1
|
Singh H, Kunkle BF, Troia AR, Suvarnakar AM, Waterman AC, Khin Y, Korkmaz SY, O'Connor CE, Lewis JH. Drug Induced Liver Injury: Highlights and Controversies in the 2023 Literature. Drug Saf 2025; 48:455-488. [PMID: 39921708 DOI: 10.1007/s40264-025-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Drug-induced liver injury (DILI) remains an active field of clinical research and investigation with more than 4700 publications appearing in 2023 relating to hepatotoxicity of all causes and injury patterns. As in years past, we have attempted to identify and summarize highlights and controversies from the past year's literature. Several new and novel therapeutic agents were approved by the US Food and Drug Administration (FDA) in 2023, a number of which were associated with significant hepatotoxicity. Updates in the diagnosis and management of DILI using causality scores as well as newer artificial intelligence-based methods were published. Details of newly established hepatotoxins as well as updated information on previously documented hepatotoxic drugs is presented. Significant updates in treatment of DILI were also included as well as reports related to global DILI registries.
Collapse
Affiliation(s)
- Harjit Singh
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.
| | - Bryce F Kunkle
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Angela R Troia
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | | | - Ade C Waterman
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Yadana Khin
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Serena Y Korkmaz
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Corinne E O'Connor
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
2
|
Tiley JB, Beaudoin JJ, Derebail VK, Murphy WA, Park CC, Veeder JA, Tran L, Beers JL, Jia W, Stewart PW, Brouwer KL. Altered bile acid and coproporphyrin-I disposition in patients with autosomal dominant polycystic kidney disease. Br J Clin Pharmacol 2025; 91:353-364. [PMID: 39317666 PMCID: PMC12001807 DOI: 10.1111/bcp.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
AIMS Serum, liver and urinary bile acids are increased, and hepatic transport protein levels are decreased in a non-clinical model of polycystic kidney disease. Similar changes in patients with autosomal dominant polycystic kidney disease (ADPKD) may predispose them to drug-induced liver injury (DILI) and hepatic drug-drug interactions (DDIs). Systemic coproporphyrin-I (CP-I), an endogenous biomarker for hepatic OATP1B function and MRP2 substrate, is used to evaluate OATP1B-mediated DDI risk in humans. In this clinical observational cohort-comparison study, bile acid profiles and CP-I concentrations in healthy volunteers and patients with ADPKD were compared. METHODS Serum and urine samples from healthy volunteers (n = 16) and patients with ADPKD (n = 8) were collected. Serum bile acids, and serum and urine CP-I concentrations, were quantified by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS Patients with ADPKD exhibited increased serum concentrations of total (1.3-fold) and taurine-conjugated (2.8-fold) bile acids compared to healthy volunteers. Specifically, serum concentrations of six bile acids known to be more hydrophobic/hepatotoxic (glycochenodeoxycholate, taurochenodeoxycholate, taurodeoxycholate, lithocholate, glycolithocholate and taurolithocholate) were increased (1.5-, 2.9-, 2.8-, 1.6-, 1.7- and 2.7-fold, respectively) in patients with ADPKD. Furthermore, serum CP-I concentrations were elevated and the renal clearance of CP-I was reduced in patients with ADPKD compared to healthy volunteers. CONCLUSIONS Increased exposure to bile acids may increase susceptibility to DILI in some patients with ADPKD. Furthermore, the observed increase in serum CP-I concentrations could be attributed, in part, to impaired OATP1B function in patients with ADPKD, which could increase the risk of DDIs involving OATP1B substrates compared to healthy volunteers.
Collapse
Affiliation(s)
- Jacqueline B. Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James J. Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vimal K. Derebail
- UNC Kidney Center, Division of Nephrology and Hypertension, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christine C. Park
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin A. Veeder
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lana Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Paul W. Stewart
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Cao P, Wang Q, Wang Y, Qiao Q, Yan L. Safety assessment of tolvaptan: real-world adverse event analysis using the FAERS database. Front Pharmacol 2025; 15:1509310. [PMID: 39850569 PMCID: PMC11754202 DOI: 10.3389/fphar.2024.1509310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This study aims to analyze the adverse drug events (ADEs) associated with tolvaptan in the Food and Drug Administration Adverse Event Reporting System database from the fourth quarter of 2009 to the second quarter of 2024. Methods After standardizing the data, various signal detection techniques, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network, and Multi-Item Gamma Poisson Shrinker, were employed for analysis. Results Among the 7,486 ADE reports where tolvaptan was the primary suspected drug, a total of 196 preferred terms were identified, spanning 24 different system organ classes. Specifically, hepatobiliary disorders, renal and urinary disorders, and metabolic and nutritional disorders were found to be characteristic adverse reactions associated with tolvaptan. Additionally, uncommon but notable ADE signals were observed, such as renal cyst rupture, renal cyst infection, polycystic liver disease, and renal cyst hemorrhage. These several ADEs have not been referred to in the previous literature. Notably, strong ADE signals were detected for decreased urine osmolality [n = 5, ROR 149.74, PRR 149.7, IC (Information Component) 7.13, EBGM (Empirical Bayes Geometric Mean) 139.79], osmotic demyelination syndrome (n = 38, ROR 128.47, PRR 128.25, IC 6.92, EBGM 120.91), and pulmonary-related tumors such as bronchial metastatic carcinoma, bronchial carcinoma, metastatic small cell lung carcinoma, and small cell lung carcinoma. In the concomitant medication analysis of 7,486 suspected adverse drug reaction reports related to tolvaptan, the top three drugs most commonly used in combination with tolvaptan were furosemide, spironolactone, and amlodipine. Conclusion While tolvaptan provides therapeutic benefits, it poses a risk of significant adverse reactions. Clinicians should closely monitor the occurrence of events related to hepatobiliary disorders, renal and urinary disorders, metabolic and nutritional disorders, as well as benign, malignant, and indeterminate tumors during its clinical use.
Collapse
Affiliation(s)
- Peiyang Cao
- Department of Nephrology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qian Wang
- Department of Nephrology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Nephrology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing Qiao
- Department of Nephrology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liyuan Yan
- Department of Cardiology, Affiliated Changshu Hospital of Nantong University, Changshu, China
| |
Collapse
|
4
|
Hammond S, Meng X, Barber J, Mosedale M, Chadwick A, Watkins PB, Naisbitt DJ. Tolvaptan safety in autosomal-dominant polycystic kidney disease; a focus on idiosyncratic drug-induced liver injury liabilities. Toxicol Sci 2025; 203:11-27. [PMID: 39495155 DOI: 10.1093/toxsci/kfae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Tolvaptan is a vasopressin V2 receptor antagonist which has proven to be an effective and mostly well-tolerated agent for the treatment of autosomal-dominant polycystic kidney disease. However, its administration is associated with rare but serious idiosyncratic liver injury, which has warranted a black box warning on the drug labels and frequent monitoring of liver blood tests in the clinic. This review outlines mechanistic investigations that have been conducted to date and constructs a working narrative as an explanation for the idiosyncratic drug-induced liver injury (IDILI) events that have occurred thus far. Potential risk factors which may contribute to individual susceptibility to DILI reactions are addressed, and key areas for future investigative/clinical development are highlighted.
Collapse
Affiliation(s)
- Sean Hammond
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
- ApconiX, Alderley Edge, SK10 4TG, United Kingdom
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Jane Barber
- ApconiX, Alderley Edge, SK10 4TG, United Kingdom
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States
| | - Amy Chadwick
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, United States
| | - Dean J Naisbitt
- Department of Pharmacology and Therapeutics, Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
5
|
Uno T, Hosomi K, Yokoyama S. Evaluation of tolvaptan-associated hepatic disorder using different national pharmacovigilance databases. Sci Rep 2024; 14:25943. [PMID: 39472632 PMCID: PMC11522566 DOI: 10.1038/s41598-024-77052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Tolvaptan-associated hepatic disorder is a rare, but lethal adverse event; however, the precise risk and time of onset remain unclear. This study aimed to characterize the severity, time‑to‑onset, and outcomes of hepatic disorder based on patient age and sex. Patient data were acquired from the Japanese Adverse Drug Event Report database (JADER) and the JAPIC AERS database, which consists of the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) processed by the Japan Pharmaceutical Information Center. Hepatic disorder was classified as severe or nonsevere. Tolvaptan use was associated with hepatic disorder in analyses using the FAERS [Severe hepatic disorder: reporting odds ratio (ROR) 4.93, 95% confidence interval (CI) 4.33‒5.61; information component (IC) 2.11, 95% CI 1.92‒2.29; nonsevere hepatic disorder: ROR 6.78, 95% CI 6.01‒7.65; IC 2.51, 95% CI 2.33‒2.68] and the JADER (severe hepatic disorder: ROR 4.21, 95% CI 3.57‒4.97; IC 1.86, 95% CI 1.63‒2.10; nonsevere hepatic disorder: ROR 4.27, 95% CI 3.68‒4.95; IC 1.83, 95% CI 1.62‒2.04). A time‑to‑onset analysis revealed that the median onset time was significantly longer in patients aged < 60 years compared with patients aged ≥ 60, regardless of the severity (FAERS: severe hepatic disorder 7 vs. 58 days, p < 0.0001; nonsevere hepatic disorder 8 vs. 52.5 days, p < 0.0001; JADER: severe hepatic disorder 9.5 vs. 32 days, p = 0.0017; nonsevere hepatic disorder 9 vs. 89 days, p < 0.0001). Severe outcomes were observed, regardless of the severity of hepatic disorder. Patients should be monitored for liver function based on age to prevent fatal outcomes.
