hepatocytes. They are also well-known to trigger oxidative stress leading to cell death. Therefore, the aim of this work was to investigate the involvement of EVs derived from PAHs-treated hepatocytes (PAH-EVs) in possible oxidative damages of healthy recipient hepatocytes, using both WIF-B9 and primary rat hepatocytes. We first showed that the release of EVs from PAHs -treated hepatocytes depended on oxidative stress. PAH-EVs were enriched in proteins related to oxidative stress such as NADPH oxidase and ferritin. They were also demonstrated to contain more iron. PAH-EVs could then induce oxidative stress in recipient hepatocytes, thereby leading to apoptosis. Mitochondria and lysosomes of recipient hepatocytes exhibited significant structural alterations. All those damages were dependent on internalization of EVs that reached lysosomes with their cargoes. Lysosomes thus appeared as critical organelles for EVs to induce apoptosis. In addition, pro-oxidant components of PAH-EVs, e.g. NADPH oxidase and iron, were revealed to be necessary for this cell death.
Collapse
Affiliation(s)
- Nettie van Meteren
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Dimitri Gobart
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Aurore Collin
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit, UMS 3480, US_S 018, F-35000, Rennes, France
| | - Aurélien Dupont
- Univ Rennes, Biosit, UMS 3480, US_S 018, F-35000, Rennes, France
| | | | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
19
|
Oliviero F, Lukowicz C, Boussadia B, Forner-Piquer I, Pascussi JM, Marchi N, Mselli-Lakhal L. Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells 2020; 9:E2426. [PMID: 33171992 PMCID: PMC7694609 DOI: 10.3390/cells9112426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Badreddine Boussadia
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Jean-Marc Pascussi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| |
Collapse
|
20
|
Nam YJ, Kim SH. Association of Urinary Polycyclic Aromatic Hydrocarbons and Diabetes in Korean Adults: Data from the Korean National Environmental Health Survey Cycle 2 (2012-2014). Diabetes Metab Syndr Obes 2020; 13:3993-4003. [PMID: 33149638 PMCID: PMC7602886 DOI: 10.2147/dmso.s276658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023] Open
Abstract
PURPOSE To investigate the associations between the urinary levels of polycyclic aromatic hydrocarbons (PAHs) and diabetes mellitus in Korean adults. MATERIALS AND METHODS We examined the data of 6478 participants aged ≥19 years from the Korean National Environmental Health Survey (KoNEHS) cycle 2 (2012-2014). The urinary levels of 1-hydroxypyrene (1-OHP), 2-naphthol (2-NAP), 1-hydroxyphenathrene (1-OHPhe), and 2-hydroxyfluorene (2-OHFlu) were measured by gas chromatography-mass spectrometry. Diabetes mellitus was defined as a self-report of physician-diagnosed diabetes mellitus or the use of oral hypoglycemics or insulin. Analyses were adjusted for sex, age, body mass index, household income, alcohol consumption, physical activity, urinary creatinine and cotinine, menopausal status, and quartiles of all other PAHs. RESULTS The prevalence of diabetes was 6.5% in the study population. In men, the geometric means of the 2-NAP and 2-OHFlu levels were higher in participants with diabetes mellitus than in those without diabetes mellitus [4.11 vs 3.26 μg/L (P <0.05) and 0.45 vs 0.40 μg/L (P <0.05), respectively]. In women, the geometric mean of 2-NAP levels was also higher in participants with diabetes mellitus than in those without diabetes mellitus (1.81 vs 0.56 μg/L, P <0.05), but there were no significant differences in geometric means for other PAHs. A higher odds ratio (OR) of diabetes was found in participants with the highest quartiles of urinary 2-NAP [OR 1.83, 95% confidence interval (CI) 1.29-2.60] and 2-OHFlu (OR 1.81, 95% CI 1.10-2.98) than in those with the lowest quartiles. CONCLUSION The urinary 2-NAP and 2-OHFlu levels were associated with diabetes mellitus in Korean adults. Further studies are needed to determine a potential causal relationship between PAH exposure and diabetes mellitus and its underlying mechanism.
