1
|
Kasarinaite A, Ramos MJ, Beltran-Sierra M, Sutherland EF, Rei PA, Zhao M, Chi Y, Beniazza M, Corsinotti A, Kendall TJ, Henderson NC, Fallowfield JA, Saunders PTK, Hay DC. Hormone correction of dysfunctional metabolic gene expression in stem cell-derived liver tissue. Stem Cell Res Ther 2025; 16:130. [PMID: 40069876 PMCID: PMC11899078 DOI: 10.1186/s13287-025-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The increase in metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to metabolic dysfunction-associated steatohepatitis (MASH) is a worldwide healthcare challenge. Heterogeneity between men and women in the prevalence and mechanisms of MASLD and MASH is related to differential sex hormone signalling within the liver, and declining hormone levels during aging. In this study we used biochemically characterised pluripotent stem cell derived 3D liver spheres to model the protective effects of testosterone and estrogen signalling on metabolic liver disease 'in the dish'. We identified sex steroid-dependent changes in gene expression which were protective against metabolic dysfunction, fibrosis, and advanced cirrhosis patterns of gene expression, providing new insight into the pathogenesis of MASLD and MASH, and highlighting new druggable targets. Additionally, we highlight gene targets for which drugs already exist for future translational studies.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Maria Jimenez Ramos
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Mariana Beltran-Sierra
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Elena F Sutherland
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Pedro Arede Rei
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Make Zhao
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Ying Chi
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Meryam Beniazza
- Single-Cell Multi-Omics Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Andrea Corsinotti
- Single-Cell Multi-Omics Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonathan A Fallowfield
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Philippa T K Saunders
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China.
| |
Collapse
|
2
|
Liu T, Zhang F, Feng Y, Han P, Gao Y. Alcohol-Metabolizing Enzymes, Liver Diseases and Cancer. Semin Liver Dis 2025; 45:99-113. [PMID: 40157374 PMCID: PMC12031026 DOI: 10.1055/a-2551-3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Alcohol is generally believed to be metabolized in the liver by alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and to a much lesser extent cytochrome P450 2E1 (CYP2E1) and other enzymes. Recent studies suggest that gut also play important roles in the promotion of alcohol metabolism. ADH, ALDH, and CYP2E1 have several polymorphisms that markedly impact alcohol metabolism. These alcohol-metabolizing enzymes not only affect alcohol-associated liver disease (ALD), but may also modulate the pathogenesis of other liver diseases and cancer in the absence of alcohol consumption. In this review, we discuss alcohol metabolism and the roles of alcohol-metabolizing enzymes in the pathogenesis of ALD, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction and alcohol-associated liver disease, viral hepatitis, and liver cancer. We also discuss how alcohol-metabolizing enzymes may affect endogenous ethanol production, and how ethanol metabolism in the gut affects liver disease and cancer. Directions for future research on the roles of alcohol-metabolizing enzymes in liver disease and cancer are also elaborated.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - FeiYu Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - Yue Feng
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - PanShiLi Han
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - YanHang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Perry AS, Hadad N, Chatterjee E, Jimenez-Ramos M, Farber-Eger E, Roshani R, Stolze LK, Betti MJ, Zhao S, Huang S, Martens L, Kendall TJ, Thone T, Amancherla K, Bailin S, Gabriel CL, Koethe J, Carr JJ, Terry JG, Vaitinadin NS, Freedman JE, Tanriverdi K, Alsop E, Van Keuren-Jensen K, Sauld JFK, Mahajan G, Khan SS, Colangelo L, Nayor M, Fisher-Hoch S, McCormick JB, North KE, Below JE, Wells QS, Abel ED, Kalhan R, Scott C, Guilliams M, Gamazon ER, Fallowfield JA, Banovich NE, Das S, Shah R. A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. Cell Rep Med 2024; 5:101871. [PMID: 39657669 PMCID: PMC11722105 DOI: 10.1016/j.xcrm.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Hepatic steatosis is a central phenotype in multi-system metabolic dysfunction and is increasing in parallel with the obesity pandemic. We use a translational approach integrating clinical phenotyping and outcomes, circulating proteomics, and tissue transcriptomics to identify dynamic, functional biomarkers of hepatic steatosis. Using multi-modality imaging and broad proteomic profiling, we identify proteins implicated in the progression of hepatic steatosis that are largely encoded by genes enriched at the transcriptional level in the human liver. These transcripts are differentially expressed across areas of steatosis in spatial transcriptomics, and several are dynamic during stages of steatosis. Circulating multi-protein signatures of steatosis strongly associate with fatty liver disease and multi-system metabolic outcomes. Using a humanized "liver-on-a-chip" model, we induce hepatic steatosis, confirming cell-specific expression of prioritized targets. These results underscore the utility of this approach to identify a prognostic, functional, dynamic "liquid biopsy" of human liver, relevant to biomarker discovery and mechanistic research applications.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niran Hadad
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Jimenez-Ramos
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Rashedeh Roshani
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael J Betti
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shi Huang
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Tinne Thone
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Samuel Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L Gabriel
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Jeffrey Carr
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Jane E Freedman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Eric Alsop
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Laura Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Susan Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Kari E North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn S Wells
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charlotte Scott
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eric R Gamazon
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Ravi Shah
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
6
|
Patidar P, Hirani N, Bharti S, Baig MS. Key regulators of hepatic stellate cell activation in alcohol liver Disease: A comprehensive review. Int Immunopharmacol 2024; 141:112938. [PMID: 39163683 DOI: 10.1016/j.intimp.2024.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alcoholic liver disease (ALD) is a broad category of disorders that begin with liver injury, lead to liver fibrosis, and ultimately conclude in alcohol-induced liver cirrhosis, the most chronic and irreversible liver damage. Liver fibrosis (LF) is a common pathological characteristic observed in most chronic liver inflammatory conditions that involve prolonged inflammation. In this review, we have summarized ethanol-mediated hepatic stellate cell (HSCs) activation and its role in liver fibrosis progression. We highlight important molecular mechanisms that are modulated by ethanol, play a role in the activation of HSCs and the progression of liver fibrosis and identifying potential targets to ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen'sMedicalResearch Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
7
|
Rochoń J, Kalinowski P, Szymanek-Majchrzak K, Grąt M. Role of gut-liver axis and glucagon-like peptide-1 receptor agonists in the treatment of metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2024; 30:2964-2980. [PMID: 38946874 PMCID: PMC11212696 DOI: 10.3748/wjg.v30.i23.2964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, β-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.