Collapse
Affiliation(s)
- Takaya Uno
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Kouichi Hosomi
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Satoshi Yokoyama
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
6
|
He Q, Li M, Ji P, Zheng A, Yao L, Zhu X, Shin JG, Lauschke VM, Han B, Xiang X. Comparison of drug-induced liver injury risk between propylthiouracil and methimazole: A quantitative systems toxicology approach. Toxicol Appl Pharmacol 2024; 491:117064. [PMID: 39122118 DOI: 10.1016/j.taap.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Propylthiouracil (PTU) and methimazole (MMI), two classical antithyroid agents possess risk of drug-induced liver injury (DILI) with unknown mechanism of action. This study aimed to examine and compare their hepatic toxicity using a quantitative system toxicology approach. The impact of PTU and MMI on hepatocyte survival, oxidative stress, mitochondrial function and bile acid transporters were assessed in vitro. The physiologically based pharmacokinetic (PBPK) models of PTU and MMI were constructed while their risk of DILI was calculated by DILIsym, a quantitative systems toxicology (QST) model by integrating the results from in vitro toxicological studies and PBPK models. The simulated DILI (ALT >2 × ULN) incidence for PTU (300 mg/d) was 21.2%, which was within the range observed in clinical practice. Moreover, a threshold dose of 200 mg/d was predicted with oxidative stress proposed as an important toxic mechanism. However, DILIsym predicted a 0% incidence of hepatoxicity caused by MMI (30 mg/d), suggesting that the toxicity of MMI was not mediated through mechanism incorporated into DILIsym. In conclusion, DILIsym appears to be a practical tool to unveil hepatoxicity mechanism and predict clinical risk of DILI.
Collapse
Affiliation(s)
- Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Min Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peiying Ji
- Department of Pharmacy, Kong Jiang Hospital of Yangpu District, Shanghai 200093, China
| | - Aole Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Yao
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai 201100, China.
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
7
|
Li N, Zhang H, Wang S, Xu Y, Ying Y, Li J, Li X, Li M, Yang B. Urea transporter UT-A1 as a novel drug target for hyponatremia. FASEB J 2024; 38:e23760. [PMID: 38924449 DOI: 10.1096/fj.202400555rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Hyponatremia is the most common disorder of electrolyte imbalances. It is necessary to develop new type of diuretics to treat hyponatremia without losing electrolytes. Urea transporters (UT) play an important role in the urine concentrating process and have been proved as a novel diuretic target. In this study, rat and mouse syndromes of inappropriate antidiuretic hormone secretion (SIADH) models were constructed and analyzed to determine if UTs are a promising drug target for treating hyponatremia. Experimental results showed that 100 mg/kg UT inhibitor 25a significantly increased serum osmolality (from 249.83 ± 5.95 to 294.33 ± 3.90 mOsm/kg) and serum sodium (from 114 ± 2.07 to 136.67 ± 3.82 mmol/L) respectively in hyponatremia rats by diuresis. Serum chemical examination showed that 25a neither caused another electrolyte imbalance nor influenced the lipid metabolism. Using UT-A1 and UT-B knockout mouse SIADH model, it was found that serum osmolality and serum sodium were lowered much less in UT-A1 knockout mice than in UT-B knockout mice, which suggest UT-A1 is a better therapeutic target than UT-B to treat hyponatremia. This study provides a proof of concept that UT-A1 is a diuretic target for SIADH-induced hyponatremia and UT-A1 inhibitors might be developed into new diuretics to treat hyponatremia.
Collapse
Affiliation(s)
- Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuyuan Wang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yi Ying
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Li
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan, China
| | - Xiaowei Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Alindogan A, Joseph R. Disorders of Sodium. Emerg Med Clin North Am 2023; 41:697-709. [PMID: 37758418 DOI: 10.1016/j.emc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Sodium imbalances are a common occurrence in the emergency department. Although recognition and diagnosis are relatively straightforward, discovering the cause and management should be approached systematically. The most important history items to ascertain is if the patient has symptoms and how long this imbalance has taken to develop. Treatment rapidity depends on severity of symptoms with the most rapid treatment occurring in only the severely symptomatic. Overcorrection has dire consequences and must be approached in a careful and systematic fashion in order to prevent these devastating consequences.
Collapse
Affiliation(s)
- Aaron Alindogan
- Department of Emergency Medicine, UTHSCSA, Floyd Curl Drive, MC 7736, San Antonio, TX 78229, USA
| | - Ryan Joseph
- Department of Emergency Medicine, UTHSCSA, Floyd Curl Drive, MC 7736, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Hilpert J, Groettrup-Wolfers E, Kosturski H, Bennett L, Barnes CLK, Gude K, Gashaw I, Reif S, Steger-Hartmann T, Scheerans C, Solms A, Rottmann A, Mao G, Chapron C. Hepatotoxicity of AKR1C3 Inhibitor BAY1128688: Findings from an Early Terminated Phase IIa Trial for the Treatment of Endometriosis. Drugs R D 2023; 23:221-237. [PMID: 37422772 PMCID: PMC10439066 DOI: 10.1007/s40268-023-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION BAY1128688 is a selective inhibitor of aldo-keto reductase family 1 member C3 (AKR1C3), an enzyme implicated in the pathology of endometriosis and other disorders. In vivo animal studies suggested a potential therapeutic application of BAY1128688 in treating endometriosis. Early clinical studies in healthy volunteers supported the start of phase IIa. OBJECTIVE This manuscript reports the results of a clinical trial (AKRENDO1) assessing the effects of BAY1128688 in adult premenopausal women with endometriosis-related pain symptoms over a 12-week treatment period. METHODS Participants in this placebo-controlled, multicenter phase IIa clinical trial (NCT03373422) were randomized into one of five BAY1128688 treatment groups: 3 mg once daily (OD), 10 mg OD, 30 mg OD, 30 mg twice daily (BID), 60 mg BID; or a placebo group. The efficacy, safety, and tolerability of BAY1128688 were investigated. RESULTS Dose-/exposure-dependent hepatotoxicity was observed following BAY1128688 treatment, characterized by elevations in serum alanine transferase (ALT) occurring at around 12 weeks of treatment and prompting premature trial termination. The reduced number of valid trial completers precludes conclusions regarding treatment efficacy. The pharmacokinetics and pharmacodynamics of BAY1128688 among participants with endometriosis were comparable with those previously found in healthy volunteers and were not predictive of the subsequent ALT elevations observed. CONCLUSIONS The hepatotoxicity of BAY1128688 observed in AKRENDO1 was not predicted by animal studies nor by studies in healthy volunteers. However, in vitro interactions of BAY1128688 with bile salt transporters indicated a potential risk factor for hepatotoxicity at higher doses. This highlights the importance of in vitro mechanistic and transporter interaction studies in the assessment of hepatoxicity risk and suggests further mechanistic understanding is required. CLINICAL TRIAL REGISTRATION NCT03373422 (date registered: November 23, 2017).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Charles Chapron
- Department of Gynecology, Obstetrics II, and Reproductive Medicine, Faculté de Santé, Faculté de Médecine Paris Centre, Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
| |
Collapse
|
10
|
Chai L, Li Z, Wang T, Wang R, Pinyopornpanish K, Cheng G, Qi X. Efficacy and safety of tolvaptan in cirrhotic patients: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Gastroenterol Hepatol 2023; 17:1041-1051. [PMID: 37794713 DOI: 10.1080/17474124.2023.2267421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND AND AIMS Tolvaptan has been approved for the management of cirrhosis-related complications according to the Japanese and Chinese practice guidelines, but not the European or American practice guidelines in view of FDA warning about its hepatotoxicity. This study aimed to systematically evaluate its efficacy and safety in cirrhosis. METHODS The PubMed, EMBASE, and Cochrane library databases were searched to identify randomized controlled trials (RCTs) evaluating the efficacy and/or safety of tolvaptan in cirrhosis. Risk ratios (RRs) and weight mean differences (WMDs) were calculated. The incidence of common adverse events (AEs) was pooled. RESULTS Eight RCTs were included. Tolvaptan was significantly associated with higher rates of improvement of ascites (RR = 1.49, P < 0.001) and hyponatremia (RR = 1.80, P = 0.005) and incidence of any AEs (RR = 1.18, P = 0.003), but not serious AEs (RR = 0.86, P = 0.410). Tolvaptan was significantly associated with reductions in body weight (WMD = -1.30 kg, P < 0.001) and abdominal circumference (WMD = -1.71 cm, P < 0.001), and increases in daily urine volume (WMD = 1299.84 mL, P < 0.001) and serum sodium concentration (WMD = 2.57 mmol/L, P < 0.001). The pooled incidences of dry mouth, thirst, constipation, and pollakiuria were 16%, 24%, 6%, and 17%, respectively. CONCLUSION Short-term use of tolvaptan may be considered in cirrhotic patients with ascites who have inadequate response to conventional diuretics and those with hyponatremia.
Collapse
Affiliation(s)
- Lu Chai
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- NMPA Key Laboratory for Research and Evaluation of Drug Regulatory Technology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe Li
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- NMPA Key Laboratory for Research and Evaluation of Drug Regulatory Technology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- NMPA Key Laboratory for Research and Evaluation of Drug Regulatory Technology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ran Wang
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gang Cheng
- NMPA Key Laboratory for Research and Evaluation of Drug Regulatory Technology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xingshun Qi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- NMPA Key Laboratory for Research and Evaluation of Drug Regulatory Technology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Ackley W, Dahl NK, Park M. Pharmacologic Management of Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:228-235. [PMID: 37088525 DOI: 10.1053/j.akdh.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disorder and the fourth leading cause of end-stage kidney disease. ADPKD encompasses a wide range of morbidity in addition to chronic kidney disease and end-stage kidney disease, and its pathogenesis remains incompletely understood. Progress in the management of this condition includes the 2018 FDA approval of tolvaptan as the only mechanism-specific treatment available for individuals at risk of rapid progression. Assessing the risk of rapid progression is discussed at greater length in a separate article in this special issue. This section will address use and prescription of tolvaptan in more detail and address other therapies that may be considered in the treatment of patients with ADPKD.
