1
|
Li H, Chen J, Dong C, Chen X, Gu Y, Jiang Y, Cui J, Chen H. Behavioral and molecular neurotoxicity of thermally degraded polystyrene in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137212. [PMID: 39827801 DOI: 10.1016/j.jhazmat.2025.137212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Microplastics are pervasive environmental contaminants found across diverse ecosystems, inducing toxic effects in a wide range of organisms. However, the neurotoxic effects of thermally degraded polystyrene (T-PS) and its underlying mechanisms remain poorly unexplored. In this study, Caenorhabditis elegans was exposed to environmentally relevant concentrations of T-PS (0.1-100 μg/L), and endpoints including locomotion behaviors, neuronal development, neurotransmitter levels, and gene expression were assessed. Significant alterations in morphology, crystallinity, elemental composition, and functional groups were observed in T-PS compared to virgin polystyrene (V-PS), indicating that thermal degradation modifies the physicochemical properties of V-PS. Exposure to 10-100 μg/L T-PS resulted in a more pronounced decrease in head thrashes, body bends, forward turns, and backward turns compared to V-PS. In transgenic nematodes, T-PS exposure significantly impacted fluorescence intensity and the percentage of worms exhibiting neurodegeneration in serotonergic, cholinergic, dopaminergic, and γ-aminobutyric acid (GABA) neurons. Correspondingly, marked reductions were observed in the levels of dopamine, serotonin, GABA, and choline neurotransmitters, alongside significant declines in neurotransmitter-related gene expression (e.g., dat-1, tph-1, unc-30, and cha-1). Pearson's correlation analysis revealed a significant positive association between these genes and locomotion behaviors. Furthermore, the absence of locomotion behavior impairment in dat-1 (ok157), tph-1 (mg280), unc-30 (e191), and cha-1 (e1152) mutants highlights the pivotal roles of these genes in mediating T-PS-induced neurotoxicity in C. elegans. This study enhances our understanding of the neurotoxic mechanisms of T-PS at environmental concentrations, providing valuable insights into its potential environmental health risks.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinyu Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Xiaoxia Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingwen Cui
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Rivera AB, Stephens AB, Conrow KD, Griffith ST, Jameson LE, Cahill TM, Sammi SR, Swinburne MR, Cannon JR, Leung MCK. Regulatory trends of organophosphate and pyrethroid pesticides in cannabis and applications of the Comparative Toxicogenomics Database and Caenorhabditis elegans. Toxicol Sci 2025; 204:218-227. [PMID: 39836634 PMCID: PMC11979763 DOI: 10.1093/toxsci/kfaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Organophosphate and pyrethroid pesticides are common contaminants in cannabis. Due to the status of cannabis as an illicit Schedule I substance at the federal level, there are no unified national guidelines in the United States to mitigate the health risk of pesticide exposure in cannabis. Here, we examined the change in the state-level regulations of organophosphate and pyrethroid pesticides in cannabis. The medians of pyrethroid and organophosphate pesticides specified by each state-level jurisdiction increased from zero pesticide in 2019 to 4.5 pyrethroid and 7 organophosphate pesticides in 2023, respectively. Next, we evaluated the potential connections between pyrethroids, organophosphates, cannabinoids, and Parkinson's disease using the Comparative Toxicogenomics Database (CTD). Eleven pyrethroids, 30 organophosphates, and 14 cannabinoids were associated with 95 genes to form 3,237 inferred and curated Chemical-Gene-Phenotype-Disease tetramers. Using a behavioral repulsion assay with the whole organism model Caenorhabditis elegans, we examined the effect of cannabinoids and insecticides on depleting dopamine synthesis. Exposure to chlorpyrifos and permethrin, but not Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), results in dose-dependent effects on 1-nonanol repulsive behaviors in C. elegans, indicating dopaminergic neurotoxicity (P < 0.01). Dose-dependent effects of chlorpyrifos are different in the presence of Δ9-THC and CBD (P < 0.001). As a proof of concept, this study demonstrated how to use new approach methodologies such as C. elegans and the CTD to inform further testing and pesticide regulations in cannabis by chemical class.
Collapse
Affiliation(s)
- Albert B Rivera
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
| | - Ariell B Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Kendra D Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Symone T Griffith
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, United States
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Thomas M Cahill
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Shreesh R Sammi
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mathew R Swinburne
- Francis King Carey School of Laws, University of Maryland, Baltimore, MD 21201, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, United States
| |
Collapse
|
3
|
Ishak S, Allouche M, Alotaibi GS, Alwthery NS, Al-Subaie RA, Al-Hoshani N, Plavan OA, Selamoglu Z, Özdemir S, Plavan G, Badraoui R, Rudayni HA, Boufahja F. Experimental and computational assessment of Antiparkinson Medication effects on meiofauna: Case study of Benserazide and Trihexyphenidyl. MARINE POLLUTION BULLETIN 2024; 205:116668. [PMID: 38972217 DOI: 10.1016/j.marpolbul.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Two concentrations (6.25 and 1.25 mg/L) were used for two Parkinson's disease medications, Benserazide, and Trihexyphenidyl, to test their effects on the meiobenthic nematofauna. It is predicted that these highly hydrosoluble drugs will end up in marine environments. The results showed that both medications when added alone, induced (i) important changes in the numbers and (ii) taxonomic composition. The impact of Benserazide and Trihexyphenidyl was also reflected in the (iii) functional traits of nematofauna, with the most affected categories following exposure being the trophic group 1B, the clavate tails, the circular amphids, the c-p2 life history, and the body length of 1-2 mm. These results were supported by the molecular interactions of the studied drugs with both GLD-3 and SDP proteins of Caenorhabditis elegans. (iv) The mixtures of both drugs did not show any changes in the nematode communities, suggesting that no synergistic or antagonistic interactions exist between them.