Collapse
Affiliation(s)
- Jakub Rochoń
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| | | | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
8
|
Burger K, Jung F, Staufer K, Ladurner R, Trauner M, Baumann A, Brandt A, Bergheim I. MASLD is related to impaired alcohol dehydrogenase (ADH) activity and elevated blood ethanol levels: Role of TNFα and JNK. Redox Biol 2024; 71:103121. [PMID: 38493749 PMCID: PMC10957403 DOI: 10.1016/j.redox.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Elevated fasting ethanol levels in peripheral blood frequently found in metabolic dysfunction-associated steatohepatitis (MASLD) patients even in the absence of alcohol consumption are discussed to contribute to disease development. To test the hypothesis that besides an enhanced gastrointestinal synthesis a diminished alcohol elimination through alcohol dehydrogenase (ADH) may also be critical herein, we determined fasting ethanol levels and ADH activity in livers and blood of MASLD patients and in wild-type ± anti-TNFα antibody (infliximab) treated and TNFα-/- mice fed a MASLD-inducing diet. Blood ethanol levels were significantly higher in patients and wild-type mice with MASLD while relative ADH activity in blood and liver tissue was significantly lower compared to controls. Both alterations were significantly attenuated in MASLD diet-fed TNFα-/- mice and wild-type mice treated with infliximab. Moreover, alcohol elimination was significantly impaired in mice with MASLD. In in vitro models, TNFα but not IL-1β or IL-6 significantly decreased ADH activity. Our data suggest that elevated ethanol levels in MASLD patients are related to TNFα-dependent impairments of ADH activity.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Katharina Staufer
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria; Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ruth Ladurner
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
10
|
Yousof TR, Bouchard CC, Alb M, Lynn EG, Lhoták S, Jiang H, MacDonald M, Li H, Byun JH, Makda Y, Athanasopoulos M, Maclean KN, Cherrington NJ, Naqvi A, Igdoura SA, Krepinsky JC, Steinberg GR, Austin RC. Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice. J Biol Chem 2024; 300:105655. [PMID: 38237682 PMCID: PMC10875272 DOI: 10.1016/j.jbc.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tamana R Yousof
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Celeste C Bouchard
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Mihnea Alb
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Edward G Lynn
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Sárka Lhoták
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Jae H Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Yumna Makda
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Kenneth N Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Asghar Naqvi
- Department of Pathology and Molecular Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Division of Endocrinology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
11
|
Perry AS, Hadad N, Chatterjee E, Ramos MJ, Farber-Eger E, Roshani R, Stolze LK, Zhao S, Martens L, Kendall TJ, Thone T, Amancherla K, Bailin S, Gabriel CL, Koethe J, Carr JJ, Terry JG, Freedman J, Tanriverdi K, Alsop E, Keuren-Jensen KV, Sauld JFK, Mahajan G, Khan S, Colangelo L, Nayor M, Fisher-Hoch S, McCormick J, North KE, Below J, Wells Q, Abel D, Kalhan R, Scott C, Guilliams M, Fallowfield JA, Banovich NE, Das S, Shah R. A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.26.24301828. [PMID: 38352394 PMCID: PMC10863022 DOI: 10.1101/2024.01.26.24301828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.
Collapse
|
12
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
13
|
Kang DE, Oh SN. Association between Alcohol Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease Based on Alcohol Flushing Response in Men: The Korea National Health and Nutrition Examination Survey 2019-2021. Nutrients 2023; 15:3901. [PMID: 37764685 PMCID: PMC10535860 DOI: 10.3390/nu15183901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is distinguished by the buildup of excessive liver fat unrelated to alcohol consumption. However, the role of alcohol consumption on disease progression is debatable. Recently, alcohol flushing syndrome in Asian populations has gained interest, and its role in the risk of developing MASLD is unknown. Therefore, in this cross-sectional study, we investigated the association between alcohol consumption and MASLD in Korean men, considering their alcohol flushing response and utilizing the lipid accumulation product (LAP) score. Data from the Korean National Health and Nutrition Examination Survey (2019-2021) were analyzed. Participants were categorized into non-or-infrequent drinkers and light-to-heavy drinkers and further sub-classified based on alcohol flushing response as non-flushers and flushers. Multivariate logistic regression analysis showed a significant association between alcohol consumption and MASLD risk in both non-flushers (aHR 1.90, 95% CI 1.51-2.40, p < 0.001) and flushers (aHR 2.35, 95% CI 1.94-2.84, p < 0.001) after adjusting for potential confounding factors such as age, exercise, smoking, body mass index, systolic blood pressure, total cholesterol, and fasting plasma glucose. There was a significant interaction between alcohol consumption and alcohol flushing response for MASLD risk (p for interaction < 0.001). These findings emphasize the importance of alcohol flushing as a potential indicator of MASLD risk in Korean men and highlight the need for further research to understand the underlying mechanisms and develop targeted preventive strategies.
Collapse
Affiliation(s)
- Dae Eon Kang
- Department of Family Medicine, Severance Hospital, Seoul 03722, Republic of Korea;
| | - Si Nae Oh
- Department of Family Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
- Department of Medicine, Yonsei University Graduate School, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Aghayev M, Arias-Alvarado A, Ilchenko S, Lepp J, Scott I, Chen YR, Zhang GF, Tsai TH, Kasumov T. A high-fat diet increases hepatic mitochondrial turnover through restricted acetylation in a NAFLD mouse model. Am J Physiol Endocrinol Metab 2023; 325:E83-E98. [PMID: 37224468 PMCID: PMC10312330 DOI: 10.1152/ajpendo.00310.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Lysine acetylation of proteins has emerged as a key posttranslational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. Although protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo. We applied 2H2O-metabolic labeling coupled with immunoaffinity and high-resolution mass spectrometry method to measure the stability of acetylated proteins in mouse liver based on their turnover rates. As a proof-of-concept, we assessed the consequence of high-fat diet (HFD)-induced altered acetylation in protein turnover in LDL receptor-deficient (LDLR-/-) mice susceptible to diet-induced nonalcoholic fatty liver disease (NAFLD). HFD feeding for 12 wk led to steatosis, the early stage of NAFLD. A significant reduction in acetylation of hepatic proteins was observed in NAFLD mice, based on immunoblot analysis and label-free quantification with mass spectrometry. Compared with control mice on a normal diet, NAFLD mice had overall increased turnover rates of hepatic proteins, including mitochondrial metabolic enzymes (0.159 ± 0.079 vs. 0.132 ± 0.068 day-1), suggesting their reduced stability. Also, acetylated proteins had slower turnover rates (increased stability) than native proteins in both groups (0.096 ± 0.056 vs. 0.170 ± 0.059 day-1 in control, and 0.111 ± 0.050 vs. 0.208 ± 0.074 day-1 in NAFLD). Furthermore, association analysis revealed a relationship between the HFD-induced decrease in acetylation and increased turnover rates for hepatic proteins in NAFLD mice. These changes were associated with increased expressions of the hepatic mitochondrial transcriptional factor (TFAM) and complex II subunit without any changes to other OxPhos proteins, suggesting that enhanced mitochondrial biogenesis prevented restricted acetylation-mediated depletion of mitochondrial proteins. We conclude that decreased acetylation of mitochondrial proteins may contribute to adaptive improved hepatic mitochondrial function in the early stages of NAFLD.NEW & NOTEWORTHY This is the first method to quantify acetylome dynamics in vivo. This method revealed acetylation-mediated altered hepatic mitochondrial protein turnover in response to a high-fat diet in a mouse model of NAFLD.