Collapse
Affiliation(s)
- William Ackley
- Department of Nephrology, University of Connecticut, Nephrology, Farmington, CT
| | - Neera K Dahl
- Section of Nephrology, Yale School of Medicine, New Haven, CT
| | - Meyeon Park
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
12
|
Alpers DH, Lewis JH, Hunt CM, Freston JW, Torres VE, Li H, Wang W, Hoke ME, Roth SE, Westcott-Baker L, Estilo A. Clinical Pattern of Tolvaptan-Associated Liver Injury in Trial Participants With Autosomal Dominant Polycystic Kidney Disease (ADPKD): An Analysis of Pivotal Clinical Trials. Am J Kidney Dis 2023; 81:281-293.e1. [PMID: 36191725 DOI: 10.1053/j.ajkd.2022.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/06/2022] [Indexed: 01/09/2023]
Abstract
RATIONALE & OBJECTIVE Tolvaptan is associated with risk of drug-induced liver injury when used to treat autosomal dominant polycystic kidney disease (ADPKD). After this risk was described based on the clinical trials TEMPO 3:4 and TEMPO 4:4, additional data from the REPRISE trial and a long-term extension of TEMPO 4:4, REPRISE, and other tolvaptan trials in ADPKD have become available. To further characterize the hepatic safety profile of tolvaptan, an analysis of the expanded dataset was conducted. STUDY DESIGN Analysis of safety data from prospective clinical trials of tolvaptan. SETTING & PARTICIPANTS Multicenter clinical trials including more than 2,900 tolvaptan-treated participants, more than 2,300 with at least 18 months of drug exposure. INTERVENTION Tolvaptan administered twice daily in split-dose regimens. OUTCOMES Frequency of liver enzyme level increases detected by regular laboratory monitoring. RESULTS In the placebo-controlled REPRISE trial, more tolvaptan- than placebo-treated participants (38 of 681 [5.6%] vs 8 of 685 [1.2%]) experienced alanine aminotransferase level increases to >3× the upper limit of normal (ULN), similar to TEMPO 3:4 (40 of 957 [4.4%] vs 5 of 484 [1.0%]). No participant in REPRISE or the long-term extension experienced concurrent alanine aminotransferase level increases to >3× ULN and total bilirubin increases to >2× ULN ("Hy's Law" laboratory criteria). Based on the expanded dataset, liver enzyme increases most often occurred within 18 months after tolvaptan initiation and were less frequent thereafter. Increased levels returned to normal or near normal after treatment interruption or discontinuation. Thirty-eight patients were rechallenged with tolvaptan after the initial drug-induced liver injury episode, with return of liver enzyme level increases in 30; 1 additional participant showed a clinical "adaptation" after the initial episode, with resolution of the enzyme level increases despite continuation of tolvaptan. LIMITATIONS Retrospective analysis. CONCLUSIONS The absence of Hy's Law cases in REPRISE and the long-term extension trial support monthly liver enzyme monitoring during the first 18 months of tolvaptan exposure and every 3 months thereafter to detect and manage enzyme level increases, as is recommended on the drug label. FUNDING Otsuka Pharmaceutical Development & Commercialization, Inc. TRIAL REGISTRATION Trials included in the dataset were registered at ClinicalTrials.gov with study numbers NCT00428948 (TEMPO 3:4), NCT01214421 (TEMPO 4:4), NCT02160145 (REPRISE), and NCT02251275 (long-term extension).
Collapse
Affiliation(s)
- David H Alpers
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - James H Lewis
- Georgetown University School of Medicine, Washington, DC
| | - Christine M Hunt
- Duke University Medical Center and Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - James W Freston
- University of Connecticut Health Center, Farmington, Connecticut
| | | | - Hui Li
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland
| | - Wenchyi Wang
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland
| | - Molly E Hoke
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland
| | - Sharin E Roth
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland
| | | | - Alvin Estilo
- Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland
| |
Collapse
|
13
|
Postalcioglu M, Cullaro G, Park M. Much Ado About Something: The Clinical Pattern of Tolvaptan-Associated Liver Injury in Participants With ADPKD. Am J Kidney Dis 2023; 81:259-260. [PMID: 36528464 DOI: 10.1053/j.ajkd.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Merve Postalcioglu
- Divisions of Nephrology, Department of Medicine, University of California-San Francisco, San Francisco, California
| | - Giuseppe Cullaro
- Gastroenterology and Hepatology, Department of Medicine, University of California-San Francisco, San Francisco, California
| | - Meyeon Park
- Divisions of Nephrology, Department of Medicine, University of California-San Francisco, San Francisco, California.
| |
Collapse
|
14
|
Hallows KR, Li H, Saitta B, Sepehr S, Huang P, Pham J, Wang J, Mancino V, Chung EJ, Pinkosky SL, Pastor-Soler NM. Beneficial effects of bempedoic acid treatment in polycystic kidney disease cells and mice. Front Mol Biosci 2022; 9:1001941. [PMID: 36504724 PMCID: PMC9730828 DOI: 10.3389/fmolb.2022.1001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
ADPKD has few therapeutic options. Tolvaptan slows disease but has side effects limiting its tolerability. Bempedoic acid (BA), an ATP citrate-lyase (ACLY) inhibitor FDA-approved for hypercholesterolemia, catalyzes a key step in fatty acid/sterol synthesis important for cell proliferation. BA is activated by very long-chain acyl-CoA synthetase (FATP2) expressed primarily in kidney and liver. BA also activates AMPK. We hypothesized that BA could be a novel ADPKD therapy by inhibiting cyst growth, proliferation, injury, and metabolic dysregulation via ACLY inhibition and AMPK activation. Pkd1-null kidney cell lines derived from mouse proximal tubule (PT) and collecting duct (IMCD) were grown in 2D or 3D Matrigel cultures and treated ± BA, ± SB-204990 (another ACLY inhibitor) or with Acly shRNA before cyst analysis, immunoblotting or mitochondrial assays using MitoSox and MitoTracker staining. Pkd1 fl/fl ; Pax8-rtTA; Tet-O-Cre C57BL/6J mice were induced with doxycycline injection on postnatal days 10 and 11 (P10-P11) and then treated ± BA (30 mg/kg/d) ± tolvaptan (30-100 mg/kg/d) by gavage from P12-21. Disease severity was determined by % total-kidney-weight-to-bodyweight (%TKW/BW) and BUN levels at euthanasia (P22). Kidney and liver homogenates were immunoblotted for expression of key biomarkers. ACLY expression and activity were upregulated in Pkd1-null PT and IMCD-derived cells vs. controls. Relative to controls, both BA and SB-204990 inhibited cystic growth in Pkd1-null kidney cells, as did Acly knockdown. BA inhibited mitochondrial superoxide production and promoted mitochondrial elongation, suggesting improved mitochondrial function. In ADPKD mice, BA reduced %TKW/BW and BUN to a similar extent as tolvaptan vs. untreated controls. Addition of BA to tolvaptan caused a further reduction in %TKW/BW and BUN vs. tolvaptan alone. BA generally reduced ACLY and stimulated AMPK activity in kidneys and livers vs. controls. BA also inhibited mTOR and ERK signaling and reduced kidney injury markers. In liver, BA treatment, both alone and together with tolvaptan, increased mitochondrial biogenesis while inhibiting apoptosis. We conclude that BA and ACLY inhibition inhibited cyst growth in vitro, and BA decreased ADPKD severity in vivo. Combining BA with tolvaptan further improved various ADPKD disease parameters. Repurposing BA may be a promising new ADPKD therapy, having beneficial effects alone and along with tolvaptan.
Collapse
Affiliation(s)
- Kenneth R. Hallows
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Hui Li
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Biagio Saitta
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Saman Sepehr
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Polly Huang
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jessica Pham
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jonathan Wang
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Valeria Mancino
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Eun Ji Chung
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | | | - Núria M. Pastor-Soler
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States,*Correspondence: Núria M. Pastor-Soler,
| |
Collapse
|
15
|
Scuteri D, Tarsitano A, Tonin P, Bagetta G, Corasaniti MT. Focus on zavegepant: the first intranasal third-generation gepant. Pain Manag 2022; 12:879-885. [PMID: 36189708 DOI: 10.2217/pmt-2022-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Migraine is the leading cause of years lived with disability in people under 50 and its burden is increased by calcitonin gene-related peptide (CGRP)-driven chronicity. Newly approved small molecules that antagonize the CGRP receptor, gepants, have advanced from the hepatotoxic first-generation telcagepant to third-generation intranasal zavegepant; during this process of drug development, rimegepant, ubrogepant and atogepant, which are orally administered, have been launched and approved for clinical use with no warning for hepatotoxicity. Real-world, long-term postmarketing data about the efficacy and safety of gepants are awaited. The aim of the present drug evaluation study was to provide an overview of the novel, third-generation intranasal Zavegepant, encompassing its development and future perspectives.
Collapse
Affiliation(s)
- Damiana Scuteri
- Department of Pharmacy, Pharmacotechnology Documentation & Transfer Unit, Preclinical & Translational Pharmacology, Health & Nutritional Sciences, University of Calabria, Rende, 87036, Italy.,Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, 88900, Italy
| | - Assunta Tarsitano
- Pain Therapy Center, Provincial Health Authority (ASP), Cosenza, 87100, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, 88900, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Pharmacotechnology Documentation & Transfer Unit, Preclinical & Translational Pharmacology, Health & Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | | |
Collapse
|
16
|
Yow HY, Govindaraju K, Lim AH, Abdul Rahim N. Optimizing Antimicrobial Therapy by Integrating Multi-Omics With Pharmacokinetic/Pharmacodynamic Models and Precision Dosing. Front Pharmacol 2022; 13:915355. [PMID: 35814236 PMCID: PMC9260690 DOI: 10.3389/fphar.2022.915355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
In the era of “Bad Bugs, No Drugs,” optimizing antibiotic therapy against multi-drug resistant (MDR) pathogens is crucial. Mathematical modelling has been employed to further optimize dosing regimens. These models include mechanism-based PK/PD models, systems-based models, quantitative systems pharmacology (QSP) and population PK models. Quantitative systems pharmacology has significant potential in precision antimicrobial chemotherapy in the clinic. Population PK models have been employed in model-informed precision dosing (MIPD). Several antibiotics require close monitoring and dose adjustments in order to ensure optimal outcomes in patients with infectious diseases. Success or failure of antibiotic therapy is dependent on the patient, antibiotic and bacterium. For some drugs, treatment responses vary greatly between individuals due to genotype and disease characteristics. Thus, for these drugs, tailored dosing is required for successful therapy. With antibiotics, inappropriate dosing such as insufficient dosing may put patients at risk of therapeutic failure which could lead to mortality. Conversely, doses that are too high could lead to toxicities. Hence, precision dosing which customizes doses to individual patients is crucial for antibiotics especially those with a narrow therapeutic index. In this review, we discuss the various strategies in optimizing antimicrobial therapy to address the challenges in the management of infectious diseases and delivering personalized therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Audrey Huili Lim
- Centre for Clinical Outcome Research (CCORE), Institute for Clinical Research, National Institutes of Health, Shah Alam, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Nusaibah Abdul Rahim,
| |
Collapse
|
17
|
Quantitative Systems Toxicology and Drug Development: The DILIsym Experience. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:181-196. [PMID: 35437723 DOI: 10.1007/978-1-0716-2265-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DILIsym® is a Quantitative Systems Toxicology (QST) model that has been developed over the last decade by a public-private partnership to predict the liver safety liability in new drug candidates. DILIsym integrates the quantitative abilities of parent and relevant metabolites to cause oxidative stress, mitochondrial dysfunction, and alter bile acid homeostasis. Like the prediction of drug-drug interactions, the data entered into DILIsym are assessed in the laboratory in human experimental systems, and combined with estimates of liver exposure to predict the outcome. DILIsym is now frequently used in decision-making within the pharmaceutical industry and its modeling results are increasingly included in regulatory communications and NDA submissions. DILIsym can be used to identify dominant mechanisms underlying liver toxicity and this information is increasingly being used to identify patient-specific risk factors, including certain disease states. DILIsym is also increasingly used to optimize the interpretation of liver injury biomarkers. DILIsym provides an example of how QST modeling can help speed the delivery of safer new drugs to the patients who need them.