Collapse
Affiliation(s)
- Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Mohamed Allouche
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia; Biology Department, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, BP: 382, Tunisia
| | - Ghadah S Alotaibi
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nada S Alwthery
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Raghad A Al-Subaie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Oana-Alexandra Plavan
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania.
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Sadin Özdemir
- Food Processing Programme Technical Science Vocational School Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Bvd. Carol I, No. 20A, 700505, Iasi, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Hassan A Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
4
|
Martuscello RT, Sivaprakasam K, Hartstone W, Kuo SH, Konopka G, Louis ED, Faust PL. Gene Expression Analysis of Laser-Captured Purkinje Cells in the Essential Tremor Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1166-1181. [PMID: 36242761 PMCID: PMC10359949 DOI: 10.1007/s12311-022-01483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Essential tremor (ET) is a common, progressive neurological disease characterized by an 8-12-Hz kinetic tremor. Despite its high prevalence, the patho-mechanisms of tremor in ET are not fully known. Through comprehensive studies in postmortem brains, we identified major morphological changes in the ET cerebellum that reflect cellular damage in Purkinje cells (PCs), suggesting that PC damage is central to ET pathogenesis. We previously performed a transcriptome analysis in ET cerebellar cortex, identifying candidate genes and several dysregulated pathways. To directly target PCs, we purified RNA from PCs isolated by laser capture microdissection and performed the first ever PC-specific RNA-sequencing analysis in ET versus controls. Frozen postmortem cerebellar cortex from 24 ETs and 16 controls underwent laser capture microdissection, obtaining ≥2000 PCs per sample. RNA transcriptome was analyzed via differential gene expression, principal component analysis (PCA), and gene set enrichment analyses (GSEA). We identified 36 differentially expressed genes, encompassing multiple cellular processes. Some ET (13/24) had greater dysregulation of these genes and segregated from most controls and remaining ETs in PCA. Characterization of genes/pathways enriched in this PCA and GSEA identified multiple pathway dysregulations in ET, including RNA processing/splicing, synapse organization/ion transport, and oxidative stress/inflammation. Furthermore, a different set of pathways characterized marked heterogeneity among ET patients. Our data indicate a range of possible mechanisms for the pathogenesis of ET. Significant heterogeneity among ET combined with dysregulation of multiple cellular processes supports the notion that ET is a family of disorders rather than one disease entity.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Karthigayini Sivaprakasam
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Whitney Hartstone
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 650 W 168th Street, BB302, New York, NY, USA
| | - Genevieve Konopka
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Suite NL9.114, Dallas, TX, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Zhang L, Liu J, Xu B, Wu D, Wu Y, Li G. β-Carbolines norharman and harman change neurobehavior causing neurological damage in Caenorhabditis elegans. Food Funct 2023; 14:10031-10040. [PMID: 37927231 DOI: 10.1039/d3fo03732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
β-Carbolines norharman and harman, belonging to the class of heterocyclic aromatic amines (HAAs), are typical hazardous substances produced during the thermal processing of food. Compared to other HAAs, there have been limited reports on the toxicity of β-carbolines. Nevertheless, the current studies are concerned with the neurotoxic effects of norharman and harman at high doses. It is still unknown whether the relatively low dose of β-carbolines in foods induces neurotoxicity and the mechanism of the toxicity. In this study, C. elegans was exposed to a series of gradients of norharman and harman (0, 0.05, 5, and 10 mg L-1). The survival rate and indicators of ethology (locomotor behaviors, foraging behavior, and chemotaxis ability) were assessed. The antioxidant system and the contents of neurotransmitters, as well as the activity of acetylcholinesterase (AChE), were evaluated. Additionally, the RNA-seq screening of differentially expressed genes (DEGs) revealed the potential molecular mechanisms of norharman- and harman-induced toxic effects. Our results indicated that the risk of long-term exposure to norharman and harman at low doses (food-related doses) should be emphasized. Moreover, β-carbolines might induce neurotoxicity by causing oxidative damage, regulating the content of neurotransmitters, and interfering with cytochrome P450 metabolism. This study would provide a toxicological basis for the neurotoxicity of β-carbolines and lay the foundation for the risk assessment of endogenous pollutants in food.
Collapse
Affiliation(s)
- Luyao Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jialu Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bufan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
6
|
Aksenov NA, Arutiunov NA, Aksenov AV, Kirilov NK, Aksenova IV, Aksenov DA, Aleksandrova EV, Rubin M, Kornienko A. Synthesis of β-Carbolines with Electrocyclic Cyclization of 3-Nitrovinylindoles. Int J Mol Sci 2023; 24:13107. [PMID: 37685914 PMCID: PMC10487476 DOI: 10.3390/ijms241713107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The β-carboline motif is common in drug discovery and among numerous biologically active natural products. However, its synthetic preparation relies on multistep sequences and heavily depends on the type of substitution required in the core of the desired β-carboline target. Herein, we demonstrate that this structural motif can be accessed with the microwave-assisted electrocyclic cyclization of heterotrienic aci (alkylideneazinic acid) forms of 3-nitrovinylindoles. The reaction can start with 3-nitrovinylindoles themselves under two sets of conditions. The first one involves microwave irradiation of butanolic solutions of 3-nitrovinylindoles, whereas the second one consists of prior Boc protection of indolic nitrogen, where the protecting group cleanly comes off during the course of the reaction. Alternatively, the reaction can start with 3-nitrovinylindoles prepared in situ using various processes. Finally, the reaction may utilize indoles with β-nitrostyrenes, likely involving the intermediacy of spirocyclic oxazolines, which rearrange to similar heterotrienic systems undergoing cyclization to β-carbolines. As part of this study, several natural products, namely, alkaloids norharmane, harmane, and eudistomin N, were synthesized.
Collapse
Affiliation(s)
- Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Nikolai A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Nikita K. Kirilov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Inna V. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Elena V. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia; (N.A.A.); (A.V.A.); (N.K.K.); (I.V.A.); (D.A.A.); (E.V.A.); (M.R.)