Collapse
Affiliation(s)
- Mirjavid Aghayev
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Andrea Arias-Alvarado
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Sergei Ilchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Josephine Lepp
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham North Carolina, United States
- Department of Medicine, Duke University, Durham North Carolina, United States
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, Ohio, United States
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| |
Collapse
|
15
|
Ferrandino G, De Palo G, Murgia A, Birch O, Tawfike A, Smith R, Debiram-Beecham I, Gandelman O, Kibble G, Lydon AM, Groves A, Smolinska A, Allsworth M, Boyle B, van der Schee MP, Allison M, Fitzgerald RC, Hoare M, Snowdon VK. Breath Biopsy ® to Identify Exhaled Volatile Organic Compounds Biomarkers for Liver Cirrhosis Detection. J Clin Transl Hepatol 2023; 11:638-648. [PMID: 36969895 PMCID: PMC10037526 DOI: 10.14218/jcth.2022.00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 03/29/2023] Open
Abstract
Background and Aims The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Debiram-Beecham
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | - Graham Kibble
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Anne Marie Lydon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Alice Groves
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Agnieszka Smolinska
- Owlstone Medical, Cambridge, UK
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, the Netherlands
| | | | | | | | - Michael Allison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Matthew Hoare
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Victoria K. Snowdon
- Addenbrookes Hepatology and Liver Transplantation Unit, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
16
|
Jiang X, Yan C, Zhang H, Chen L, Jiang R, Zheng K, Jin W, Ma H, Liu X, Dong M. Oral Probiotic Expressing Human Ethanol Dehydrogenase Attenuates Damage Caused by Acute Alcohol Consumption in Mice. Microbiol Spectr 2023; 11:e0429422. [PMID: 37039510 PMCID: PMC10269551 DOI: 10.1128/spectrum.04294-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 04/12/2023] Open
Abstract
Alcohol is an essential drug in human life with multiple medical functions, but excessive alcohol intake, even a single episode of binge drinking, can cause serious damage. Reducing alcohol consumption or absorption is a direct way to alleviate the related harm. Alcohol is decomposed successively by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver. Here, we produced a human ADH1B (hADH1B)-expressing probiotic, a recombinant Lactococcus lactis, that aimed to enhance alcohol degradation in the intestinal tract after oral administration. Our results showed that the oral hADH1B-expressing probiotic reduced alcohol absorption, prolonged the alcohol tolerance time, and shortened the recovery time after acute alcohol challenge. More importantly, the liver and intestine were protected from acute injury caused by alcohol challenge. Therefore, the engineered probiotic has the potential to protect organ damage from alcohol consumption. Furthermore, this engineered probiotic may have beneficial effects on alcohol-related diseases such as alcoholic fatty liver disease. IMPORTANCE Alcohol plays an important role in medical treatment, culture, and social interaction. However, excessive alcohol consumption or improper alcohol intake patterns can lead to serious damage to health. Aiming to reduce the harm of alcohol consumption, we designed a recombinant probiotic expressing hADH1B. Our results showed that this recombinant probiotic can reduce alcohol absorption and protect the body from alcohol damage, including hangover, liver, and intestinal damage. Reducing alcohol damage is helpful to the health of people with difficulty in abstinence. The engineered probiotic may provide new strategies for treatment and prevention of the negative effects of alcohol, and it also has the potential for widespread application.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunlong Yan
- Agriculture College of Yanbian University, Yanji, Jilin, China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rui Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kexin Zheng
- Institute of Infectious Disease, Ditan Hospital, Capital Medical University, Beijing, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaomeng Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Chien TH, Lin CL, Chen LW, Chien CH, Hu CC. Patients with Non-Alcoholic Fatty Liver Disease and Alcohol Dehydrogenase 1B/Aldehyde Dehydrogenase 2 Mutant Gene Have Higher Values of Serum Alanine Transaminase. J Pers Med 2023; 13:jpm13050758. [PMID: 37240928 DOI: 10.3390/jpm13050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Patients with non-alcoholic fatty liver disease (NAFLD) share similar pathophysiologies to those of patients with alcohol liver disease. Alcoholic metabolic enzyme-related genes (alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2)) may be associated with pathophysiology in NAFLD patients. In this study, the association between ADH1B/ALDH2 gene polymorphism and serum metabolic factors, body statures, and hepatic steatosis/fibrosis status was evaluated in patients with NAFLD. Using biochemistry data, abdominal ultrasonography, fibrosis evaluation (Kpa), and steatosis evaluation (CAP), ADH1B gene SNP rs1229984 and ALDH2 gene SNP rs671 polymorphism were analyzed in sixty-six patients from 1 January 2022 to 31 December 2022. The percentage of the mutant type (GA + AA) was 87.9% (58/66) in the ADH1B allele and 45.5% (30/66) in the ALDH2 allele. Patients with the mutant-type ADH1B/ALDH2 allele had higher values of alanine aminotransferase (ALT) than the wild type (β = 0.273, p = 0.04). No association was observed between body mass index, serum metabolic factors (sugar and lipid profile), CAP, kPa, and ADH1B/ALDH2. A high proportion of the mutant-type ADH1B allele (87.9%) and ALDH2 allele (45.5%) was observed in patients with NAFLD. No association was observed between ADH1B/ALDH2 allele, BMI, and hepatic steatosis/fibrosis. Patients with the mutant-type ADH1B/ALDH2 allele had higher values of ALT than those with the wild type.