Collapse
|
18
|
Fragiadaki M. Lessons from microRNA biology: Top key cellular drivers of Autosomal Dominant Polycystic Kidney Disease. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166358. [PMID: 35150832 DOI: 10.1016/j.bbadis.2022.166358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Numerous microRNAs (miRs), small RNAs that target several pathways, have been implicated in the development of Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most common genetic cause of kidney failure. The hallmark of ADPKD is tissue overgrowth and hyperproliferation, eventually leading to kidney failure. SCOPE OF THE REVIEW Many miRs are dysregulated in disease, yet the intracellular pathways regulated by miRs are less well described in ADPKD. Here, I summarise all the differentially expressed miRs in ADPKD and highlight the top miR-regulated cellular driver of disease. MAJOR CONCLUSIONS Literature review has identified 53 abnormally expressed miRs in ADPKD. By performing bioinformatics analysis of their target genes I present 10 key intracellular pathways that drive ADPKD progression. The top key drivers are divided into three main areas: (i) hyperproliferation and the role of JAK/STAT and PI3K pathways (ii) DNA damage and (iii) inflammation and NFκB. GENERAL SIGNIFICANCE The description of the 10 top cellular drivers of ADPKD, derived by analysis of miR signatures, is of paramount importance in better understanding the key processes resulting in pathophysiological changes that underlie disease.
Collapse
Affiliation(s)
- Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, S10 2RX, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
19
|
Abstract
Calcitonin gene-related peptide (CGRP) signaling inhibitors have shown efficacy in both the acute and preventive treatment of migraine. Telcagepant, a first-generation CGRP receptor antagonist, was effective but failed in clinical trials due to hepatotoxicity. Subsequently, although 4 next-generation CGRP receptor antagonists (rimegepant, zavegepant, atogepant, and ubrogepant) were being advanced into late-stage clinical trials, due to telcagepant’s failure, more confidence in the liver safety of these compounds was needed. DILIsym v6A, a quantitative systems toxicology (QST) model of drug-induced liver injury (DILI), was used to model all 5 compounds and thus to compare the 4 next-generation CGRP receptor antagonists to telcagepant. In vitro experiments were performed to measure the potential for each compound to inhibit bile acid transporters, produce oxidative stress, and cause mitochondrial dysfunction. Physiologically based pharmacokinetic models were produced for each compound in order to appropriately estimate liver exposure. DILIsym predicted clinical elevations of liver enzymes and bilirubin for telcagepant, correctly predicting the observed DILI liability of the first-generation compound. By contrast, DILIsym predicted that each of the 4 next-generation compounds would be significantly less likely to cause DILI than telcagepant. Subsequent clinical trials have validated these predictions for each of the 4 compounds, and all 3 of the compounds submitted to FDA to date (rimegepant, ubrogepant, and atogepant) have since been approved by the FDA with no warning for hepatotoxicity. This work demonstrates the potential for QST modeling to prospectively differentiate between hepatotoxic and nonhepatotoxic molecules within the same class.
Collapse
Affiliation(s)
- Jeffrey L Woodhead
- To whom correspondence should be addressed at DILIsym Services, Inc., A Simulations Plus Company, 6 Davis Drive, Research Triangle Park, NC 27709, USA. E-mail:
| | - Scott Q Siler
- DILIsym Services, Inc., A Simulations Plus Company, Research Triangle Park, North Carolina 27706, USA
| | - Brett A Howell
- DILIsym Services, Inc., A Simulations Plus Company, Research Triangle Park, North Carolina 27706, USA
| | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC-Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Charles Conway
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510, USA
| |
Collapse
|
20
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
21
|
Di Mise A, Wang X, Ye H, Pellegrini L, Torres VE, Valenti G. Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease. FASEB J 2021; 35:e21874. [PMID: 34486176 PMCID: PMC9290345 DOI: 10.1096/fj.202100774r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations of PKD1 or PKD2 genes, is characterized by development and growth of cysts causing progressive kidney enlargement. Reduced resting cytosolic calcium and increased cAMP levels associated with the tonic action of vasopressin are two central biochemical defects in ADPKD. Here we show that co‐targeting two GPCRs, the vasopressin V2 receptor (V2R) and the calcium sensing receptor, using the novel V2R antagonist lixivaptan in combination with the calcimimetic R‐568, reduced cyst progression in two animal models of human PKD. Lixivaptan is expected to have a safer liver profile compared to tolvaptan, the only drug approved to delay PKD progression, based on computational model results and initial clinical evidence. PCK rat and Pkd1RC/RC mouse littermates were fed without or with lixivaptan (0.5%) and R‐568 (0.025% for rats and 0.04% for mice), alone or in combination, for 7 (rats) or 13 (mice) weeks. In PCK rats, the combined treatment strongly decreased kidney weight, cyst and fibrosis volumes by 20%, 49%, and 73%, respectively, compared to untreated animals. In Pkd1RC/RC mice, the same parameters were reduced by 20%, 56%, and 69%, respectively. In both cases the combined treatment appeared nominally more effective than the individual drugs used alone. These data point to an intriguing new application for two existing drugs in PKD treatment. The potential for synergy between these two compounds suggested in these animal studies, if confirmed in appropriate clinical investigations, would represent a welcome advancement in the treatment of ADPKD.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hong Ye
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
22
|
Hammond S, Gibson A, Jaruthamsophon K, Roth S, Mosedale M, Naisbitt DJ. Shedding Light on Drug-Induced Liver Injury: Activation of T Cells From Drug Naive Human Donors With Tolvaptan and a Hydroxybutyric Acid Metabolite. Toxicol Sci 2021; 179:95-107. [PMID: 33078835 DOI: 10.1093/toxsci/kfaa157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to tolvaptan is associated with a significant risk of liver injury in a small fraction of patients with autosomal dominant polycystic kidney disease. The observed delayed onset of liver injury of between 3 and 18 months after commencing tolvaptan treatment, along with rapid recurrence of symptoms following re-challenge is indicative of an adaptive immune attack. This study set out to assess the intrinsic immunogenicity of tolvaptan and pathways of drug-specific T-cell activation using in vitro cell culture platforms. Tolvaptan (n = 7), as well as oxybutyric (DM-4103, n = 1) and hydroxybutyric acid (DM-4107, n = 18) metabolite-specific T-cell clones were generated from tolvaptan naive healthy donor peripheral blood mononuclear cells. Tolvaptan and DM-4103 T-cell clones could also be activated with DM-4107, whereas T-cell clones originally primed with DM-4107 were highly specific to this compound. A signature cytokine profile (IFN-γ, IL-13, granzyme B, and perforin) for almost all T-cell clones was identified. Mechanistically, compound-specific T-cell clone activation was dependent on the presence of soluble drug and could occur within 4 h of drug exposure, ruling out a classical hapten mechanism. However, antigen processing dependence drug presentation was indicated in many T-cell clones. Collectively these data show that tolvaptan-associated liver injury may be attributable to an adaptive immune attack upon the liver, with tolvaptan- and metabolite-specific T cells identified as candidate effector cells in such etiology.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK.,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sharin Roth
- Otsuka Pharmaceutical Dev. & Comm., Inc., Research Blvd, Rockville, Maryland 20882
| | - Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
23
|
Tosca EM, Bartolucci R, Magni P, Poggesi I. Modeling approaches for reducing safety-related attrition in drug discovery and development: a review on myelotoxicity, immunotoxicity, cardiovascular toxicity, and liver toxicity. Expert Opin Drug Discov 2021; 16:1365-1390. [PMID: 34181496 DOI: 10.1080/17460441.2021.1931114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction:Safety and tolerability is a critical area where improvements are needed to decrease the attrition rates during development of new drug candidates. Modeling approaches, when smartly implemented, can contribute to this aim.Areas covered:The focus of this review was on modeling approaches applied to four kinds of drug-induced toxicities: hematological, immunological, cardiovascular (CV) and liver toxicity. Papers, mainly published in the last 10 years, reporting models in three main methodological categories - computational models (e.g., quantitative structure-property relationships, machine learning approaches, neural networks, etc.), pharmacokinetic-pharmacodynamic (PK-PD) models, and quantitative system pharmacology (QSP) models - have been considered.Expert opinion:The picture observed in the four examined toxicity areas appears heterogeneous. Computational models are typically used in all areas as screening tools in the early stages of development for hematological, cardiovascular and liver toxicity, with accuracies in the range of 70-90%. A limited number of computational models, based on the analysis of drug protein sequence, was instead proposed for immunotoxicity. In the later stages of development, toxicities are quantitatively predicted with reasonably good accuracy using either semi-mechanistic PK-PD models (hematological and cardiovascular toxicity), or fully exploited QSP models (immuno-toxicity and liver toxicity).