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| |
Collapse
|
7
|
Bellamri M, Brandt K, Cammerrer K, Syeda T, Turesky RJ, Cannon JR. Nuclear DNA and Mitochondrial Damage of the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine in Human Neuroblastoma Cells. Chem Res Toxicol 2023; 36:1361-1373. [PMID: 37421305 PMCID: PMC10626466 DOI: 10.1021/acs.chemrestox.3c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Animal fat and iron-rich diets are risk factors for Parkinson's disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Kyle Brandt
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Kari Cammerrer
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Shukla S, Saxena A, Shukla SK, Nazir A. Modulation of Neurotransmitter Pathways and Associated Metabolites by Systemic Silencing of Gut Genes in C. elegans. Diagnostics (Basel) 2023; 13:2322. [PMID: 37510066 PMCID: PMC10378590 DOI: 10.3390/diagnostics13142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The gut is now recognized as the "second brain" of the human body due to its integral role in neuronal health and functioning. Although we know that the gut communicates with the brain via immunological factors, microbial metabolites, and neurotransmitters, the interplay of these systems remains poorly understood. To investigate this interplay, we silenced 48 genes that are exclusively or primarily expressed in the C. elegans intestine. We studied the associated effects on various aspects of neurodegeneration, including proteotoxicity induced by α-Syn expression. We also assayed behaviours, such as mobility and cognition, that are governed by various neurotransmitters. We identified nine gut genes that significantly modulated these events. We further performed HR-MAS NMR-based metabolomics to recognize the metabolic variability induced by the respective RNAi conditions of R07E3.1, C14A6.1, K09D9.2, ZK593.2, F41H10.8, M02D8.4, M88.1, C03G6.15 and T01D3.6. We found that key metabolites such as phenylalanine, tyrosine, inosine, and glutamine showed significant variation among the groups. Gut genes that demonstrated neuroprotective effects (R07E3.1, C14A6.1, K09D9.2, and ZK593.2) showed elevated levels of inosine, phenylalanine, and tyrosine; whereas, genes that aggravated neurotransmitter levels demonstrated decreased levels of the same metabolites. Our results shed light on the intricate roles of gut genes in the context of neurodegeneration and suggest a new perspective on the reciprocal interrelation of gut genes, neurotransmitters, and associated metabolites. Further studies are needed to decipher the intricate roles of these genes in context of neurodegeneration in greater detail.
Collapse
Affiliation(s)
- Shikha Shukla
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankit Saxena
- Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
10
|
Nguyen BT, Yen NTH, Tung NKT, Jeong GS, Kang JS, Long NP, Kim HM. Lipid class-dependent alterations of Caenorhabditis elegans under harmane exposure. J Pharm Biomed Anal 2023; 231:115401. [PMID: 37105045 DOI: 10.1016/j.jpba.2023.115401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Altered lipid patterns in Caenorhabditis elegans (C. elegans) resulting from exposure to harmane remain to be explored. In this study, untargeted lipidomics was carried out to elucidate the effects of acute exposure to harmane on the lipidome of C. elegans. Exposure to the compound was evaluated based on the reproduction ability of the worms at 0.1 and 1 μg/mL. No significant effects of harmane were observed at these concentrations. Furthermore, we found that the modulatory effects of harmane on the lipidome of C. elegans at 1 μg/mL were lipid class dependent. In particular, harmane-treated worms were enriched in triglycerides and fatty acids, regardless of the degree of saturation. Glycerophospholipids were generally down-regulated. Furthermore, functional analyses suggested that there was a reduction in lipid membrane bilayer-related terms, and in some related to the mitochondria, and endoplasmic reticulum of C. elegans when treated with harmane. Lipid droplets and storage appeared to be up-regulated. In conclusion, our findings suggest that harmane exposure affects the lipidome of C. elegans in a sophisticated manner. Further investigations are required to elucidate the molecular mechanisms underlying these lipid pattern changes.
Collapse
Affiliation(s)
- Bao Tan Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Ninh Khac Thanh Tung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| | - Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
11
|
Sammi SR, Syeda T, Conrow KD, Leung MCK, Cannon JR. Complementary biological and computational approaches identify distinct mechanisms of chlorpyrifos versus chlorpyrifos-oxon-induced dopaminergic neurotoxicity. Toxicol Sci 2023; 191:163-178. [PMID: 36269219 PMCID: PMC9887671 DOI: 10.1093/toxsci/kfac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Organophosphate (OP) pesticides are widely used in agriculture. While acute cholinergic toxicity has been extensively studied, chronic effects on other neurons are less understood. Here, we demonstrated that the OP pesticide chlorpyrifos (CPF) and its oxon metabolite are dopaminergic neurotoxicants in Caenorhabditis elegans. CPF treatment led to inhibition of mitochondrial complex II, II + III, and V in rat liver mitochondria, while CPF-oxon did not (complex II + III and IV inhibition observed only at high doses). While the effect on C. elegans cholinergic behavior was mostly reversible with toxicant washout, dopamine-associated deficits persisted, suggesting dopaminergic neurotoxicity was irreversible. CPF reduced the mitochondrial content in a dose-dependent manner and the fat modulatory genes cyp-35A2 and cyp-35A3 were found to have a key role in CPF neurotoxicity. These findings were consistent with in vitro effects of CPF and CPF-oxon on nuclear receptor signaling and fatty acid/steroid metabolism observed in ToxCast assays. Two-way hierarchical analysis revealed in vitro effects on estrogen receptor, pregnane X receptor, and peroxisome proliferator-activated receptor gamma pathways as well as neurotoxicity of CPF, malathion, and diazinon, whereas these effects were not detected in malaoxon and diazoxon. Taken together, our study suggests that mitochondrial toxicity and metabolic effects of CPF, but not CPF-oxon, have a key role of CPF neurotoxicity in the low-dose, chronic exposure. Further mechanistic studies are needed to examine mitochondria as a common target for all OP pesticide parent compounds, because this has important implications on cumulative pesticide risk assessment.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Kendra D Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Aksenov NA, Arutiunov NA, Aksenov AV, Aksenova IV, Aleksandrova EV, Aksenov DA, Rubin M. Nitrovinylindoles as Heterotrienes: Electrocyclic Cyclization En Route to β-Carbolines: Total Synthesis of Alkaloids Norharmane, Harmane, and Eudistomin N. Org Lett 2022; 24:7062-7066. [PMID: 36166488 DOI: 10.1021/acs.orglett.2c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unusual cascade transformation was developed involving microwave assisted electrocyclic cyclization of aci (alkylideneazinic acid) forms of nitrovinylindoles acting as heterotrienes. Subsequent one-pot reduction allowed for efficient access to β-carbolines, including several natural products, alkaloids norharmane, harmane and eudistomin N.