Collapse
Affiliation(s)
- Yon Ju Nam
- College of Health Science, Korea University, Seoul02841, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul01757, Korea
- Correspondence: Shin-Hye KimDepartment of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, 1342 Dongil-Ro, Nowon-Gu, Seoul01757, KoreaTel +82-2-950-4812Fax +82-2-950-1246 Email
| |
Collapse
|
21
|
Li R, Wang X, Wang B, Li J, Song Y, Luo B, Chen Y, Zhang C, Wang H, Xu D. Gestational 1-nitropyrene exposure causes gender-specific impairments on postnatal growth and neurobehavioral development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:123-129. [PMID: 31082575 DOI: 10.1016/j.ecoenv.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
1-Nitropyrene (1-NP), a typical nitrated polycyclic aromatic hydrocarbon, is widely distributed in the environment and is well known for its mutagenic effects. Recently, we found that gestational 1-NP exposure induced fetal growth restriction. In this study, we further evaluated the effect of in utero 1-NP exposure on postnatal growth and neurobehavioral development in the offspring. Pregnant mice were administered with 1-NP (10 μg/kg) by gavage daily in late pregnancy (GD13-GD17). The body weight of each offspring was measured from PND1 to 12 weeks postpartum. Exploration and anxiety related activities were detected by open-field test at 6 weeks postpartum. Learning and memory were assessed by Morris Water Maze at 7 weeks postpartum. And depressive-like behaviors were estimated by sucrose preference test at 10 weeks postpartum. Significant body weight reduction was observed in 1-NP-exposed female offspring at PND1, PND14 and PND21 while the lower body weight was only found at PND1 for 1-NP-exposed male offspring. Exploration and anxiety activities at puberty, and depressive-like behavior in adulthood were not disturbed in offspring prenatally exposed to 1-NP. Interestingly, spatial learning and memory ability at puberty was impaired in females but not in males prenatally exposed to 1-NP. These findings suggest that gestational 1-NP exposure delays postnatal growth and impaired neurobehavioral development in a gender-dependent manner.
Collapse
Affiliation(s)
- Ran Li
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Basic Medical College, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xilu Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Jian Li
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yaping Song
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Biao Luo
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yuanhua Chen
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
22
|
Yang H, Shi Z, Wang XX, Cheng R, Lu M, Zhu J, Deng W, Zeng Y, Zhao LY, Zhang SY. Phenanthrene, but not its isomer anthracene, effectively activates both human and mouse nuclear receptor constitutive androstane receptor (CAR) and induces hepatotoxicity in mice. Toxicol Appl Pharmacol 2019; 378:114618. [DOI: 10.1016/j.taap.2019.114618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
|
23
|
van Meteren N, Lagadic-Gossmann D, Chevanne M, Gallais I, Gobart D, Burel A, Bucher S, Grova N, Fromenty B, Appenzeller BMR, Chevance S, Gauffre F, Le Ferrec E, Sergent O. Polycyclic aromatic hydrocarbons can trigger hepatocyte release of extracellular vesicles by various mechanisms of action depending on their affinity for the aryl hydrocarbon receptor. Toxicol Sci 2019; 171:443-462. [PMID: 31368503 DOI: 10.1093/toxsci/kfz157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. EVs also appear to be potential actors of drug-induced liver injury, but nothing is known concerning environmental pollutants. We aimed to study the impact of polycyclic aromatic hydrocarbons (PAHs), major contaminants, on hepatocyte-derived EV production, with a special focus on hepatocyte death. Three PAHs were selected, based on their presence in food and their affinity for the aryl hydrocarbon receptor (AhR): benzo(a)pyrene (BP), dibenzo(a,h)anthracene (DBA), and pyrene (PYR). Treatment of primary rat and WIF-B9 hepatocytes by all three PAHs increased the release of EVs, mainly comprised of exosomes, in parallel with modifying exosome protein marker expression and inducing apoptosis. Moreover, PAH treatment of rodents for three months also led to increased EV levels in plasma. The EV release involved CYP metabolism and the activation of the transcription factor, the AhR, for BP and DBA and another transcription factor, the constitutive androstane receptor (CAR), for PYR. Furthermore, all PAHs increased cholesterol levels in EVs but only BP and DBA were able to reduce the cholesterol content of total cell membranes. All cholesterol changes very likely participated in the increase in EV release and cell death. Finally, we studied changes in cell membrane fluidity caused by BP and DBA due to cholesterol depletion. Our data showed increased cell membrane fluidity, which contributed to hepatocyte EV release and cell death.