Collapse
Affiliation(s)
- Tsuo-Hsuan Chien
- Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
| | - Chih-Lang Lin
- Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
- Community Medicine Research Center, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
| | - Li-Wei Chen
- Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
- Community Medicine Research Center, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
| | - Cheng-Hung Chien
- Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
- Community Medicine Research Center, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
| | - Ching-Chih Hu
- Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
- Community Medicine Research Center, Chang-Gung Memorial Hospital and University, Keelung Branch, Keelung 204, Taiwan
| |
Collapse
|
18
|
Kim DS, Lee HJ, Sim DY, Park JE, Park Y, Kim B, Shim B, Kim SH. The underlying hepatoprotective mechanism of PKC#963 in alcohol or carbon tetrachloride induced liver injury via inhibition of iNOS, COX-2, and p-STAT3 and enhancement of SOD and catalase. Phytother Res 2023; 37:505-514. [PMID: 36151597 DOI: 10.1002/ptr.7630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022]
Abstract
The aim of the present study is to explore the underlying hepatoprotective mechanism of PKC#963, consisting of Pinus koraiensis, Saururus chinensis, and Lycium barbarum in association with acute and chronic liver injury induced by alcohol or carbon tetrachloride (CCl4). Here, PKC#963 significantly suppressed aspartate aminotransferase (AST), alanine aminotransferase (ALT), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2) in CCl4-treated HepG2 cells. Also, PKC#963 significantly suppressed reactive oxygen species (ROS) production in HepG2 cells. Consistently, PKC#963 suppressed the expression of AST, ALT, p-STAT3, iNOS, COX-2, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and α-smooth muscle actin (α-SMA) and increased procaspase 3 in the liver tissues of CCl4 treated rats. In addition, PKC#963 enhanced alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) for alcohol metabolism, superoxide dismutase (SOD), and catalase as antioxidant enzymes and also suppressed AST and ALT in alcohol-treated rats. Furthermore, PKC#963 reduced hepatic steatosis and necrosis in CCl4-treated rats by H&E (Hematoxylin and Eosin) staining. Taken together, these findings highlight evidence that PKC#963 has hepatoprotective potential via inhibition of iNOS, COX-2, and p-STAT3 and enhancement of SOD and catalase.
Collapse
Affiliation(s)
- Dong Sub Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngsang Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bumsang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Tsochantaridis I, Roupas A, Mohlin S, Pappa A, Voulgaridou GP. The Concept of Cancer Stem Cells: Elaborating on ALDH1B1 as an Emerging Marker of Cancer Progression. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010197. [PMID: 36676146 PMCID: PMC9863106 DOI: 10.3390/life13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like properties, such as a self-renewal ability and multipotency potential. CSCs are associated with enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs make them ideal targets for clinical therapeutic approaches, and the identification of efficient and specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention due to their association with stem-related features in a wide panel of hematopoietic malignancies and solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized as a marker of colon cancer progression, while various studies suggest its importance in additional malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of ALDH1B1 in cancer development and its contribution to the CSC phenotype.
Collapse
Affiliation(s)
- Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Roupas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Lund Stem Cell Center, Lund University Cancer Center, 22384 Lund, Sweden
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
20
|
Daucosterol Alleviates Alcohol-Induced Hepatic Injury and Inflammation through P38/NF-κB/NLRP3 Inflammasome Pathway. Nutrients 2023; 15:nu15010223. [PMID: 36615880 PMCID: PMC9823995 DOI: 10.3390/nu15010223] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Alcoholic liver disease (ALD) is caused by chronic excessive alcohol consumption, which leads to inflammation, oxidative stress, lipid accumulation, liver fibrosis/cirrhosis, and even liver cancer. However, there are currently no effective drugs for ALD. Herein, we report that a natural phytosterol Daucosterol (DAU) can effectively protect against liver injury caused by alcohol, which plays anti-inflammatory and antioxidative roles in many chronic inflammatory diseases. Our results demonstrate that DAU ameliorates liver inflammation induced by alcohol through p38/nuclear factor kappa B (NF-κB)/NOD-like receptor protein-3 (NLRP3) inflammasome pathway. Briefly, DAU decreases NF-κB nuclear translocation and inhibits NLRP3 activation by decreasing p38 phosphorylation. At the same time, DAU also protects against hepatic oxidative stress and lipid accumulation. In conclusion, our research provides a new clue about the protective effects of naturally active substances on ALD.
Collapse
|
21
|
Lin R, Xie B, Xie L, Ge J, Li S. Integrated proteomics and metabolomics analysis of lumbar in a rat model of osteoporosis treated with Gushukang capsules. BMC Complement Med Ther 2022; 22:333. [PMID: 36522793 PMCID: PMC9756464 DOI: 10.1186/s12906-022-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gushukang (GSK) capsules are a Chinese patented medicine that is widely used in clinics for the treatment of osteoporosis (OP). Animal experiments have revealed that the bone mineral density of osteoporotic rats increase after treatment with GSK capsules. However, the specific mechanism and target of GSK in the treatment of osteoporosis are unclear. Further studies are needed. METHODS Metabolomics (GC/MS) and proteomics (TMT-LC-MC/MC) with bioinformatics (KEGG pathway enrichment), correlation analysis (Pearson correlation matrix), and joint pathway analysis (MetaboAnalyst) were employed to determine the underlying mechanisms of GSK. The differential expression proteins were verified by WB experiment. RESULTS The regulation of proteins, i.e., Cant1, Gstz1, Aldh3b1, Bid, and Slc1a3, in the common metabolic pathway of differential proteins and metabolites between GSK/OP and OP/SHAM was corrected in the GSK group. The regulation of 12 metabolites (tyramine, thymidine, deoxycytidine, cytosine, L-Aspartate, etc.) were differential in the common enrichment metabolic pathway between GSK /OP and OP/SHAM. Differential proteins and metabolites jointly regulate 11 metabolic pathways, such as purine metabolism, pyrimidine metabolism, histidine metabolism, beta-alanine metabolism, and so on. CONCLUSION GSK may protect bone metabolism in osteoporotic rats by affecting nucleotide metabolism, amino acid metabolism, and the immune system.
Collapse
Affiliation(s)
- Ruohui Lin
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Bingying Xie
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Lihua Xie
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Jirong Ge
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| | - Shengqiang Li
- Basic Research Institute, Fujian Academy of Chinese Medical Sciences, Fuzhou, 350003 Fujian China ,Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fuzhou, 350003 Fujian China
| |
Collapse
|
22
|
Novel Insights into MEG3/miR664a-3p/ADH4 Axis and Its Possible Role in Hepatocellular Carcinoma from an in Silico Perspective. Genes (Basel) 2022; 13:genes13122254. [PMID: 36553522 PMCID: PMC9778073 DOI: 10.3390/genes13122254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase 4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses to predicate the possible lncRNA-miRNA interactions between MEG3, miR-664a-3p, and ADH4. miRNA-mRNA and lncRNA-miRNA hybrid structures were primarily obtained, and the minimum free energies (MFEs) for the 3'UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3'UTR of MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heteroduplex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most favorable. The MFEs were around -28.1 kcal/mol and -31.3 kCal/mol for the ADH4-miR-664a-3p and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression of ADH4 in HCC, as a novel axis of interest that demands further validation.