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Nikolai A Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Inna V Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Elena V Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.,Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Feng Y, Chen S, Zhao Y, Wu D, Li G. Heterocyclic aromatic amines induce Neuro-2a cells cytotoxicity through oxidative stress-mediated mitochondria-dependent apoptotic signals. Food Chem Toxicol 2022; 168:113376. [PMID: 35985368 DOI: 10.1016/j.fct.2022.113376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Heterocyclic aromatic amines (HAAs) are a class of hazardous compounds produced in food thermal processing. These compounds raise concerns because they have mutagenic and carcinogenic properties. However, the neurotoxicity of these compounds has received limited attention. Here, the toxic effects of three HAAs, i.e. 9H-pyrido[3,4-b]indole (Norharman), 1-methyl-9H-pyrido[3,4-b]indole (Harman), and 2-amino-3-methylimidazole[4,5-f]quinoline (IQ) were investigated in Neuro-2a cells model. The results showed that the survival rate of cells decreased in a dose-dependent manner and apoptosis occurred after exposure to the three HAAs for 24 h and 48 h. Their neurotoxicity was ranked as Harman > Norharman > IQ. Further, treatment of Harman, Norharman, or IQ at 50 and 100 μM for 48 h led to intracellular REDOX imbalance, which was manifested as increased ROS and malondialdehyde (MDA) levels, decreased GSH/GSSG ratio, and reduced SOD and CAT activities. Moreover, Norharman and Harman up-regulated the expression level of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as the mRNA levels of Heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoredutase1 (NQO1), while IQ had no significant effect on the levels of Nrf2, HO-1, and NQO1. Additionally, Harman, Norharman, or IQ exposure significantly reduced mitochondrial membrane potential and intracellular ATP levels and up-regulated the levels of apoptosis-related genes and proteins. Collectively, our finding suggested that HAAs were neurotoxic, with mechanisms related to induction of oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yanmei Feng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shasha Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yan Zhao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
14
|
Sammi SR, Jameson LE, Conrow KD, Leung MCK, Cannon JR. Caenorhabditis elegans Neurotoxicity Testing: Novel Applications in the Adverse Outcome Pathway Framework. FRONTIERS IN TOXICOLOGY 2022; 4:826488. [PMID: 35373186 PMCID: PMC8966687 DOI: 10.3389/ftox.2022.826488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurological hazard assessment of industrial and pesticidal chemicals demands a substantial amount of time and resources. Caenorhabditis elegans is an established model organism in developmental biology and neuroscience. It presents an ideal test system with relatively fewer neurons (302 in hermaphrodites) versus higher-order species, a transparent body, short lifespan, making it easier to perform neurotoxic assessment in a time and cost-effective manner. Yet, no regulatory testing guidelines have been developed for C. elegans in the field of developmental and adult neurotoxicity. Here, we describe a set of morphological and behavioral assessment protocols to examine neurotoxicity in C. elegans with relevance to cholinergic and dopaminergic systems. We discuss the homology of human genes and associated proteins in these two signaling pathways and evaluate the morphological and behavioral endpoints of C. elegans in the context of published adverse outcome pathways of neurodegenerative diseases. We conclude that C. elegans neurotoxicity testing will not only be instrumental to eliminating mammalian testing in neurological hazard assessment but also lead to new knowledge and mechanistic validation in the adverse outcome pathway framework.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Laura E. Jameson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Kendra D. Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
- *Correspondence: Maxwell C. K. Leung, ; Jason R. Cannon,
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
- *Correspondence: Maxwell C. K. Leung, ; Jason R. Cannon,
| |
Collapse
|
15
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Cao Y, Li B, Ismail N, Smith K, Li T, Dai R, Deng Y. Neurotoxicity and Underlying Mechanisms of Endogenous Neurotoxins. Int J Mol Sci 2021; 22:12805. [PMID: 34884606 PMCID: PMC8657695 DOI: 10.3390/ijms222312805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.
Collapse
Affiliation(s)
- Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nafissa Ismail
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin Smith
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
| | - Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| |
Collapse
|
17
|
Yan C, Wu X, Cao X, Li M, Zhou L, Xiu G, Zeng J. In vitro and in vitro toxicity study of diesel exhaust particles using BEAS-2B cell line and the nematode Caenorhabditis elegans as biological models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60704-60716. [PMID: 34160767 DOI: 10.1007/s11356-021-14908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
It is well accepted that diesel exhaust particles (DEPs) are highly associated with improper function of organ systems. In this study, DEP toxicity was performed by using in vitro human BEAS-2B cell line and in vivo animal model, namely, Caenorhabditis elegans (C. elegans). The potential toxicity of DEP was assessed by the apical endpoints of BEAS-2B cell line and reflections of C. elegans under exposure scenarios of 0~50 μg mL-1 DEP. With the increase of DEP exposure concentration, microscopic accumulations in the cytoplasm of cell line and intestine of C. elegans were observed. Such invasion of DEP impaired the behaviors of C. elegans as well as its un-exposed offspring and caused significant impeded locomotion. Moreover, the disorders of dopaminergic function were observed simultaneously under DEP exposure, specifically manifested by the decreased transcriptional expression of dat-1. The stress responses instructed by the expression of hsp-16.2 were also increased sharply in TJ375 strain of C. elegans at DEP concentrations of 1 and 10 μg mL-1. In the case of cellular reactions to DEP exposure, the injuries of membrane integrity and the decreased viability of cell line were simultaneously identified, and reactive oxygen species (ROS), damaged DNA fragment, and upregulated apoptosis were monotonically elevated in cell lines with the increase of DEP concentrations. This study provided a systematic insight into toxicity of DEP both in vivo and vitro, demonstrating that DEP exposure could disturb the stability of cell system and further threat the stability of organism.