Collapse
Affiliation(s)
- Nettie van Meteren
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Dimitri Gobart
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Agnès Burel
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000 Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S1241, UMR_A 1341, F-35000 Rennes, France
| | - Nathalie Grova
- Department of Infection and Immunity, Luxembourg Institute of Health, Immune Endocrine Epigenetics Research Group, L-4354 Esch-sur-Alzette, Luxembourg
- Calbinotox, Faculty of Science and Technology, Lorraine University, F-54506 Vandoeuvre-les-Nancy, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S1241, UMR_A 1341, F-35000 Rennes, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des sciences chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des sciences chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
24
|
Zhu J, Zhao LY, Wang XX, Shi Z, Zhang Y, Wu G, Zhang SY. Identification of hepatotoxicity and renal dysfunction of pyrene in adult male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1304-1311. [PMID: 30240548 DOI: 10.1002/tox.22638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants primarily formed from the incomplete combustion of carbonaceous materials, and have adverse effects on human health. In this study, we investigated whether pyrene, a PAH consisting of 4 fused benzene rings, has adverse effects on rat. Adult male Sprague-Dawly rats were treated daily by oral gavage with vehicle (corn oil) or pyrene at doses of 375, 750, 1500, or 2200 mg/kg/day for 4 days. The results showed that pyrene caused hepatotoxicity in rats. When compared with the control group, relative liver weights, plasma alanine aminotransferase, and direct bilirubin levels significantly increased after pyrene exposure. Hepatocyte swelling and degeneration and decreased hepatic total glutathione (GSH) levels were also found in pyrene-exposed rats. We further observed that mRNA levels of several hepatic metabolizing enzymes regulated by constitutive androstane receptor (CAR) such as CYP2B1 and CYP2B2 significantly increased in pyrene-exposed rats. These results suggest that decreased GSH levels, elevated hepatic metabolizing enzyme gene expression, and CAR activation are important contributors for pyrene-induced hepatotoxicity in rats. Additionally, we found pyrene significantly induced plasma inflammatory indices including white blood cell and lymphocyte counts. We also observed that pyrene exposure increased relative weight of kidneys and disrupted kidney function with elevated urea and creatinine levels in rats.
Collapse
Affiliation(s)
- Jiayin Zhu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Li-Yang Zhao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Xiao-Xiao Wang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Zhe Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Yang Zhang
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Gang Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Shu-Yun Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, People's Republic of China
| |
Collapse
|
25
|
Dietrich K, Baumgart J, Eshkind L, Reuter L, Gödtel-Armbrust U, Butt E, Musheev M, Marini F, More P, Grosser T, Niehrs C, Wojnowski L, Mathäs M. Health-Relevant Phenotypes in the Offspring of Mice Given CAR Activators Prior to Pregnancy. Drug Metab Dispos 2018; 46:1827-1835. [PMID: 30154105 DOI: 10.1124/dmd.118.082925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatic induction in response to drugs and environmental chemicals affects drug therapies and energy metabolism. We investigated whether the induction is transmitted to the offspring. We injected 3-day- and 6-week-old F0 female mice with TCPOBOP, an activator of the nuclear receptor constitutive androstane receptor (CAR, NR1I3), and mated them 1-6 weeks afterward. We detected in the offspring long-lasting alterations of CAR-mediated drug disposition, energy metabolism, and lipid profile. The transmission to the first filial generation (F1) was mediated by TCPOBOP transfer from the F0 adipose tissue via milk, as revealed by embryo transfer, crossfostering experiments, and liquid chromatography-mass spectrometry analyses. The important environmental pollutant PCB153 activated CAR in the F1 generation in a manner similar to TCPOBOP. Our findings indicate that chemicals accumulating and persisting in adipose tissue may exert liver-mediated, health-relevant effects on F1 offspring simply via physical transmission in milk. Such effects may occur even if treatment has been terminated far ahead of conception. This should be considered in assessing developmental toxicity and in the long-term follow-up of offspring of mothers exposed to both approved and investigational drugs, and to chemicals with known or suspected accumulation in adipose tissue.