Collapse
|
23
|
Sun Y, Chen ZY, Gan X, Dai H, Cai D, Liu RH, Zhou JM, Zhang HL, Li ZH, Luo QQ, Jiang S, Wang T, Zhang KH. A novel four-gene signature for predicting the prognosis of hepatocellular carcinoma. Scand J Gastroenterol 2022; 57:1227-1237. [PMID: 35512233 DOI: 10.1080/00365521.2022.2069476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To identify and utilize gene signatures for the prognostic evaluation of postoperative patients with hepatocellular carcinoma (HCC). METHODS The gene mRNA expression profiles and corresponding clinicopathological data of postoperative patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) database. Highly differentially expressed genes (DEGs) in tumor tissues compared to adjacent tissues were identified, and their associations with the overall survival (OS) of HCC patients were analyzed. The strongly associated genes were used to develop a prognostic score for the survival stratification of HCC, and the underlying mechanisms were analyzed using bioinformatics. RESULTS A total of 376 DEGs were identified and four DEGs (ADH4, COL15A1, RET and KCNJ16) were independently associated with OS. A prognostic score derived from the four genes could effectively stratify HCC patients with different OS outcomes, independent of clinical parameters. Patients with high scores exhibited poorer OS than patients with low scores (HR 5.526, 95% CI: 2.451-12.461, p < .001). The four genes were involved in cancer-related biological processes and were independent of each other in bioinformatics analyses. CONCLUSION Four genes strongly associated with the prognosis of postoperative patients with HCC were identified, and the derived prognostic score was simple and valuable for overall survival prediction.
Collapse
Affiliation(s)
- Ying Sun
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Zhi-Yong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China.,Department of Gastroenterology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Xia Gan
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Hua Dai
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Cai
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Rong-Hua Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Jian-Ming Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Hong-Li Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Zi-Hua Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Qing-Qing Luo
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Song Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| |
Collapse
|
24
|
Ethanol Metabolism in the Liver, the Induction of Oxidant Stress, and the Antioxidant Defense System. Antioxidants (Basel) 2022; 11:antiox11071258. [PMID: 35883749 PMCID: PMC9312216 DOI: 10.3390/antiox11071258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
The liver metabolizes ethanol through three enzymatic pathways: alcohol dehydrogenase (ADH), cytochrome p450 (also called MEOS), and catalase. Alcohol dehydrogenase class I (ADH1) is considered the most important enzyme for the metabolism of ethanol, MEOS and catalase (CAT) are considered minor alternative pathways. However, contradicting experiments suggest that the non-ADH1 pathway may have a greater relevance for the metabolism of ethanol than previously thought. In some conditions, ethanol is predominately metabolized to acetaldehyde via cytochrome P450 family 2 (CYP2E1), which is involved in the generation of reactive oxygen species (ROS), mainly through electron leakage to oxygen to form the superoxide (O2•−) radical or in catalyzed lipid peroxidation. The CAT activity can also participate in the ethanol metabolism that produces ROS via ethanol directly reacting with the CAT-H2O2 complex, producing acetaldehyde and water and depending on the H2O2 availability, which is the rate-limiting component in ethanol peroxidation. We have shown that CAT actively participates in lactate-stimulated liver ethanol oxidation, where the addition of lactate generates H2O2, which is used by CAT to oxidize ethanol to acetaldehyde. Therefore, besides its known role as a catalytic antioxidant component, the primary role of CAT could be to function in the metabolism of xenobiotics in the liver.
Collapse
|
25
|
Xu Z, Peng B, Kang F, Zhang W, Xiao M, Li J, Hong Q, Cai Y, Liu W, Yan Y, Peng J. The Roles of Drug Metabolism-Related ADH1B in Immune Regulation and Therapeutic Response of Ovarian Cancer. Front Cell Dev Biol 2022; 10:877254. [PMID: 35756990 PMCID: PMC9218672 DOI: 10.3389/fcell.2022.877254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Background: The different pharmacological effects of drugs in different people can be explained by the polymorphisms of drug metabolism-related genes. Emerging studies have realized the importance of drug metabolism-related genes in the treatment and prognosis of cancers, including ovarian cancer (OV). In this study, using comprehensive bioinformatics and western blot, we identified that the drug metabolism-related gene, ADH1B, was significantly down-regulated in OV cells and tissues. The patients with a high level of ADH1B presented a good prognosis. We also found a negative correlation between ADH1B expression and the activity of chemotherapeutic agents, such as cyclophosphamide. In addition, positive correlations were observed between ADH1B expression and multiple immune checkpoints, including LAG3 and HAVCR2. The immune infiltration analysis further indicated that aberrantly expressed ADH1B might have important roles in regulating the infiltration of macrophages and neutrophils in OV tissues. Then, the co-expression analysis was conducted and the top three enriched KEGG pathways were spliceosome, RNA transport, and DNA replication. In conclusion, the drug metabolism-related gene ADH1B and its interactive network play an essential role in the immune regulation and therapeutic response and maybe identified as promising therapeutic targets for OV patients.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
27
|
Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease? Acta Pharm Sin B 2021; 11:3756-3767. [PMID: 35024304 PMCID: PMC8727895 DOI: 10.1016/j.apsb.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.
Collapse
Affiliation(s)
- Regina D. Schnegelberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Kogiso T, Sagawa T, Kodama K, Taniai M, Hashimoto E, Tokushige K. Outcomes of Japanese patients with non-alcoholic fatty liver disease according to genetic background and lifestyle-related diseases. Ann Hepatol 2021; 21:100260. [PMID: 32987175 DOI: 10.1016/j.aohep.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Genetic background may be involved in the mechanisms of liver injury and the development of non-alcoholic fatty liver disease (NAFLD). However, its contributions to the long-term outcome of NAFLD have been unclear. METHODS We enrolled 314 Japanese patients with biopsy-confirmed NAFLD from 2000 to 2018 (161 men [51.3%]; median age, 53 [14-84] years; 114 with advanced fibrosis [37.5%]) in the patients without hepatocellular carcinoma at diagnosis. Genomic DNA was extracted from peripheral blood and single nucleotide polymorphisms (SNPs) were analyzed. Associations of mortality with patatin-like phospholipase 3 (PNPLA3) and aldehyde dehydrogenase 2 (ALDH2) were analyzed. Finally, a subgroup analysis according to lifestyle-related disease was performed. RESULTS During the median 7 years of follow-up, 20 patients (6.4%) died (13 liver-related [4.1%] and 7 non-liver-related deaths [2.2%]). Patients with ALDH2 (non-GG genotype) who had reduced alcohol metabolism tended to have a poor prognosis (p = 0.06). Patients carrying both risk SNPs of PNPLA3 (GG) and ALDH2 (non-GG) had a significantly poor prognosis (p = 0.01). In the subgroup analysis, patients with PNPLA3 (GG) who were non-diabetics (p = 0.06) or non-dyslipidemic (p = 0.03), with ALDH2 (non-GG) who were non-dyslipidemic (p = 0.01) or hypertensive (p = 0.03), also had a poor prognosis. The Cox analysis revealed that ALDH2 (non-GG) was associated with a poor prognosis (Hazard ratio: 4.568, 95% Confidence Interval: 1.294-16.131, p = 0.02) similar to the liver function tests. CONCLUSIONS Genetic background may affect NAFLD prognosis and ALDH2 SNP could predict the outcome.