Collapse
Affiliation(s)
- Chenzhi Yan
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Cao
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Meng Li
- American Chemical Society, 2 Kexueyuan Nanlu, Haidian District, Beijing, 100190, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiayi Zeng
- The Second Affiliated High School of East China Normal University, Shanghai, 201203, China
| |
Collapse
|
18
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
19
|
Li Z, Cao P, Meng H, Li D, Zhang Y, Li Y, Wang S. Long-term exposure to 2-amino-3-methylimidazo[4,5-f]quinoline can trigger a potential risk of Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125230. [PMID: 33548786 DOI: 10.1016/j.jhazmat.2021.125230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Humans are exposed to heterocyclic amines (HCAs) from a wide range of sources, such as protein-rich thermally processed foods, cigarette smoke, contaminated river water, the atmosphere, soil, and forest fire ash. Although the carcinogenic and mutagenic hazards of HCAs have been widely studied, the potential neurotoxicity of these compounds still needs to be further elucidated. Here, we studied the neurotoxicity of the HCA 2-amino-3-methylimidazole[4,5-f]quinoline (IQ) in vivo by utilizing a zebrafish model. After 35 days of exposure at 8, 80, and 800 ng/mL, zebrafish exploratory behavior and locomotor activity were significantly inhibited, and light/dark preference behaviors were also disturbed. Moreover, the expression of Parkinson's disease (PD)-related genes and proteins, dopamine-related genes, neuroplasticity-related genes, antioxidant enzyme genes and inflammatory cytokine genes in the zebrafish brain was significantly affected. The numbers of NeuN neurons in the midbrain were decreased in exposed zebrafish, while the numbers of apoptotic cells were increased. In summary, our research suggests that IQ is neurotoxic and significantly associated with PD and that long-term exposure to IQ may contribute to PD risk. This risk may be related to IQ-mediated effects on mitochondrial homeostasis and induction of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Peipei Cao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huiling Meng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dan Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuhao Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Lawana V, Um SY, Rochet JC, Turesky RJ, Shannahan JH, Cannon JR. Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicol Sci 2021; 173:171-188. [PMID: 31562763 DOI: 10.1093/toxsci/kfz210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are mutagens and potential human carcinogens. Our group and others have demonstrated that HAAs may also produce selective dopaminergic neurotoxicity, potentially relevant to Parkinson's disease (PD). The goal of this study was to elucidate mechanisms of HAA-induced neurotoxicity through examining a translational biochemical weakness of common PD models. Neuromelanin is a pigmented byproduct of dopamine metabolism that has been debated as being both neurotoxic and neuroprotective in PD. Importantly, neuromelanin is known to bind and potentially release dopaminergic neurotoxicants, including HAAs (eg, β-carbolines such as harmane). Binding of other HAA subclasses (ie, aminoimidazoaazarenes) to neuromelanin has not been investigated, nor has a specific role for neuromelanin in mediating HAA-induced neurotoxicity been examined. Thus, we investigated the role of neuromelanin in modulating HAA-induced neurotoxicity. We characterized melanin from Sepia officinalis and synthetic dopamine melanin, proposed neuromelanin analogs with similar biophysical properties. Using a cell-free assay, we demonstrated strong binding of harmane and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to neuromelanin analogs. To increase cellular neuromelanin, we transfected SH-SY5Y neuroblastoma cells with tyrosinase. Relative to controls, tyrosinase-expressing cells exhibited increased neuromelanin levels, cellular HAA uptake, cell toxicity, and oxidative damage. Given that typical cellular and rodent PD models form far lower neuromelanin levels than humans, there is a critical translational weakness in assessing HAA-neurotoxicity. The primary impacts of these results are identification of a potential mechanism by which HAAs accumulate in catecholaminergic neurons and support for the need to conduct neurotoxicity studies in systems forming neuromelanin.
Collapse
Affiliation(s)
- Vivek Lawana
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Robert J Turesky
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| |
Collapse
|
21
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
22
|
Sharma S, Trivedi S, Pandey T, Ranjan S, Trivedi M, Pandey R. Wedelolactone Mitigates Parkinsonism Via Alleviating Oxidative Stress and Mitochondrial Dysfunction Through NRF2/SKN-1. Mol Neurobiol 2020; 58:65-77. [PMID: 32894501 DOI: 10.1007/s12035-020-02080-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Parkinsonism is an age-associated neurodegenerative disorder characterized by aggregation of α-synuclein (α-syn) protein in the substantia nigra region, degeneration of dopaminergic neurons, and deregulated lipid metabolism. Currently, only symptomatic relief has been provided by FDA-approved therapeutic approaches for Parkinson's disease (PD). The present study aims to evaluate the potential of wedelolactone (WDL), a natural occurring coumestan found in Eclipta alba to mitigate the parkinsonism in Caenorhabditis elegans disease model. In the present studies, supplementation with 37.5 μM WDL exhibited a reduction in the level of α-syn in an age-dependent manner (22% at day 5, p < 0.05; and 16% at day 10, p < 0.001, n = 30), along with improvement in neuronal health through basal movement, and elevated the dopamine levels evident through 1-nonanol repulsion results in wild-type and diseased worms. Moreover, WDL augmented the mitochondrial health in wild-type, PD-diseased, and mev-1 mutant worms that establish the inherent activity of WDL in the alleviation of oxidative stress. Furthermore, WDL supplementation significantly decreases the neutral lipid and triglyceride level and also alleviates protein carbonyl level in PD disease condition. The overall investigation will provide a pioneer to the future insights of PD research related to plant-based drugs. qPCR studies after WDL supplementation revealed alteration of genes involved in the regulation of various stress-responsive (sod-5, gst-4, skn-1), α-syn-suppressing (lrk-1, ymel-1, lagr-1, grk-1), and mitochondrial (pink-1) genes. All together, these findings support that the WDL is a promising candidate to combat age-related multi-factorial PD pathology associated with protein misfolding and accumulation. The results provide sufficient information in the development of therapeutic medicines from natural products for improving the health.