Collapse
Affiliation(s)
- Karin Dietrich
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Jan Baumgart
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Leonid Eshkind
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Lea Reuter
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Ute Gödtel-Armbrust
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Elke Butt
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Michael Musheev
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Federico Marini
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Piyush More
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Tanja Grosser
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Christof Niehrs
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Leszek Wojnowski
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Marianne Mathäs
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| |
Collapse
|
26
|
Poursafa P, Dadvand P, Amin MM, Hajizadeh Y, Ebrahimpour K, Mansourian M, Pourzamani H, Sunyer J, Kelishadi R. Association of polycyclic aromatic hydrocarbons with cardiometabolic risk factors and obesity in children. ENVIRONMENT INTERNATIONAL 2018; 118:203-210. [PMID: 29886236 DOI: 10.1016/j.envint.2018.05.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 05/23/2023]
Abstract
A limited body of evidence exists on the association of exposure to polycyclic aromatic hydrocarbons (PAHs) with cardiometabolic risk factors and obesity in children. No study has evaluated these associations in subgroups of children with and without excess weight, and those with and without cardiometabolic risk factors. We aimed to investigate the association between PAH exposure and cardiometabolic risk factors in children independent of their weight status. The secondary aim was to evaluate the obesogen properties of PAHs in children independent of their cardiometabolic risk factors. This study was based on a representative sample of 186 children (aged 6-18 years) living in Isfahan, Iran (2014-2016). We enrolled four groups of participants with and without excess weight and with and without cardiometabolic risk factor. Urinary levels of monohydroxy PAHs (OH-PAHs) were measured twice, six months apart. Logistic regression models were developed to estimate the associations of tertiles of urinary OH-PAH concentrations with cardiometabolic risk factors and excess weight, adjusted for the relevant covariates. The findings in all participants combined showed that increased risk of cardiometabolic risk factors and excess weight was associated with exposure to most of evaluated PAHs. Exposure to 1-hydroxypyrene was associated with higher risk of cardiometabolic risk factors in participants with excess weight. Exposure to 2-Naphtol was also associated with higher risk of cardiometabolic risk factors in both groups, but the associations were not significant (p < 0.1). For participants without cardiometabolic risk factors, exposure to 2-naphtol, 9-phenanthrol, and ∑ OH-PAH was associated with increased risk of obesity. For participants with cardiometabolic risk factors, we observed similar pattern of associations for 2-naphtol and ∑ OH-PAH, but the associations were not statistically significant (p < 0.1). We found that exposure to PAHs could possibly explain, in part, the cardiometabolic risk factors in children with excess weight as well as obesity in children with normal cardiometabolic profile.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaghoub Hajizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
27
|
Zahn E, Wolfrum J, Knebel C, Heise T, Weiß F, Poetz O, Marx-Stoelting P, Rieke S. Mixture effects of two plant protection products in liver cell lines. Food Chem Toxicol 2018; 112:299-309. [DOI: 10.1016/j.fct.2017.12.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/22/2023]
|
28
|
Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression. Biochem Pharmacol 2017; 142:194-203. [PMID: 28756207 DOI: 10.1016/j.bcp.2017.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Obesity has become a significant global health problem, and is a high risk factor for a variety of metabolic diseases. Fibroblast growth factor (FGF) 15 plays an important role in the regulation of metabolism. Xenobiotic-sensing nuclear receptors pregnane X receptor (PXR/NR1I2) and constitutive androstane receptor (CAR/NR1I3) play important roles in xenobiotic detoxification and metabolism, and also are involved in the regulation of energy metabolism. However, the effects that PXR and CAR have on the regulation of FGF15 are unknown. Here, we found that body weight, hepatic triglyceride levels, liver steatosis, and hepatic mRNA expression levels of cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1), the key enzymes in the bile acid classical synthesis pathway, were significantly decreased in high fat diet (HFD)-fed PXR knockout (KO) mice compared to HFD-fed wild-type mice. Interestingly, intestinal FGF15 expression levels were significantly elevated in HFD-fed PXR KO mice compared with HFD-fed wild-type mice. Additionally, serum total bile acid levels were significantly decreased in PXR KO mice than those in wild-type mice when fed a control diet or HFD. Total lipids in feces were significantly increased in HFD-fed PXR KO mice compared to HFD-fed wild-type mice. However, these alterations were not found in HFD-fed CAR KO mice. These results indicate that PXR deficiency improves HFD-induced obesity via induction of FGF15 expression, resulting in suppression of bile acid synthesis and reduction of lipid absorption, hepatic lipid accumulation and liver triglyceride levels. Our findings suggest that PXR may negatively regulate FGF15 expression and represent a potential therapeutic target for the treatment for metabolic disorders such as obesity.