Collapse
Affiliation(s)
- Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takaomi Sagawa
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kazuhisa Kodama
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Etsuko Hashimoto
- Seibu Railway Health Support Center, 1-11-2 Seibu Second Building 7th Floor, Kusunoki-dai, Tokorozawa-shi, Saitama, 359-0037, Japan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
29
|
Islam SMT, Won J, Khan M, Chavin KD, Singh I. Peroxisomal footprint in the pathogenesis of nonalcoholic steatohepatitis. Ann Hepatol 2021; 19:466-471. [PMID: 31870746 DOI: 10.1016/j.aohep.2019.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a form of fatty liver disease where benign hepatic steatosis leads to chronic inflammation in the steatotic liver of a patient without any history of alcohol abuse. Mechanisms underlying the progression of hepatic steatosis to NASH have long been investigated. This review outlines the potential role of peroxisomal dysfunctions in exacerbating the disease in NASH. Loss of peroxisomes as well as impaired peroxisomal functions have been demonstrated to occur in inflammatory conditions including NASH. Because peroxisomes and mitochondria co-operatively perform many metabolic functions including O2 and lipid metabolisms, a compromised peroxisomal biogenesis and function can potentially contribute to defective lipid and reactive oxygen species metabolism which in turn can lead the progression of disease in NASH. Impaired peroxisomal biogenesis and function may be due to the decreased expression of peroxisomal proliferator-activated receptor-α (PPAR-α), the major transcription factor of peroxisomal biogenesis. Recent studies indicate that the reduced expression of PPAR-α in NASH is correlated with the activation of the toll-like receptor-4 pathway (TLR-4). Further investigations are required to establish the mechanistic connection between the TLR-4 pathway and PPAR-α-dependent impaired biogenesis/function of peroxisomes in NASH.
Collapse
Affiliation(s)
- S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth D Chavin
- Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
30
|
Nawroth JC, Petropolis DB, Manatakis DV, Maulana TI, Burchett G, Schlünder K, Witt A, Shukla A, Kodella K, Ronxhi J, Kulkarni G, Hamilton G, Seki E, Lu S, Karalis KC. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep 2021; 36:109393. [PMID: 34289365 PMCID: PMC8342038 DOI: 10.1016/j.celrep.2021.109393] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a global health issue and leads to progressive liver injury, comorbidities, and increased mortality. Human-relevant preclinical models of ALD are urgently needed. Here, we leverage a triculture human Liver-Chip with biomimetic hepatic sinusoids and bile canaliculi to model ALD employing human-relevant blood alcohol concentrations (BACs) and multimodal profiling of clinically relevant endpoints. Our Liver-Chip recapitulates established ALD markers in response to 48 h of exposure to ethanol, including lipid accumulation and oxidative stress, in a concentration-dependent manner and supports the study of secondary insults, such as high blood endotoxin levels. We show that remodeling of the bile canalicular network can provide an in vitro quantitative readout of alcoholic liver toxicity. In summary, we report the development of a human ALD Liver-Chip as a powerful platform for modeling alcohol-induced liver injury with the potential for direct translation to clinical research and evaluation of patient-specific responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anke Witt
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Janey Ronxhi
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
31
|
Khmelinskii I, Makarov VI. Reaction coupling in ADH1A alcohol dehydrogenase enzyme by exciplex formation with adenosine diphosphate moderated by low-energy electronic excited states. Phys Rev E 2021; 103:052405. [PMID: 34134225 DOI: 10.1103/physreve.103.052405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Two commonly accepted theories about enzymes were revisited. The first states that adenosine triphosphate (ATP)-stored energy is only released when the substrate is in place, because the substrate changes the enzyme structure when it is bound to the enzyme. In fact, as demonstrated and discussed presently, no structural changes are required, and ATP-stored energy is released when it can be used. The second states that ATP-released energy moves along the enzyme molecule in the form of molecular vibrations (Davydov's vibrational solitons). In fact, as reported presently, energy released upon ATP hydrolysis moves in the form of excited-state electrons (excitons), with no molecular vibrations involved. The relevant experimental evidence was obtained for the human ADH1A alcohol dehydrogenase enzyme. Spontaneous ATP hydrolysis in the absence of substrate was apparently prevented by electronically excited enzyme + adenosine diphosphate (ADP) + inorganic phosphate (P) complex (exciplex) formed upon ATP hydrolysis. This exciplex kept ADP + P bound and in place for the inverse reaction, until the excess energy was dissipated in the enzyme-catalyzed reaction or by energy transfer to a suitable acceptor. Additionally, and contrary to textbooks, ADH1A has required ATP, working orders of magnitude faster in its presence.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB, and CEOT, 8005-139 Faro, Portugal
| | - Vladimir I Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, Puerto Rico 00931-3343, USA
| |
Collapse
|
32
|
Di L, Balesano A, Jordan S, Shi SM. The Role of Alcohol Dehydrogenase in Drug Metabolism: Beyond Ethanol Oxidation. AAPS JOURNAL 2021; 23:20. [DOI: 10.1208/s12248-020-00536-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
|
33
|
Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, Giordano A, Kovanicova Z, Stefanicka P, Balazova L, Ding L, Husted AS, Rudofsky G, Ukropec J, Cinti S, Schwartz TW, Regev A, Wolfrum C. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 2020; 587:98-102. [PMID: 33116305 DOI: 10.1038/s41586-020-2856-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is usually classified on the basis of its function as white, brown or beige (brite)1. It is an important regulator of systemic metabolism, as shown by the fact that dysfunctional adipose tissue in obesity leads to a variety of secondary metabolic complications2,3. In addition, adipose tissue functions as a signalling hub that regulates systemic metabolism through paracrine and endocrine signals4. Here we use single-nucleus RNA-sequencing (snRNA-seq) analysis in mice and humans to characterize adipocyte heterogeneity. We identify a rare subpopulation of adipocytes in mice that increases in abundance at higher temperatures, and we show that this subpopulation regulates the activity of neighbouring adipocytes through acetate-mediated modulation of their thermogenic capacity. Human adipose tissue contains higher numbers of cells of this subpopulation, which could explain the lower thermogenic activity of human compared to mouse adipose tissue and suggests that targeting this pathway could be used to restore thermogenic activity.