Collapse
Affiliation(s)
- Elena M Tosca
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Roberta Bartolucci
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Italo Poggesi
- Clinical Pharmacology & Pharmacometrics, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
24
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
25
|
Shoaf SE, Bricmont P, Repella Gordon J. Regulatory guidelines do not accurately predict tolvaptan and metabolite interactions at BCRP, OATP1B1, and OAT3 transporters. Clin Transl Sci 2021; 14:1535-1542. [PMID: 33742787 PMCID: PMC8301576 DOI: 10.1111/cts.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
Tolvaptan (TLV) was US Food and Drug Administration (FDA)‐approved for the indication to slow kidney function decline in adults at risk of rapidly progressing autosomal dominant polycystic kidney disease in 2018. In vitro, TLV was a breast cancer resistance protein (BCRP) inhibitor, whereas the oxobutyric acid metabolite of TLV (DM‐4013) was an inhibitor of organic anion transport polypeptide (OATP)1B1 and organic anion transporter (OAT)3. Based on the 2017 FDA guidance, potential for clinically relevant inhibition at these transporters was indicated for the highest TLV regimen. Consequently, two postmarketing clinical trials in healthy subjects were required. In trial 1, 5 mg rosuvastatin calcium (BCRP and OATP1B1 substrate) was administered alone, with 90 mg TLV or 48 h following 7 days of once daily 300 mg TLV (i.e., in the presence of DM‐4103). In trial 2, 40 mg furosemide (OAT3 substrate) was administered alone and in presence of DM‐4103. For BCRP, rosuvastatin geometric mean ratios (90% confidence intervals [CIs]) for maximum plasma concentration (Cmax) were 1.54 (90% CI 1.26–1.88) and for area under the concentration‐time curve from time 0 to the time of the last measurable concentration (AUCt) were 1.69 (90% CI 1.34–2.14), indicating no clinically significant interaction. DM‐4103 produced no clinically meaningful changes in rosuvastatin or furosemide concentrations, indicating no inhibition at OATP1B1 or OAT3. The BCRP prediction assumed the drug dose is completely soluble in 250 ml; TLV has solubility of ~0.01 g/250 ml. For OATP1B1/OAT3, if fraction unbound for plasma protein binding (PPB) is less than 1%, then 1% is assumed. DM‐4103 has PPB greater than 99.8%. Use of actual drug substance solubility and unbound fraction in plasma would have produced predictions consistent with the clinical results.
Collapse
Affiliation(s)
- Susan E Shoaf
- Quantitative Pharmacology, Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Patricia Bricmont
- Global Clinical Management, Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland, USA
| | - Jennifer Repella Gordon
- Global Clinical Management, Otsuka Pharmaceutical Development & Commercialization, Inc, Rockville, Maryland, USA
| |
Collapse
|
26
|
Middelkoop MA, Bet PM, Drenth JPH, Huirne JAF, Hehenkamp WJK. Risk-efficacy balance of ulipristal acetate compared to surgical alternatives. Br J Clin Pharmacol 2021; 87:2685-2697. [PMID: 33341097 PMCID: PMC8359338 DOI: 10.1111/bcp.14708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/12/2023] Open
Abstract
Aims Uterine fibroids are benign tumours that cause various complaints. These complaints may significantly compromise quality of life, necessitating a clinical intervention in 25–50% of the affected women. Hysterectomy, myomectomy or embolization may offer symptomatic relief, but are costly, include a recovery period, can cause serious side‐effects, sometimes fail to treat symptoms completely and are not always desired by patients. Ulipristal is a conservative long‐term treatment that has a fibroid‐volume decreasing effect, acceptable side‐effects while preserving fertility and may be an alternative to surgical alternatives. Currently, ulipristal is investigated by the European Medicine Agency and suspended from marketing authorization because it may cause drug‐induced liver injury (DILI). However, many drugs can cause severe DILI and prospective studies estimate 14–19 DILI cases/100 000 people. Methods This overview will discuss the risk–benefit balance between ulipristal and DILI, describe the safety–efficacy balance of ulipristal and its alternative treatments and the arguments that led to the suspension of its marketing authorization. Results Ulipristal may be associated with DILI resulting in a risk of severe liver injury in 1.5:100 000 patients and fatal liver injury in 0.1:100 000 patients. This risk needs to be weighed against the higher mortality risk of >1:1000 and higher incidence of severe complications after surgery. Conclusion The DILI risk of ulipristal is considerably lower than that of other medicines that are not suspended, nor need additional safety measures. When evaluating drugs and drug safety, risks that apply to the alternative nonpharmacological treatment options should be taken into consideration.
Collapse
Affiliation(s)
- Mei-An Middelkoop
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development research institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pierre M Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology, Radboud UMC, Nijmegen, The Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development research institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wouter J K Hehenkamp
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development research institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Obstetrics and Gynaecology, Amsterdam Reproduction & Development research institute, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
28
|
Application of the DILIsym® Quantitative Systems Toxicology drug-induced liver injury model to evaluate the carcinogenic hazard potential of acetaminophen. Regul Toxicol Pharmacol 2020; 118:104788. [PMID: 33153971 DOI: 10.1016/j.yrtph.2020.104788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. The objective of the analysis herein was to inform this review by assessing whether variability in patient baseline characteristics (e.g. baseline glutathione (GSH) levels, pharmacokinetics, and capacity of hepatic antioxidants) leads to potential differences in carcinogenic hazard potential at different dosing schemes: maximum labeled doses of 4 g/day, repeated doses above the maximum labeled dose (>4-12 g/day), and acute overdoses of acetaminophen (>15 g). This was achieved by performing simulations of acetaminophen exposure in thousands of diverse virtual patients scenarios using the DILIsym® Quantitative Systems Toxicology (QST) model. Simulations included assessments of the dose and exposure response for toxicity and mode of cell death based on evaluations of the kinetics of changes of: GSH, N-acetyl-p-benzoquinone-imine (NAPQI), protein adducts, mitochondrial dysfunction, and hepatic cell death. Results support that, at therapeutic doses, cellular GSH binds to NAPQI providing sufficient buffering capacity to limit protein adduct formation and subsequent oxidative stress. Simulations evaluating repeated high-level supratherapeutic exposures or acute overdoses indicate that cell death precedes DNA damage that could result in carcinogenicity and thus acetaminophen does not present a carcinogenicity hazard to humans at any dose.
Collapse
|
29
|
Watkins PB. DILIsym: Quantitative systems toxicology impacting drug development. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Beaudoin JJ, Brock WJ, Watkins PB, Brouwer KLR. Quantitative Systems Toxicology Modeling Predicts that Reduced Biliary Efflux Contributes to Tolvaptan Hepatotoxicity. Clin Pharmacol Ther 2020; 109:433-442. [PMID: 32748396 DOI: 10.1002/cpt.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD) exhibit enhanced susceptibility to tolvaptan hepatotoxicity relative to other patient populations. In a rodent model of ADPKD, the expression and function of the biliary efflux transporter Mrp2 was reduced, and biliary excretion of a major tolvaptan metabolite (DM-4103) was decreased. The current study investigated whether reduced biliary efflux could contribute to increased susceptibility to tolvaptan-associated hepatotoxicity using a quantitative systems toxicology (QST) model (DILIsym). QST simulations revealed that decreased biliary excretion of DM-4103, but not tolvaptan, resulted in substantial hepatic accumulation of bile acids, decreased electron transport chain activity, reduced hepatic adenosine triphosphate concentrations, and an increased incidence of hepatotoxicity. In vitro experiments (C-DILI) with sandwich-cultured human hepatocytes and HepaRG cells were performed to assess tolvaptan-associated hepatotoxic effects when MRP2 was impaired by chemical inhibition (MK571, 50 µM) or genetic knockout, respectively. Tolvaptan (64 µM, 24-hour) treatment of these cells increased cytotoxicity markers up to 27.9-fold and 1.6-fold, respectively, when MRP2 was impaired, indicating that MRP2 dysfunction may be involved in tolvaptan-associated cytotoxicity. In conclusion, QST modeling supported the hypothesis that reduced biliary efflux of tolvaptan and/or DM-4103 could account for increased susceptibility to tolvaptan-associated hepatotoxicity; in vitro experiments implicated MRP2 dysfunction as a key factor in susceptibility. QST simulations revealed that DM-4103 may contribute to hepatotoxicity more than the parent compound. ADPKD progression and gradual reduction in MRP2 activity may explain why acute liver events can occur well after one year of tolvaptan treatment.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William J Brock
- Brock Scientific Consulting, LLC, Montgomery Village, Maryland, USA
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Zhang MQ, Chen B, Zhang JP, Chen N, Liu CZ, Hu CQ. Liver toxicity of macrolide antibiotics in zebrafish. Toxicology 2020; 441:152501. [PMID: 32454074 DOI: 10.1016/j.tox.2020.152501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections, but macrolides also expose people to the risk of adverse events include hepatotoxicity. Here, we report the liver toxicity of macrolides with different structures in zebrafish. The absorption, distribution, metabolism, excretion and toxicology (ADMET) parameters of macrolide compounds were predicted and contrasted by utilizing in silico analysis. Fluorescence imaging and Oil Red O stain assays showed all the tested macrolide drugs induced liver degeneration, changed liver size and liver steatosis in larval zebrafish. Through RNA-seq analysis, we found seven co-regulated differentially expressed genes (co-DEGs) associated with metabolism, apoptosis and immune system biological processes, and two co-regulated significant pathways including amino sugar and nucleotide sugar metabolism and apoptosis signaling pathway. We found that only fosab of seven co-DEGs was in the two co-regulated significant pathways. fosab encoded proto-oncogene c-Fos, which was closely associated with liver diseases. The whole-mount in situ hybridization showed high transcription of c-Fos induced by macrolide compounds mainly in the liver region of zebrafish larvae. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) leakage assays revealed that macrolides exerts significant cytotoxic effects on L02 cells. qRT-PCR and western blot analysis demonstrated macrolides also promoted human c-Fos expression in L02 cells. The c-Fos overexpression significantly reduced cell viability by using CCK-8 assay. These data indicate that hepatotoxicity induced by macrolides may be correlated with c-Fos expression activated by these compounds. This study may provide a biomarker for the further investigations on the mechanism of hepatotoxicity induced by macrolide drugs with different structures, and extend our understanding for improving rational clinical application of macrolides.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Postdoctoral Scientific Research Workstation, China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518110, China; Postdoctoral Mobile Research Station, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences & School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China; Shenzhen China Resources Gosun Pharmaceuticals Co., Ltd., Shenzhen 518049, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bo Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Pu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Chen
- Shenzhen China Resources Gosun Pharmaceuticals Co., Ltd., Shenzhen 518049, China.