Collapse
|
29
|
Wang X, Gao X, He B, Zhu J, Lou H, Hu Q, Jin Y, Fu Z. Cis-bifenthrin induces immunotoxicity in adolescent male C57BL/6 mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1849-1856. [PMID: 28251819 DOI: 10.1002/tox.22407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
Bifenthrin (BF) is an important synthetic pyrethroid. Previous studies have demonstrated that cis-BF exhibits toxic effects on development, the neurological, reproductive and endocrine system. In this study, we evaluated the immunotoxicity caused by cis-BF in adolescent male C57BL/6 mice. Mice were exposed orally to 0, 5, 10, and 20 mg/kg/d for 3 weeks. The results showed that body weight, spleen weight, and splenic cellularity decreased in mice exposed to 20 mg/kg/d cis-BF. Additionally, we found that the mRNA levels of the pro-inflammatory factors IL-1β, IL-6, CXCL-1, and TNF-α, in peritoneal macrophages, the spleen, and the thymus were inhibited in the cis-BF-treated groups. Moreover, MTT assays demonstrated that cis-BF inhibited splenocyte proliferation stimulated by LPS or Con A, as well as the secretion of IFN-γ on Con A stimulation. Collectively, the results of this study suggest that exposure to cis-BF has the potential to induce immunotoxicity in adolescent male C57BL/6 mice.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingli Gao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiawei Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huihui Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
30
|
Cheng SL, Bammler TK, Cui JY. RNA Sequencing Reveals Age and Species Differences of Constitutive Androstane Receptor-Targeted Drug-Processing Genes in the Liver. Drug Metab Dispos 2017; 45:867-882. [PMID: 28232382 PMCID: PMC5478913 DOI: 10.1124/dmd.117.075135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
The constitutive androstane receptor (CAR/Nr1i3) is an important xenobiotic-sensing nuclear receptor that is highly expressed in the liver and is well known to have species differences. During development, age-specific activation of CAR may lead to modified pharmacokinetics and toxicokinetics of drugs and environmental chemicals, leading to higher risks for adverse drug reactions in newborns and children. The goal of this study was to systematically investigate the age- and species-specific regulation of various drug-processing genes (DPGs) after neonatal or adult CAR activation in the livers of wild-type, CAR-null, and humanized CAR transgenic mice. At either 5 or 60 days of age, the three genotypes of mice were administered a species-appropriate CAR ligand or vehicle once daily for 4 days (i.p.). The majority of DPGs were differentially regulated by age and/or CAR activation. Thirty-six DPGs were commonly upregulated by CAR activation regardless of age or species of CAR. Although the cumulative mRNAs of uptake transporters were not readily altered by CAR, the cumulative phase I and phase II enzymes as well as efflux transporters were all increased after CAR activation in both species. In general, mouse CAR activation produced comparable or even greater fold increases of many DPGs in newborns than in adults; conversely, humanized CAR activation produced weaker induction in newborns than in adults. Western blotting and enzyme activity assays confirmed the age and species specificities of selected CAR-targeted DPGs. In conclusion, this study systematically compared the effect of age and species of CAR proteins on the regulation of DPGs in the liver and demonstrated that the regulation of xenobiotic biotransformation by CAR is profoundly modified by age and species.