Collapse
Affiliation(s)
- Shruti Sharma
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Shalini Trivedi
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Taruna Pandey
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Sachin Ranjan
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Mashu Trivedi
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Pandey
- Ageing Biology Lab Microbial Technology & Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
23
|
Cao X, Yan C, Wu X, Zhou L, Xiu G. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. ENVIRONMENTAL RESEARCH 2020; 186:109486. [PMID: 32283338 DOI: 10.1016/j.envres.2020.109486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
The environmental risks that have arisen from endocrine disruption compounds (EDCs) have become global challenges, especially for persistent bio-accumulated xenobiotic chemicals, such as nonylphenol (NP). In the present study, the population dynamics of Caenorhabditis elegans (C. elegans) were systemically investigated by conducting developmental and reproductive bioassays under the exposure of NP, which has been widely detected in actual aquatic environments. The results revealed that under NP exposure (400 μg L-1 NP), developmental indictors of C. elegans, including the body length and width were significantly inhibited at different life stages of L1 and L4 larva, and the growth curves were further adversely affected. In addition, abnormalities in reproductive systems were also observed under NP exposure. Such abnormalities obeyed a dose-dependent relationship with NP levels, which were closely related to the delayed spawning time and decreased reproductive rates. Moreover, the results from global genome expression analysis for nematodes revealed that the most significant enriched GO terms could be predominantly responsible for the dysregulation of growth and reproductive system. The population's parameters, including age composition and intrinsic growth rate (rm d-1), displayed significant changes, with a suppressed potentiality of population growth. Those data elucidated that NP exhibited a profound impact on the dynamic stability of the population, even with no obvious effect on certain biochemical markers.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenzhi Yan
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
24
|
Syeda T, Foguth RM, Llewellyn E, Cannon JR. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer's disease. Toxicology 2020; 437:152436. [PMID: 32169473 PMCID: PMC7218929 DOI: 10.1016/j.tox.2020.152436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aβ aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aβ aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Rachel M Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Emily Llewellyn
- Summer Research Opportunities Program, Purdue, University, West Lafayette, IN, 47907, United States; Department of Biology, Utah Valley University, Orem, Utah, 84058, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
25
|
Keller S, Polanski WH, Enzensperger C, Reichmann H, Hermann A, Gille G. 9-Methyl-β-carboline inhibits monoamine oxidase activity and stimulates the expression of neurotrophic factors by astrocytes. J Neural Transm (Vienna) 2020; 127:999-1012. [PMID: 32285253 PMCID: PMC8592951 DOI: 10.1007/s00702-020-02189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
β-Carbolines (BC) are pyridoindoles, which can be found in various exogenous and endogenous sources. Recent studies revealed neurostimulative, neuroprotective, neuroregenerative and anti-inflammatory effects of 9-methyl-BC (9-Me-BC). Additionally, 9-me-BC increased neurite outgrowth of dopaminergic neurons independent of dopamine uptake into these neurons. In this study, the role of astrocytes in neurostimulative, neuroregenerative and neuroprotective properties of 9-me-BC was further explored. 9-Me-BC exerted anti-proliferative effects without toxic properties in dopaminergic midbrain and cortical astrocyte cultures. The organic cation transporter (OCT) but not the dopamine transporter seem to mediate at least part the effect of 9-me-BC on astrocytes. Remarkably, 9-me-BC stimulated the gene expression of several important neurotrophic factors for dopaminergic neurons like Artn, Bdnf, Egln1, Tgfb2 and Ncam1. These factors are well known to stimulate neurite outgrowth and to show neuroprotective and neuroregenerative properties to dopaminergic neurons against various toxins. Further, we show that effect of 9-me-BC is mediated through phosphatidylinositol 3-kinase (PI3K) pathway. Additionally, 9-me-BC showed inhibitory properties to monoamine oxidase (MAO) activity with an IC50 value of 1 µM for MAO-A and of 15.5 µM for MAO-B. The inhibition of MAO by 9-me-BC might contribute to the observed increased dopamine content and anti-apoptotic properties in cell culture after 9-me-BC treatment in recent studies. Thus, 9-me-BC have a plethora of beneficial effects on dopaminergic neurons warranting its exploration as a new multimodal anti-parkinsonian medication.