Collapse
Affiliation(s)
- Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Zuzana Kovanicova
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia
| | - Lucia Balazova
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Lianggong Ding
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Anna Sofie Husted
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gottfried Rudofsky
- Department of Endocrinology, Cantonal Hospital Olten, Olten, Switzerland
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Thue W Schwartz
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
34
|
Zeng J, Liu XL, Xin FZ, Zhao ZH, Shao YL, Yang RX, Pan Q, Fan JG. Effects and therapeutic mechanism of Yinzhihuang on steatohepatitis in rats induced by a high-fat, high-cholesterol diet. J Dig Dis 2020; 21:179-188. [PMID: 31950587 PMCID: PMC7187410 DOI: 10.1111/1751-2980.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We aimed to investigate the therapeutic mechanism of Yinzhihuang (YZH) liquid, a traditional Chinese medicine mainly composed of extracts of four components, on nonalcoholic steatohepatitis (NASH) induced by a high-fat, high-cholesterol diet (HFHCD) in rats. METHODS Altogether 30 Sprague-Dawley rats were randomized into three groups: control, the model group (HFHCD + saline) and the treatment group (HFHCD + YZH). Liver histological features and serum biochemical parameters were assessed by the end of the 16th week. RNA sequencing and protein mass spectrometry detection were performed. The genes and proteins expressed differentially were subjected to KEGG pathway enrichment analysis and included in a network-based regulatory model. RESULTS The weight, liver and fat indices and serum alanine transaminase, aspartate transaminase and total cholesterol levels of the HFHCD + YZH group were all significantly lower than those of the HFHCD + saline group. Moreover, their hepatic steatosis, ballooning and lobular inflammation were relieved, and 64 hepatic genes and 73 hepatic proteins were found to be reversed in their expression patterns after YZH treatment (P < 0.05). The network-based regulatory model showed that these deregulated genes and proteins were mainly involved in oxidative phosphorylation, Toll-like receptor, nucleotide-binding oligomerization domain-like receptor, peroxisome proliferator-activated receptor signaling, nuclear factor-kappa B tumor necrosis factor signaling pathways and fatty acid metabolism. CONCLUSION YZH could alleviate NASH in HFHCD-fed rats by inhibiting lipogenesis, accelerating lipid β-oxidation, alleviating oxidative stress and relieving necroinflammation in the liver.
Collapse
Affiliation(s)
- Jing Zeng
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao Lin Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceChina
| | - Feng Zhi Xin
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ze Hua Zhao
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - You Lin Shao
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Xu Yang
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qin Pan
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Gao Fan
- Department of GastroenterologyXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Children's Digestion and NutritionShanghaiChina
| |
Collapse
|
35
|
Wang W, Wang C, Xu H, Gao Y. Aldehyde Dehydrogenase, Liver Disease and Cancer. Int J Biol Sci 2020; 16:921-934. [PMID: 32140062 PMCID: PMC7053332 DOI: 10.7150/ijbs.42300] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is the key enzyme responsible for metabolism of the alcohol metabolite acetaldehyde in the liver. In addition to conversion of the acetaldehyde molecule, ALDH is also involved in other cellular functions. Recently, many studies have investigated the involvement of ALDH expression in viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. Notably, ALDH2 expression has been linked with liver cancer risk, as well as pathogenesis and prognosis, and has emerged as a promising therapeutic target. Of note, approximately 8% of the world's population, and approximately 30-40% of the population in East Asia carry an inactive ALDH2 gene. This review summarizes new progress in understanding tissue-specific acetaldehyde metabolism by ALDH2 as well as the association of ALDH2 gene polymorphisms with liver disease and cancer. New research directions emerging in the field are also briefly discussed.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Chunguang Wang
- Department of Thoracic & Cardiovascular Surgery, Second Clinical College, Jilin University, Changchun, 130041, China
| | - Hongxin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
36
|
Hao X, Zeng Q. The Association and Interaction of Aldehyde Dehydrogenase 2 Polymorphisms with Food Group Intake and Probability of Having Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:5049-5057. [PMID: 33376374 PMCID: PMC7765681 DOI: 10.2147/dmso.s290491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study investigated the association between the aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, food group intake, and the probability of having non-alcoholic fatty liver disease (NAFLD) in a Chinese population. PATIENTS AND METHODS A total of 3506 adults were enrolled in this study, and all underwent physical examinations and genotyping of polymorphisms with polymerase chain reaction. Participants filled out a dietary questionnaire that was used to assess the frequency and quantity of food consumption. RESULTS We found that milk groups were associated with a lower probability of developing NAFLD. On the contrary, meat and salted and smoked foods were associated with a higher probability of NAFLD. However, the influences of salted and smoked foods and fresh fruit and vegetables on NAFLD were obviously different in the two genotype groups. Salted and smoked foods intake was a factor associated with a higher probability of having NAFLD or nonalcoholic steatohepatitis (NASH) in the A genotype group, but there was no effect in the G genotype group. Moreover, eating salted and smoked foods several times per week was associated with a higher probability of having NAFLD than seldom consuming them. Consumption of fresh fruit and vegetables was not a factor influencing the probability of having NAFLD in the A genotype group, and there was no effect in the G genotype group. Further analysis of the interaction indicated that the GA +AA genotype showed an interaction with fresh fruit and vegetables and salted and smoked foods. Moreover, it was not obvious that meat intake increased the probability of having NAFLD or NASH among different genotypes. CONCLUSION Our results indicate that ALDH2 rs671 GA and AA genotypes are factors associated with increased probability of NAFLD among Chinese subjects. This could stimulate the development of novel approaches for preventing NAFLD.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Correspondence: Qiang Zeng Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of ChinaTel +86-10-68295751Fax +86-21-64085875 Email
| |
Collapse
|
37
|
Abedini JA, Handa S, Edwards S, Chorley B, El-Masri H. Identification of differentially expressed genes and networks related to hepatic lipid dysfunction. Toxicol Appl Pharmacol 2019; 382:114757. [DOI: 10.1016/j.taap.2019.114757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
|
38
|
Lang AL, Krueger AM, Schnegelberger RD, Kaelin BR, Rakutt MJ, Chen L, Arteel GE, Beier JI. Rapamycin attenuates liver injury caused by vinyl chloride metabolite chloroethanol and lipopolysaccharide in mice. Toxicol Appl Pharmacol 2019; 382:114745. [PMID: 31499194 PMCID: PMC6823165 DOI: 10.1016/j.taap.2019.114745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023]
Abstract
Vinyl chloride (VC) is a prevalent environmental toxicant that is rapidly metabolized within the liver. Its metabolites have been shown to directly cause hepatic injury at high exposure levels. We have previously reported that VC metabolite, chloroethanol (CE), potentiates liver injury caused by lipopolysaccharide (LPS). Importantly, that study showed that CE alone, while not causing damage per se, was sufficient to alter hepatic metabolism and increase mTOR phosphorylation in mice, suggesting a possible role for the mTOR pathway. Here, we explored the effect of an mTOR inhibitor, rapamycin, in this model. C57BL/6 J mice were administered CE, followed by rapamycin 1 h and LPS 24 h later. As observed previously, the combination of CE and LPS significantly enhanced liver injury, inflammation, oxidative stress, and metabolic dysregulation. Rapamycin attenuated not only inflammation, but also restored the metabolic phenotype and protected against CE + LPS-induced oxidative stress. Importantly, rapamycin protected against mitochondrial damage and subsequent production of reactive oxygen species (ROS). The protective effect on mitochondrial function by rapamycin was mediated, by restoring the integrity of the electron transport chain at least in part, by blunting the deactivation of mitochondrial c-src, which is involved mitochondrial ROS production by electron transport chain leakage. Taken together, these results further demonstrate a significant role of mTOR-mediated pathways in VC-metabolite induced liver injury and provide further insight into VC-associated hepatic damage. As mTOR mediated pathways are very complex and rapamycin is a more global inhibitor, more specific mTOR (i.e. mTORC1) inhibitors should be considered in future studies.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Austin M Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America.