| | - Chun-Zhao Liu
- Postdoctoral Mobile Research Station, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences & School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
32
|
Li Y, Evers R, Hafey MJ, Cheon K, Duong H, Lynch D, LaFranco-Scheuch L, Pacchione S, Tamburino AM, Tanis KQ, Geddes K, Holder D, Zhang NR, Kang W, Gonzalez RJ, Galijatovic-Idrizbegovic A, Pearson KM, Lebron JA, Glaab WE, Sistare FD. Use of a Bile Salt Export Pump Knockdown Rat Susceptibility Model to Interrogate Mechanism of Drug-Induced Liver Toxicity. Toxicol Sci 2020; 170:180-198. [PMID: 30903168 DOI: 10.1093/toxsci/kfz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) may be associated with clinical drug-induced liver injury, but is poorly predicted by preclinical animal models. Here we present the development of a novel rat model using siRNA knockdown (KD) of Bsep that displayed differentially enhanced hepatotoxicity to 8 Bsep inhibitors and not to 3 Bsep noninhibitors when administered at maximally tolerated doses for 7 days. Bsep KD alone resulted in 3- and 4.5-fold increases in liver and plasma levels, respectively, of the sum of the 3 most prevalent taurine conjugated bile acids (T3-BA), approximately 90% decrease in plasma and liver glycocholic acid, and a distinct bile acid regulating gene expression pattern, without resulting in hepatotoxicity. Among the Bsep inhibitors, only asunaprevir and TAK-875 resulted in serum transaminase and total bilirubin increases associated with increases in plasma T3-BA that were enhanced by Bsep KD. Benzbromarone, lopinavir, and simeprevir caused smaller increases in plasma T3-BA, but did not result in hepatotoxicity in Bsep KD rats. Bosentan, cyclosporine A, and ritonavir, however, showed no enhancement of T3-BA in plasma in Bsep KD rats, as well as Bsep noninhibitors acetaminophen, MK-0974, or clarithromycin. T3-BA findings were further strengthened through monitoring TCA-d4 converted from cholic acid-d4 overcoming interanimal variability in endogenous bile acids. Bsep KD also altered liver and/or plasma levels of asunaprevir, TAK-875, TAK-875 acyl-glucuronide, benzbromarone, and bosentan. The Bsep KD rat model has revealed differences in the effects on bile acid homeostasis among Bsep inhibitors that can best be monitored using measures of T3-BA and TCA-d4 in plasma. However, the phenotype caused by Bsep inhibition is complex due to the involvement of several compensatory mechanisms.
Collapse
Affiliation(s)
- Yutai Li
- Safety Assessment and Laboratory Animal Resources
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism
| | | | | | - Hong Duong
- Safety Assessment and Laboratory Animal Resources
| | - Donna Lynch
- Safety Assessment and Laboratory Animal Resources
| | | | | | | | - Keith Q Tanis
- Genetics and Pharmacogenomics, MRL, West Point, PA 19486
| | | | | | | | - Wen Kang
- Safety Assessment and Laboratory Animal Resources
| | | | | | | | | | | | | |
Collapse
|
33
|
Watkins PB. The DILI-sim Initiative: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clin Transl Sci 2020; 12:122-129. [PMID: 30762301 PMCID: PMC6440570 DOI: 10.1111/cts.12629] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022] Open
Abstract
The drug‐induced liver injury (DILI)‐sim Initiative is a public‐private partnership involving scientists from industry, academia, and the US Food and Drug Administration (FDA). The Initiative uses quantitative systems toxicology (QST) to build and refine a model (DILIsym) capable of understanding and predicting liver safety liabilities in new drug candidates and to optimize interpretation of liver safety biomarkers used in clinical studies. Insights gained to date include the observation that most dose‐dependent hepatotoxicity can be accounted for by combinations of just three mechanisms (oxidative stress, interference with mitochondrial respiration, and alterations in bile acid homeostasis) and the importance of noncompetitive inhibition of bile acid transporters. The effort has also provided novel insight into species and interpatient differences in susceptibility, structure‐activity relationships, and the role of nonimmune mechanisms in delayed idiosyncratic hepatotoxicity. The model is increasingly used to evaluate new drug candidates and several clinical trials are underway that will test the model's ability to prospectively predict liver safety. With more refinement, in the future, it may be possible to use the DILIsym predictions to justify reduction in the size of some clinical trials. The mature model could also potentially assist physicians in managing the liver safety of their patients as well as aid in the diagnosis of DILI.
Collapse
Affiliation(s)
- Paul B Watkins
- Institute for Drug Safety Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Case report: tolvaptan-associated creatine kinase elevation in two patients with autosomal dominant polycystic kidney disease (ADPKD). Eur J Clin Pharmacol 2020; 76:1473-1475. [PMID: 32514744 PMCID: PMC7481148 DOI: 10.1007/s00228-020-02906-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
|
35
|
Longo DM, Shoda LKM, Howell BA, Coric V, Berman RM, Qureshi IA. Assessing Effects of BHV-0223 40 mg Zydis Sublingual Formulation and Riluzole 50 mg Oral Tablet on Liver Function Test Parameters Utilizing DILIsym. Toxicol Sci 2020; 175:292-300. [PMID: 32040174 PMCID: PMC7253195 DOI: 10.1093/toxsci/kfaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For patients with amyotrophic lateral sclerosis who take oral riluzole tablets, approximately 50% experience alanine transaminase (ALT) levels above upper limit of normal (ULN), 8% above 3× ULN, and 2% above 5× ULN. BHV-0223 is a novel 40 mg rapidly sublingually disintegrating (Zydis) formulation of riluzole, bioequivalent to conventional riluzole 50 mg oral tablets, that averts the need for swallowing tablets and mitigates first-pass hepatic metabolism, thereby potentially reducing risk of liver toxicity. DILIsym is a validated multiscale computational model that supports evaluation of liver toxicity risks. DILIsym was used to compare the hepatotoxicity potential of oral riluzole tablets (50 mg BID) versus BHV-0223 (40 mg BID) by integrating clinical data and in vitro toxicity data. In a simulated population (SimPops), ALT levels > 3× ULN were predicted in 3.9% (11/285) versus 1.4% (4/285) of individuals with oral riluzole tablets and sublingual BHV-0223, respectively. This represents a relative risk reduction of 64% associated with BHV-0223 versus conventional riluzole tablets. Mechanistic investigations revealed that oxidative stress was responsible for the predicted ALT elevations. The validity of the DILIsym representation of riluzole and assumptions is supported by its ability to predict rates of ALT elevations for riluzole oral tablets comparable with that observed in clinical data. Combining a mechanistic, quantitative representation of hepatotoxicity with interindividual variability in both susceptibility and liver exposure suggests that sublingual BHV-0223 confers diminished rates of liver toxicity compared with oral tablets of riluzole, consistent with having a lower overall dose of riluzole and bypassing first-pass liver metabolism.
Collapse
Affiliation(s)
- Diane M Longo
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
- To whom correspondence should be addressed at 6 Davis Drive, PO Box 12317, Research Triangle Park, NC 27709. E-mail:
| | - Lisl K M Shoda
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | - Vladimir Coric
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510
| | - Robert M Berman
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510
| | - Irfan A Qureshi
- Biohaven Pharmaceuticals, Inc., New Haven, Connecticut 06510
| |
Collapse
|
36
|
Hemmerich J, Troger F, Füzi B, F.Ecker G. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity. Mol Inform 2020; 39:e2000005. [PMID: 32108997 PMCID: PMC7317375 DOI: 10.1002/minf.202000005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 02/05/2023]
Abstract
Over the last few years more and more organ and idiosyncratic toxicities were linked to mitochondrial toxicity. Despite well-established assays, such as the seahorse and Glucose/Galactose assay, an in silico approach to mitochondrial toxicity is still feasible, particularly when it comes to the assessment of large compound libraries. Therefore, in silico approaches could be very beneficial to indicate hazards early in the drug development pipeline. By combining multiple endpoints, we derived the largest so far published dataset on mitochondrial toxicity. A thorough data analysis shows that molecules causing mitochondrial toxicity can be distinguished by physicochemical properties. Finally, the combination of machine learning and structural alerts highlights the suitability for in silico risk assessment of mitochondrial toxicity.
Collapse
Affiliation(s)
- Jennifer Hemmerich
- University of ViennaDepartment of Pharmaceutical ChemistryAlthanstr. 141090ViennaAustria
| | - Florentina Troger
- University of ViennaDepartment of Pharmaceutical ChemistryAlthanstr. 141090ViennaAustria
| | - Barbara Füzi
- University of ViennaDepartment of Pharmaceutical ChemistryAlthanstr. 141090ViennaAustria
| | - Gerhard F.Ecker
- University of ViennaDepartment of Pharmaceutical ChemistryAlthanstr. 141090ViennaAustria
| |
Collapse
|
37
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Watkins PB. Quantitative Systems Toxicology Approaches to Understand and Predict Drug-Induced Liver Injury. Clin Liver Dis 2020; 24:49-60. [PMID: 31753250 DOI: 10.1016/j.cld.2019.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The DILI-sim Initiative is a public-private partnership using quantitative systems toxicology to build a model (DILIsym) capable of understanding and predicting liver safety liabilities in drug candidates. The effort has provided insights into mechanisms underlying dose-dependent drug-induced liver injury (DILI) and interpatient differences in susceptibility to dose-dependent DILI. DILIsym may be useful in identifying drugs capable of causing idiosyncratic hepatotoxicity. DILIsym is used to optimize interpretation of traditional and newer serum biomarkers of DILI. DILIsym results are considered in drug development decisions. In the future, it may be possible to use DILsym predictions to justify reduction in size of some clinical trials.