Collapse
Affiliation(s)
- Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
31
|
A Novel Protocol to Monitor Trace Levels of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Using Fabric Phase Sorptive Extraction Followed by High Performance Liquid Chromatography-Fluorescence Detection. SEPARATIONS 2017. [DOI: 10.3390/separations4020022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
32
|
Lee K, You H, Choi J, No KT. Development of pharmacophore-based classification model for activators of constitutive androstane receptor. Drug Metab Pharmacokinet 2016; 32:172-178. [PMID: 28366619 DOI: 10.1016/j.dmpk.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Constitutive androstane receptor (CAR) is predominantly expressed in the liver and is important for regulating drug metabolism and transport. Despite its biological importance, there have been few attempts to develop in silico models to predict the activity of CAR modulated by chemical compounds. The number of in silico studies of CAR may be limited because of CAR's constitutive activity under normal conditions, which makes it difficult to elucidate the key structural features of the interaction between CAR and its ligands. In this study, to address these limitations, we introduced 3D pharmacophore-based descriptors with an integrated ligand and structure-based pharmacophore features, which represent the receptor-ligand interaction. Machine learning methods (support vector machine and artificial neural network) were applied to develop an in silico model with the descriptors containing significant information regarding the ligand binding positions. The best classification model built with a solvent accessibility volume-based filter and the support vector machine showed good predictabilities of 87%, and 85.4% for the training set and validation set, respectively. This demonstrates that our model can be used to accurately predict CAR activators and offers structural information regarding ligand/protein interactions.
Collapse
Affiliation(s)
- Kyungro Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hwan You
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jiwon Choi
- Bioinformatics & Molecular Design Research Center, Yonsei University, Seoul 03722, South Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea; Bioinformatics & Molecular Design Research Center, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
33
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
34
|
Kuwata K, Inoue K, Ichimura R, Takahashi M, Kodama Y, Shibutani M, Yoshida M. Involvement of Mouse Constitutive Androstane Receptor in Acifluorfen-Induced Liver Injury and Subsequent Tumor Development. Toxicol Sci 2016; 151:271-85. [DOI: 10.1093/toxsci/kfw040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Li D, Mackowiak B, Brayman TG, Mitchell M, Zhang L, Huang SM, Wang H. Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells. Biochem Pharmacol 2015; 98:190-202. [PMID: 26275810 DOI: 10.1016/j.bcp.2015.08.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
The constitutive androstane receptor (CAR) modulates the transcription of numerous genes involving drug metabolism, energy homeostasis, and cell proliferation. Most functions of CAR however were defined from animal studies. Given the known species difference of CAR and the significant cross-talk between CAR and the pregnane X receptor (PXR), it is extremely difficult to decipher the exact role of human CAR (hCAR) in gene regulation, relying predominantly on pharmacological manipulations. Here, utilizing a newly generated hCAR-knockout (KO) HepaRG cell line, we carried out RNA-seq analysis of the global transcriptomes in wild-type (WT) and hCAR-KO HepaRG cells treated with CITCO, a selective hCAR agonist, phenobarbital (PB), a dual activator of hCAR and hPXR, or vehicle control. Real-time PCR assays in separate experiments were used to validate RNA-seq findings. Our results indicate that genes encoding drug-metabolizing enzymes are among the main clusters altered by both CITCO and PB. Specifically, CITCO significantly changed the expression of 135 genes in an hCAR-dependent manner, while PB altered the expression of 227 genes in WT cells of which 94 were simultaneously modulated in both cell lines reflecting dual effects of PB on hCAR/PXR. Notably, we found that many genes promoting cell proliferation and tumorigenesis were up-regulated in hCAR-KO cells, suggesting that hCAR may play an important role in cell growth that differs from mouse CAR. Together, our results reveal both novel and known targets of hCAR and support the role of hCAR in maintaining the homeostasis of metabolism and cell proliferation in the liver.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Timothy G Brayman
- Sigma Life Sciences, 2909 Laclede Ave, St. Louis, MO 63103, United States
| | - Michael Mitchell
- Sigma Life Sciences, 2909 Laclede Ave, St. Louis, MO 63103, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20901, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20901, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|