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Brenna R Kaelin
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America.
| | - Maxwell J Rakutt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America.
| | - Liya Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Gavin E Arteel
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
39
|
Uwaifo GI. Beware Energy Drinks: A Case of a Toxic Triad Syndrome in a Diabetic Patient With Nonalcoholic Fatty Liver Disease. Am J Med Sci 2019; 358:304-311. [PMID: 31543103 DOI: 10.1016/j.amjms.2019.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Abstract
Energy drinks are widely used and very popular. They are touted as "harmless" energy boosters for use in professional, recreational and domestic settings. They are typically high in monosaccharides, and caffeine with other assorted products like ginseng. Careful study of the potential risks of their use is nonexistent while rigorous documentation of their touted energy boosting capacity is also meagre. We present the cautionary case of a 46-year-old Caucasian man with well-controlled type 2 diabetes and nonalcoholic fatty liver disease who developed a toxic triad syndrome of gastritis, hepatitis and pancreatitis within 4 months of commencing daily consumption of 2-3 160z cans of the energy drink Monster Energy. His clinical symptoms and biochemical derangements promptly resolved with stopping the beverage. We discuss the potential risks inherent in unsupervised liberal consumption of energy drinks and the need for both caution and vigilance among clinicians and patients.
Collapse
Affiliation(s)
- Gabriel I Uwaifo
- Department of Endocrinology, Diabetes, Metabolism, and Weight Management, Ochsner Medical Center, New Orleans, Louisiana.
| |
Collapse
|
40
|
Application of Bioactive Thermal Proteome Profiling to Decipher the Mechanism of Action of the Lipid Lowering 13 2-Hydroxy-pheophytin Isolated from a Marine Cyanobacteria. Mar Drugs 2019; 17:md17060371. [PMID: 31234367 PMCID: PMC6627572 DOI: 10.3390/md17060371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
The acceleration of the process of understanding the pharmacological application of new marine bioactive compounds requires identifying the compound protein targets leading the molecular mechanisms in a living cell. The thermal proteome profiling (TPP) methodology does not fulfill the requirements for its application to any bioactive compound lacking chemical and functional characterization. Here, we present a modified method that we called bTPP for bioactive thermal proteome profiling that guarantees target specificity from a soluble subproteome. We showed that the precipitation of the microsomal fraction before the thermal shift assay is crucial to accurately calculate the melting points of the protein targets. As a probe of concept, the protein targets of 132-hydroxy-pheophytin, a compound previously isolated from a marine cyanobacteria for its lipid reducing activity, were analyzed on the hepatic cell line HepG2. Our improved method identified 9 protein targets out of 2500 proteins, including 3 targets (isocitrate dehydrogenase, aldehyde dehydrogenase, phosphoserine aminotransferase) that could be related to obesity and diabetes, as they are involved in the regulation of insulin sensitivity and energy metabolism. This study demonstrated that the bTPP method can accelerate the field of biodiscovery, revealing protein targets involved in mechanisms of action (MOA) connected with future applications of bioactive compounds.
Collapse
|
41
|
Chen L, Lang AL, Poff GD, Ding WX, Beier JI. Vinyl chloride-induced interaction of nonalcoholic and toxicant-associated steatohepatitis: Protection by the ALDH2 activator Alda-1. Redox Biol 2019; 24:101205. [PMID: 31026768 PMCID: PMC6479707 DOI: 10.1016/j.redox.2019.101205] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022] Open
Abstract
Vinyl chloride (VC), an abundant environmental contaminant causes steatohepatitis at high levels, but is considered safe at lower (i.e., sub-OSHA) levels. However, we have previously shown that even lower VC levels exacerbate experimental nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD). Mitochondrial oxidative injury and subsequent metabolic dysfunction appeared to play key roles in mediating this interaction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as a key line of defense against endogenous and exogenous reactive aldehydes. The current study therefore tests the hypothesis that allosteric activation of ALDH2 with Alda-1 will protect against VC-enhanced NAFLD. Mice were exposed to low VC concentrations (<1 ppm), or room air for 6 h/day, 5 days/week for 12 weeks, while on HFD or low-fat control diet (LFD). Some mice received Alda-1 (20 mg/kg i.p., 3 × /week) for the last 3 weeks of diet/VC exposure. Indices of liver injury, oxidative stress, metabolic and mitochondrial (dys)function were measured. As observed previously, low-dose VC did not cause liver injury in control mice; while liver injury caused by HFD was enhanced by VC. VC decreased hepatic ALDH2 activity of mice fed HFD. Alda-1 attenuated oxidative stress, liver injury, and dysmetabolism in mice exposed to HFD+VC under these conditions. Importantly, alterations in mitochondrial function caused by VC and HFD were diminished by Alda-1. Previous studies have indicated that liver injury caused by HFD is mediated, at least in part, by enhanced mitochondrial autophagy (mitophagy). Here, Alda-1 suppressed PINK1/PARKIN-mediated mitophagy. Taken together, these results support the hypothesis that ALDH2 is a critical defense against mitochondrial injury caused by VC in experimental NAFLD. The ALDH2 activator Alda-1 conferred protection against liver damage under these conditions, most likely via increasing clearance of aldehydes and preserving mitochondrial respiratory function. VC, combined with HFD impairs ALDH2 function, causing an accumulation of endogenous aldehydes and oxidative stress in vivo. VC metabolite chloroacetaldehyde directly blocks ALDH2 activity in vitro. Alda-1 treatment reverses pre-established liver injury, oxidative stress and metabolic dysregulation caused by VC and HFD. Alda-1 increases overall autophagy caused by VC+HFD, but decreases mitophagy, likely to preserve mitochondrial function.
Collapse
Affiliation(s)
- Liya Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA; University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA.
| | - Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA; University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA.
| | - Gavin D Poff
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA; University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA.
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|