Collapse
Affiliation(s)
- Paul B Watkins
- Institute for Drug Safety Sciences, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
39
|
Real M, Barnhill MS, Higley C, Rosenberg J, Lewis JH. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf 2020; 42:365-387. [PMID: 30343418 DOI: 10.1007/s40264-018-0743-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI), herbal-induced liver injury, and herbal and dietary supplement (HDS)-induced liver injury are an important aspect of drug safety. Knowledge regarding responsible drugs, mechanisms, risk factors, and the diagnostic tools to detect liver injury have continued to grow in the past year. This review highlights what we considered the most significant publications from among more than 1800 articles relating to liver injury from medications, herbal products, and dietary supplements in 2017 and 2018. The US Drug-Induced Liver Injury Network (DILIN) prospective study highlighted several areas of ongoing study, including the potential utility of human leukocyte antigens and microRNAs as DILI risk factors and new data on racial differences, the role of alcohol consumption, factors associated with prognosis, and updates on the clinical signatures of autoimmune DILI, thiopurines, and HDS agents. Novel data were also generated from the Spanish and Latin American DILI registries as well as from Chinese and Korean case series. A few new agents causing DILI were added to the growing list in the past 2 years, including sodium-glucose co-transporter-2 inhibitors, as were new aspects of chemotherapy-associated liver injury. A number of cases reported previously described hepatotoxins confirmed via the Roussel Uclaf Causality Assessment Method (RUCAM; e.g., norethisterone, methylprednisolone, glatiramer acetate) and/or the DILIN method (e.g., celecoxib, dimethyl fumarate). Additionally, much work centered on elucidating the pathophysiology of DILI, including the importance of bile salt export pumps and immune-mediated mechanisms. Finally, it must be noted that, while hundreds of new studies described DILI in 2017-2018, the quality of such reports must always be addressed. Björnsson reminds us to remain very critical of the data when addressing the future utility of a study, which is why it is so important to adhere to a standardized method such as RUCAM when determining DILI causality. While drug-induced hepatotoxicity remains a diagnosis of exclusion, the diverse array of publications that appeared in 2017 and 2018 provided important advances in our understanding of DILI, paving the way for our improved ability to make a more definitive diagnosis and risk assessment.
Collapse
Affiliation(s)
- Mark Real
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA
| | - Michele S Barnhill
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Cory Higley
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Jessica Rosenberg
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
40
|
Longo DM, Woodhead JL, Walker P, Herédi-Szabó K, Mogyorósi K, Wolenski FS, Dragan YP, Mosedale M, Siler SQ, Watkins PB, Howell BA. Quantitative Systems Toxicology Analysis of In Vitro Mechanistic Assays Reveals Importance of Bile Acid Accumulation and Mitochondrial Dysfunction in TAK-875-Induced Liver Injury. Toxicol Sci 2020; 167:458-467. [PMID: 30289550 PMCID: PMC6358270 DOI: 10.1093/toxsci/kfy253] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TAK-875 (fasiglifam), a GPR40 agonist in development for the treatment of type 2 diabetes (T2D), was voluntarily terminated in Phase III trials due to adverse liver effects. The potential mechanisms of TAK-875 toxicity were explored by combining in vitro experiments with quantitative systems toxicology (QST) using DILIsym, a mathematical representation of drug-induced liver injury. In vitro assays revealed that bile acid transporters were inhibited by both TAK-875 and its metabolite, TAK-875-Glu. Experimental data indicated that human bile salt export pump (BSEP) inhibition by TAK-875 was mixed whereas sodium taurocholate co-transporting polypeptide (NTCP) inhibition by TAK-875 was competitive. Furthermore, experimental data demonstrated that both TAK-875 and TAK-875-Glu inhibit mitochondrial electron transport chain (ETC) enzymes. These mechanistic data were combined with a physiologically based pharmacokinetic (PBPK) model constructed within DILIsym to estimate liver exposure of TAK-875 and TAK-875-Glu. In a simulated population (SimPops) constructed to reflect T2D patients, 16/245 (6.5%) simulated individuals developed alanine aminotransferase (ALT) elevations, an incidence similar to that observed with 200 mg daily dosing in clinical trials. Determining the mode of bile acid transporter inhibition (Ki) was critical to accurate predictions. In addition, simulations conducted on a sensitive subset of individuals (SimCohorts) revealed that when either BSEP or ETC inhibition was inactive, ALT elevations were not predicted to occur, suggesting that the two mechanisms operate synergistically to produce the observed clinical response. These results demonstrate how utilizing QST methods to interpret in vitro experimental results can lead to an improved understanding of the clinically relevant mechanisms underlying drug-induced toxicity.
Collapse
Affiliation(s)
- Diane M Longo
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | | | | | | | | | - Francis S Wolenski
- Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts 02139
| | - Yvonne P Dragan
- Takeda Pharmaceuticals International, Inc., Cambridge, Massachusetts 02139
| | - Merrie Mosedale
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| | - Paul B Watkins
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina 27709
| |
Collapse
|
41
|
Woodhead JL, Pellegrini L, Shoda LKM, Howell BA. Comparison of the Hepatotoxic Potential of Two Treatments for Autosomal-Dominant Polycystic Kidney DiseaseUsing Quantitative Systems Toxicology Modeling. Pharm Res 2020; 37:24. [PMID: 31909447 PMCID: PMC6944674 DOI: 10.1007/s11095-019-2726-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Purpose Autosomal-dominant polycystic kidney disease (ADPKD) is an orphan disease with few current treatment options. The vasopressin V2 receptor antagonist tolvaptan is approved in multiple countries for the treatment of ADPKD, however its use is associated with clinically significant drug-induced liver injury. Methods In prior studies, the potential for hepatotoxicity of tolvaptan was correctly predicted using DILIsym®, a quantitative systems toxicology (QST) mathematical model of drug-induced liver injury. In the current study, we evaluated lixivaptan, another proposed ADPKD treatment and vasopressin V2 receptor antagonist, using DILIsym®. Simulations were conducted that assessed the potential for lixivaptan and its three main metabolites to cause hepatotoxicity due to three injury mechanisms: bile acid accumulation, mitochondrial dysfunction, and oxidative stress generation. Results of these simulations were compared to previously published DILIsym results for tolvaptan. Results No ALT elevations were predicted to occur at the proposed clinical dose for lixivaptan, in contrast to previously published simulation results for tolvaptan. As such, lixivaptan was predicted to have a markedly lower risk of hepatotoxicity compared to tolvaptan with respect to the hepatotoxicity mechanisms represented in DILIsym. Conclusions These results demonstrate the potential for using QST methods to differentiate drugs in the same class for their potential to cause hepatotoxicity. Electronic supplementary material The online version of this article (10.1007/s11095-019-2726-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J L Woodhead
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA.
| | - L Pellegrini
- Palladio Biosciences, Inc., Newtown, Pennsylvania, USA
| | - L K M Shoda
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services, Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| |
Collapse
|
42
|
Di Mise A, Venneri M, Ranieri M, Centrone M, Pellegrini L, Tamma G, Valenti G. Lixivaptan, a New Generation Diuretic, Counteracts Vasopressin-Induced Aquaporin-2 Trafficking and Function in Renal Collecting Duct Cells. Int J Mol Sci 2019; 21:ijms21010183. [PMID: 31888044 PMCID: PMC6981680 DOI: 10.3390/ijms21010183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Vasopressin V2 receptor (V2R) antagonists (vaptans) are a new generation of diuretics. Compared with classical diuretics, vaptans promote the excretion of retained body water in disorders in which plasma vasopressin concentrations are inappropriately high for any given plasma osmolality. Under these conditions, an aquaretic drug would be preferable over a conventional diuretic. The clinical efficacy of vaptans is in principle due to impaired vasopressin-regulated water reabsorption via the water channel aquaporin-2 (AQP2). Here, the effect of lixivaptan—a novel selective V2R antagonist—on the vasopressin-cAMP/PKA signaling cascade was investigated in mouse renal collecting duct cells expressing AQP2 (MCD4) and the human V2R. Compared to tolvaptan—a selective V2R antagonist indicated for the treatment of clinically significant hypervolemic and euvolemic hyponatremia—lixivaptan has been predicted to be less likely to cause liver injury. In MCD4 cells, clinically relevant concentrations of lixivaptan (100 nM for 1 h) prevented dDAVP-induced increase of cytosolic cAMP levels and AQP2 phosphorylation at ser-256. Consistent with this finding, real-time fluorescence kinetic measurements demonstrated that lixivaptan prevented dDAVP-induced increase in osmotic water permeability. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of lixivaptan and suggest that lixivaptan has the potential to become a safe and effective therapy for the treatment of disorders characterized by high plasma vasopressin concentrations and water retention.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
- Correspondence: (A.D.M.); (G.V.)
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | | | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
- Correspondence: (A.D.M.); (G.V.)
| |
Collapse
|
43
|
Generaux G, Lakhani VV, Yang Y, Nadanaciva S, Qiu L, Riccardi K, Di L, Howell BA, Siler SQ, Watkins PB, Barton HA, Aleo MD, Shoda LKM. Quantitative systems toxicology (QST) reproduces species differences in PF-04895162 liver safety due to combined mitochondrial and bile acid toxicity. Pharmacol Res Perspect 2019; 7:e00523. [PMID: 31624633 PMCID: PMC6785660 DOI: 10.1002/prp2.523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665). PF-04895162, a drug in development for the treatment of epilepsy, was terminated after transaminase elevations were observed in healthy volunteers (NCT01691274). Liver safety concerns had not been raised in preclinical safety studies. DILIsym, which integrates in vitro data on mechanisms of hepatotoxicity with predicted in vivo liver exposure, reproduced clinical hepatotoxicity and the absence of hepatotoxicity observed in the rat. Simulated differences were multifactorial. Simulated liver exposure was greater in humans than rats. The simulated human hepatotoxicity was demonstrated to be due to the interaction between mitochondrial toxicity and bile acid transporter inhibition; elimination of either mechanism from the simulations abrogated injury. The bile acid contribution occurred despite the fact that the IC50 for bile salt export pump (BSEP) inhibition by PF-04895162 was higher (311 µmol/L) than that has been generally thought to contribute to hepatotoxicity. Modeling even higher PF-04895162 liver exposures than were measured in the rat safety studies aggravated mitochondrial toxicity but did not result in rat hepatotoxicity due to insufficient accumulation of cytotoxic bile acid species. This investigative study highlights the potential for combined in vitro and computational screening methods to identify latent hepatotoxic risks and paves the way for similar and prospective studies.