Collapse
Affiliation(s)
- Sebastian Keller
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Witold Henryk Polanski
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Department of Neurosurgery, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Christoph Enzensperger
- Institute of Pharmacy, Friedrich Schiller University of Jena, Philosophenweg 14, 07743, Jena, Germany
- SmartDyeLivery GmbH, Botzstraße 5, 07743, Jena, Germany
| | - Heinz Reichmann
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
| | - Gabriele Gille
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
26
|
Liu F, Luo Q, Zhang Y, Huang K, Cao X, Cui C, Lin K, Zhang M. Trans-generational effect of neurotoxicity and related stress response in Caenorhabditis elegans exposed to tetrabromobisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134920. [PMID: 31744693 DOI: 10.1016/j.scitotenv.2019.134920] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most common brominated flame retardants, has been associated with immunotoxicity, neurotoxicity, and reproductive toxicity. However, little attention has been focused on understanding the trans-generational effects of TBBPA. The present study used the Caenorhabditis elegans (C. elegans) animal model to evaluate the trans-generational effects of neurotoxicity induced by environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, and 1000 µg/L). Multiple indicators including physiological effects (body length, brood size, head thrashes, body bends, and crawling trajectory), degree of neuronal damage (dopamine, GABAergic, and glutamatergic neurons), oxidative stress-related biochemical indicators (superoxide dismutase [SOD] activity, catalase [CAT] enzyme, malondialdehyde [MDA] production, and reactive oxygen species [ROS] accumulation), and stress-related gene expressions have been evaluated in the exposed parental C. elegans generation (G1) and their progeny (G2) under TBBPA-free conditions. The results showed that TBBPA exposure induced adverse effects on physiological endpoints, among which body bends and head thrashes were the most sensitive ones, detected above 1 µg/L in G1 and 100 µg/L in G2 nematodes, respectively. After contaminant exposure, the three neurons revealed damage related to neurobehavioral endpoints, with no hereditary effects in the progeny. The oxidative stress-related biochemical endpoints demonstrated that when the exposure concentrations were above 1 µg/L in maternal worms, impairment can be detected in both generations, but the progeny recovered at low toxicity concentration (1-100 µg/L). The integrated target gene expression profiles were clearly altered in G1 and G2 worms at concentrations between 1 and 1000 µg/L, and a more significant difference existed in two generations of nematodes at low levels (1-10 µg/L) of TBBPA. Studing trans-generational neurotoxicity and the underlying mechanism can generate a precise evaluation of the environmental risk of TBBPA.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
27
|
Cao X, Yan C, Yang X, Zhou L, Zou W, Xiu G. Photolysis-Induced Neurotoxicity Enhancement of Chlorpyrifos in Aquatic System: A Case Investigation on Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:461-470. [PMID: 31868356 DOI: 10.1021/acs.jafc.9b05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contamination of the environment by toxic pesticides has become of great concern in agricultural countries. Chlorpyrifos (CP) is among the pesticides most commonly detected in the environment owing to its wide agricultural applications. The aim of this study was to compare potential changes in the toxicity of CP after irradiation. To this end, photolysis of CP was conducted under simulated sunlight, and neurotoxicity assessment was carried out at CP of 20 and 50 μg L-1 and its corresponding irradiated mixture solutions which contain a mixture of identified intermediates using the nematode, Caenorhabditis elegans as a model organism. Photodegradation of 20 μg L-1 CP for 1 h produced no obvious reduction of physiological damage, and more serious effects on animal movement were detected after exposure of the animals to a solution of 50 μg L-1 for 1 h irradiation compared with unirradiated solution. GABAergic and cholinergic neurons were selectively vulnerable to CP exposure, and maximal neuropathological alterations were observed after 1 h irradiation of the CP solutions in coherence with the behavioral impairment. The generation of photoproducts was considered to be responsible for the enhanced disturbance on those biological processes. This work provided useful information on the toxicological assessments of chemicals that were produced during the environmental transformation of pesticides.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Chenzhi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Xuerui Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| | - Wenjun Zou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| |
Collapse
|
28
|
Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, Lee LS, Cannon JR. Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci 2019; 172:417-434. [PMID: 31428778 PMCID: PMC6876260 DOI: 10.1093/toxsci/kfz191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been widely utilized in numerous industries. Due to long environmental and biological half-lives, PFOS is a major public health concern. Although the literature suggests that PFOS may induce neurotoxicity, neurotoxic mechanisms, and neuropathology are poorly understood. Thus, the primary goal of this study was to determine if PFOS is selectively neurotoxic and potentially relevant to specific neurological diseases. Nematodes (Caenorhabditis elegans) were exposed to PFOS or related per- and polyfluoroalkyl substances (PFAS) for 72 h and tested for evidence of neuropathology through examination of cholinergic, dopaminergic, gamma-amino butyric acid (GABA)ergic, and serotoninergic neuronal morphologies. Dopaminergic and cholinergic functional analyses were assessed through 1-nonanol and Aldicarb assay. Mechanistic studies assessed total reactive oxygen species, superoxide ions, and mitochondrial content. Finally, therapeutic approaches were utilized to further examine pathogenic mechanisms. Dopaminergic neuropathology occurred at lower exposure levels (25 ppm, approximately 50 µM) than required to produce neuropathology in GABAergic, serotonergic, and cholinergic neurons (100 ppm, approximately 200 µM). Further, PFOS exposure led to dopamine-dependent functional deficits, without altering acetylcholine-dependent paralysis. Mitochondrial content was affected by PFOS at far lower exposure level than required to induce pathology (≥1 ppm, approximately 2 µM). Perfluorooctane sulfonate exposure also enhanced oxidative stress. Further, mutation in mitochondrial superoxide dismutase rendered animals more vulnerable. Neuroprotective approaches such as antioxidants, PFAS-protein dissociation, and targeted (mitochondrial) radical and electron scavenging were neuroprotective, suggesting specific mechanisms of action. In general, other tested PFAS were less neurotoxic. The primary impact is to prompt research into potential adverse outcomes related to PFAS-induced dopaminergic neurotoxicity in humans.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | - Rachel M Foguth
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | | | - Chloe De Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| |
Collapse
|
29
|
Smith LL, Ryde IT, Hartman JH, Romersi RF, Markovich Z, Meyer JN. Strengths and limitations of morphological and behavioral analyses in detecting dopaminergic deficiency in Caenorhabditis elegans. Neurotoxicology 2019; 74:209-220. [PMID: 31323240 DOI: 10.1016/j.neuro.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
In order to develop a better understanding of the role environmental toxicants may play in the onset and progression of neurodegenerative diseases, it has become increasingly important to optimize sensitive methods for quickly screening toxicants to determine their ability to disrupt neuronal function. The nematode Caenorhabditis elegans can help with this effort. This species has an integrated nervous system producing behavioral function, provides easy access for molecular studies, has a rapid lifespan, and is an inexpensive model. This study focuses on methods of measuring neurodegeneration involving the dopaminergic system and the identification of compounds with actions that disrupt dopamine function in the model organism C. elegans. Several dopamine-mediated locomotory behaviors, Area Exploration, Body Bends, and Reversals, as well as Swimming-Induced Paralysis and Learned 2-Nonanone Avoidance, were compared to determine the best behavioral method for screening purposes. These behavioral endpoints were also compared to morphological scoring of neurodegeneration in the dopamine neurons. We found that in adult worms, Area Exploration is more advantageous than the other behavioral methods for identifying DA-deficient locomotion and is comparable to neuromorphological scoring outputs. For larval stage worms, locomotion was an unreliable endpoint, and neuronal scoring appeared to be the best method. We compared the wild-type N2 strain to the commonly used dat-1p::GFP reporter strains BY200 and BZ555, and we further characterized the dopamine-deficient strains, cat-2 e1112 and cat-2 n4547. In contrast to published results, we found that the cat-2 strains slowed on food almost as much as N2s. Both showed decreased levels of cat-2 mRNA and DA content, rather than none, with cat-2 e1112 having the greatest reduction in DA content in comparison to N2. Finally, we compared and contrasted strengths, limitations, cost, and equipment needs for all primary methods for analysis of the dopamine system in C. elegans.