Collapse
Affiliation(s)
- Grant Generaux
- DILIsym Services Inc.Research Triangle ParkNorth Carolina
| | | | - Yuching Yang
- DILIsym Services Inc.Research Triangle ParkNorth Carolina
- Present address:
Division of PharmacometricsOffice of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchFood and Drug Administration Food and Drug AdministrationSilver SpringMaryland
| | - Sashi Nadanaciva
- Compound Safety PredictionWorldwide Medicinal ChemistryPfizer Inc.GrotonConnecticut
| | - Luping Qiu
- Investigative ToxicologyDrug Safety Research and DevelopmentPfizer Inc.GrotonConnecticut
| | - Keith Riccardi
- Pharmacokinetics, Dynamics and MetabolismMedicinal SciencesPfizer Inc.GrotonConnecticut
| | - Li Di
- Pharmacokinetics, Dynamics and MetabolismMedicinal SciencesPfizer Inc.GrotonConnecticut
| | | | - Scott Q. Siler
- DILIsym Services Inc.Research Triangle ParkNorth Carolina
| | - Paul B. Watkins
- UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- UNC Institute for Drug Safety SciencesUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Hugh A. Barton
- Translational Modeling and SimulationBiomedicine DesignPfizer, Inc.GrotonConnecticut
| | - Michael D. Aleo
- Investigative ToxicologyDrug Safety Research and DevelopmentPfizer Inc.GrotonConnecticut
| | | |
Collapse
|
44
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
45
|
Battista C, Yang K, Stahl SH, Mettetal JT, Watkins PB, Siler SQ, Howell BA. Using Quantitative Systems Toxicology to Investigate Observed Species Differences in CKA-Mediated Hepatotoxicity. Toxicol Sci 2019; 166:123-130. [PMID: 30060248 PMCID: PMC6204762 DOI: 10.1093/toxsci/kfy191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CKA, a chemokine receptor antagonist intended for treating inflammatory conditions, produced dose-dependent hepatotoxicity in rats but advanced into the clinic where single doses of CKA up to 600 mg appeared safe in humans. Because existing toxicological platforms used during drug development are not perfectly predictive, a quantitative systems toxicology model investigated the hepatotoxic potential of CKA in humans and rats through in vitro assessments of CKA on mitochondrial respiration, oxidative stress, and bile acid transporters. DILIsym predicted that single doses of CKA caused serum ALT >3xULN in a subset of the simulated rat population, while single doses in a simulated human population did not produce serum ALT elevations. Species differences were largely attributed to differences in liver exposure, but increased sensitivity to inhibition of mitochondrial respiration in the rat also contributed. We conclude that mechanistic modeling can elucidate species differences in the hepatotoxic potential of drug candidates.
Collapse
Affiliation(s)
- Christina Battista
- DILIsym Services, Inc., Research Triangle Park, North Carolina.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kyunghee Yang
- DILIsym Services, Inc., Research Triangle Park, North Carolina
| | - Simone H Stahl
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Astra Zeneca R&D, Cambridge CB4 0WG, UK
| | - Jerome T Mettetal
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Astra Zeneca R&D, Waltham, Massachusetts
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, North Carolina
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina.,DILIsym Services, Inc., Six Davis Drive, PO BOX 12317, Research Triangle Park, NC 27709
| |
Collapse
|
46
|
Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin Pharmacol Ther 2019; 104:916-932. [PMID: 30137645 PMCID: PMC6220754 DOI: 10.1002/cpt.1222] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug‐induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow‐up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case‐by‐case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Collapse
Affiliation(s)
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Christina Battista
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - David L Bourdet
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David Dai
- Clinical Pharmacology, Research and Development Sciences, Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael J Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Y Anne Pak
- Lilly Research Laboratory, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny M Pedersen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Novum, Huddinge, Sweden
| | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyunghee Yang
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - Robert W Yucha
- Takeda Pharmaceuticals, Global Drug Metabolism and Pharmacokinetics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
47
|
Khan MY, Rawala MS, Siddiqui M, Abid W, Aslam A. Tolvaptan-induced Liver Injury: Who is at Risk? A Case Report and Literature Review. Cureus 2019; 11:e4842. [PMID: 31410325 PMCID: PMC6684126 DOI: 10.7759/cureus.4842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hyponatremia is a common clinical condition encountered in the hospital setting. Syndrome of inappropriate antidiuretic hormone (SIADH) is an important and one of the most common causes of hyponatremia. SIADH accounts for approximately one-third of all cases of hyponatremia. Tolvaptan is a vasopressin receptor antagonist used to treat SIADH. Hepatoxicity is a rare yet dangerous side effect from Tolvaptan use. We present a case of cholestatic liver injury in an elderly female who presented with hyponatremia. She received two doses of tolvaptan 15mg and developed worsening in her total bilirubin (T Bili) and alkaline phosphatase (Alk Phos) levels. Tolvaptan is known to cause elevated transaminase levels and the mechanism of action is thought to be idiosyncratic. Fortunately, the patient responded with an improvement in T Bili and Alk Phos levels after stopping tolvaptan. This case highlights the cautious use of tolvaptan in elderly patients with SIADH as even small doses can potentiate hepatotoxicity.
Collapse
Affiliation(s)
| | | | | | - Waqas Abid
- Interventional Radiology, Christiana Hospital, Newark, USA
| | - Aysha Aslam
- Internal Medicine, Louis A. Weiss Memorial Hospital, Chicago, USA
| |
Collapse
|
48
|
Clemens MM, McGill MR, Apte U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:241-262. [PMID: 31307589 DOI: 10.1016/bs.apha.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver, the major metabolic organ in the body, is known for its remarkable capacity to regenerate. Whereas partial hepatectomy (PHx) is a popular model for the study of liver regeneration, the liver also regenerates after acute injury, but less is known about the mechanisms that drive it. Recent studies have shown that liver regeneration is critical for survival in acute liver failure (ALF), which is usually due to drug-induced liver injury (DILI). It is sometimes assumed that the signaling pathways involved are similar to those that regulate regeneration after PHx, but there are likely to be critical differences. A better understanding of regeneration mechanisms after DILI and hepatotoxicity in general could lead to development of new therapies for ALF patients and new biomarkers to predict patient outcome. Here, we summarize what is known about the mechanisms of liver regeneration and repair after hepatotoxicity. We also review the literature in the emerging field of liver regeneration biomarkers.
Collapse
Affiliation(s)
- Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
49
|
Hoshikawa K, Naito T, Saotome M, Maekawa Y, Kawakami J. Validated liquid chromatography coupled to tandem mass spectrometry method for simultaneous quantitation of tolvaptan and its five major metabolites in human plasma. Ann Clin Biochem 2019; 56:387-396. [DOI: 10.1177/0004563219827045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Tolvaptan is converted to major metabolites including three monohydroxylates (DM-4110, DM-4111 and DM-4119), an oxidate (MOP-21826) and a carboxylate (DM-4103) in humans. This study developed a simultaneous quantitative method for tolvaptan and its five major metabolites in human plasma using liquid chromatography coupled to tandem mass spectrometry. Methods Deproteinized plasma specimens using acetonitrile were separated using a 3- μm particle size octadecylsilyl column with 250 mm length and a simple linear gradient program at a flow rate of 0.3 mL/min with a total run time of 15 min. This method was applied to the determination of plasma samples collected from 20 heart failure patients treated with 3.75–15 mg tolvaptan. Results No interfering peak was found in drug-free plasma specimens. The calibration curves of tolvaptan, DM-4110, DM-4111, DM-4119, MOP-21826 and DM-4103 were linear over the concentration ranges of 3.125–1000, 0.3125–100, 1.25–400, 0.625–200, 0.125–40 and 31.25–10,000 ng/mL, respectively. Their pretreatment recovery rates and matrix factors were 94.1–113.9% and 86.9–108.0%, respectively. The intra- and inter-day accuracies and imprecisions were 91.6–106.5% and 0.9–10.9%, respectively, for all analytes. The plasma concentration ranges of tolvaptan, DM-4110, DM-4111, DM-4119, MOP-21826 and DM-4103 were 9.37–280, 1.91–16.3, 3.43–88.9, 1.43–10.4, 0.160–1.01 and 40.2–1471 ng/mL, respectively, in heart failure patients. Conclusions This validated method with acceptable analytical performance can be utilized for evaluating the pharmacokinetics of oral tolvaptan, including the determination of its major metabolites, in heart failure patients.
Collapse
Affiliation(s)
- Kohei Hoshikawa
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masao Saotome
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuichiro Maekawa
- Third Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
50
|
Analyzing the Mechanisms Behind Macrolide Antibiotic-Induced Liver Injury Using Quantitative Systems Toxicology Modeling. Pharm Res 2019; 36:48. [PMID: 30734107 PMCID: PMC6373306 DOI: 10.1007/s11095-019-2582-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Macrolide antibiotics are commonly prescribed treatments for drug-resistant bacterial infections; however, many macrolides have been shown to cause liver enzyme elevations and one macrolide, telithromycin, has been pulled from the market by its provider due to liver toxicity. This work seeks to assess the mechanisms responsible for the toxicity of macrolide antibiotics. METHODS Five macrolides were assessed in in vitro systems designed to test for bile acid transporter inhibition, mitochondrial dysfunction, and oxidative stress. The macrolides were then represented in DILIsym, a quantitative systems pharmacology (QST) model of drug-induced liver injury, placing the in vitro results in context with each compound's predicted liver exposure and known biochemistry. RESULTS DILIsym results suggest that solithromycin and clarithromycin toxicity is primarily due to inhibition of the mitochondrial electron transport chain (ETC) while erythromycin toxicity is primarily due to bile acid transporter inhibition. Telithromycin and azithromycin toxicity was not predicted by DILIsym and may be caused by mechanisms not currently incorporated into DILIsym or by unknown metabolite effects. CONCLUSIONS The mechanisms responsible for toxicity can be significantly different within a class of drugs, despite the structural similarity among the drugs. QST modeling can provide valuable insight into the nature of these mechanistic differences.
Collapse
|