Collapse
Affiliation(s)
- Latasha L Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States; Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, United States.
| | - Ian T Ryde
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Zachary Markovich
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Joel N Meyer
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States.
| |
Collapse
|
30
|
Pandey T, Sammi SR, Nooreen Z, Mishra A, Ahmad A, Bhatta RS, Pandey R. Anti-ageing and anti-Parkinsonian effects of natural flavonol, tambulin from Zanthoxyllum aramatum promotes longevity in Caenorhabditis elegans. Exp Gerontol 2019; 120:50-61. [DOI: 10.1016/j.exger.2019.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/12/2019] [Accepted: 02/25/2019] [Indexed: 12/01/2022]
|
31
|
Cao X, Wang X, Chen H, Li H, Tariq M, Wang C, Zhou Y, Liu Y. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:947-957. [PMID: 30469289 DOI: 10.1016/j.envpol.2018.09.140] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 05/27/2023]
Abstract
The present study was performed to evaluate the neurobehavioural deficit induced by nonylphenol (NP), a well-known xenobiotic chemical. The neurotoxic mechanism from oxidative stress and serotonin-related progress was also investigated. Caenorhabditis elegans was exposed at different levels of NP ranging from 0 to 200 μg L-1 for 10 days. The results revealed that from a relatively low concentration (i.e., 10 μg L-1), significant effects including decreased head thrashes, body bends and forging behaviour could be observed, along with impaired learning and memory behaviour plasticity. The level of reactive oxygen species (ROS) in head was significantly elevated with the increase of NP concentrations from 10 to 200 μg L-1. Through antioxidant experiment, the oxidative damage caused by NP restored to some extent. At a NP concentration of 200 μg L-1, the significant increased expression of stress-related genes, including sod-1, sod-3, ctl-2, ctl-3 and cyp-35A2 gene, was observed from integrated gene expression profiles. In addition, in comparison with wild-type N2 worms, the ROS accumulation was increased significantly with the mutation of sod-3. Tryptophan hydroxylase (TPH) in ADF and NSM neurons sharply decreased at the concentrations of 10-200 μg L-1. The transcription of TPH synthesis-related genes and serotonin-related genes were both suppressed, including tph-1, cat-1, cat-4, ser-1, and mod-5. Overall, these results indicated that NP could induce neurotoxicity on Caenorhabditis elegans through excessive induction of ROS and disturbance synthesis of serotonin. The conducted research opened up new avenues for more effective exploration of neurotoxicity caused by NP.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
32
|
Cruz-Hernandez A, Agim ZS, Montenegro PC, McCabe GP, Rochet JC, Cannon JR. Selective dopaminergic neurotoxicity of three heterocyclic amine subclasses in primary rat midbrain neurons. Neurotoxicology 2018; 65:68-84. [PMID: 29408373 PMCID: PMC6015749 DOI: 10.1016/j.neuro.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/21/2017] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
Heterocyclic amines (HCAs) are primarily produced during high temperature meat cooking. These compounds have been intensively investigated as mutagens and carcinogens. However, converging data suggest that HCAs may also be neurotoxic and potentially relevant to neurodegenerative diseases such as Parkinson's disease (PD). The identification of new potential etiological factors is important because most PD cases are sporadic. Our group previously showed that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was selectively neurotoxic to dopaminergic neurons. However, PhIP is one of many HCAs, a class of compounds that exhibits wide structural variability. The goal of this study was to determine the neurotoxicity of the most prevalent and best studied HCAs from three subclasses: aminoimidazoaazarenes (AIA), α-carbolines, and β-carbolines. Using E17 rat primary midbrain cultures, we tested dopaminergic and non-dopaminergic neurotoxicity elicited by the following compounds: 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), PhIP, 1-methyl-9H-pyrido[3,4-b]indole (harmane), 9H-pyrido[3,4-b]indole (norharmane) and 2-amino-9H-pyrido[2,3-b]indole (AαC) at concentrations ranging from 100 nM-5 μM. All tested HCAs were selectively neurotoxic, though the dose required to elicit selective loss of dopaminergic neurons or decreases in dopaminergic neurite length was compound specific. Non-dopaminergic neurons were unaffected at all tested doses. The sensitivity (determined by threshold dose required to elicit selective neurotoxicity) appears to be unrelated to published mutagenic potency. Both AIA and α/β-carbolines produced oxidative damage, which was magnified in dopaminergic neurons vs. non-dopaminergic neurons as further evidence of selective neurotoxicity. These studies are expected to prompt clinical and mechanistic studies on the potential role of HCA exposure in PD.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States.
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States.
| | - Paola C Montenegro
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, United States.
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|