1
|
Li Y, Zhan F, Shunthirasingham C, Lei YD, Oh J, Weng C, Ben Chaaben A, Lu Z, Lee K, Gobas FAPC, Hung H, Wania F. Inferring atmospheric sources of gaseous organophosphate esters from spatial patterns. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:643-652. [PMID: 39913418 PMCID: PMC11864208 DOI: 10.1093/etojnl/vgae089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 02/27/2025]
Abstract
Organophosphate esters (OPEs) have emerged as pervasive environmental contaminants, with concentrations often exceeding those of traditional flame retardants and plasticizers by orders of magnitude. Here, we present concentrations of OPEs in the atmospheric gas phase collected using passive air samplers deployed in the coastal regions of Quebec and British Columbia in southern Canada. Four OPEs, i.e., tri-n-butyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris (phenyl) phosphate (TPhP) were reliably and ubiquitously detected, with TCPP showing the highest level, followed by TBP. Concentration levels of TCPP and TCEP are correlated with each other and with population, possibly indicating emission from consumer products. Spatial patterns of TBP and TPhP are more indicative of industrial usage, with airports possibly being a major source for TBP. The positive relationships between atmospheric OPEs and population are influenced by ambient temperature, whereby the size of the populated area around a sampling site influencing the air concentration appears to be decreasing at higher temperatures.
Collapse
Affiliation(s)
- Yuening Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jenny Oh
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON, Canada
| | - Chunwen Weng
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Amina Ben Chaaben
- Institut des Sciences de la Mer, Université du Quebec à Rimouski, Rimouski, QC, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer, Université du Quebec à Rimouski, Rimouski, QC, Canada
| | - Kelsey Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Frank A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, North York, ON, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
2
|
Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI, Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis. Arch Toxicol 2024; 98:2763-2796. [PMID: 38758407 DOI: 10.1007/s00204-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Tatiana I Sotnikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
- City Clinical Hospital N. a. S.P. Botkin of the Moscow City Health Department, 125284, Moscow, Russia
| | - Tatiana V Korobeinikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 005508-000, Brazil
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
3
|
Bai T, Li X, Zhang H, Yang W, Lv C, Du X, Xu S, Zhao A, Xi Y. The association between brominated flame retardants exposure with bone mineral density in US adults: A cross-sectional study of the national health and nutrition examination survey (NHANES) 2005-2014. ENVIRONMENTAL RESEARCH 2024; 251:118580. [PMID: 38423496 DOI: 10.1016/j.envres.2024.118580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND AIMS Exposure to brominated flame retardants (BFRs) has been widely confirmed to impair the normal functioning of the human body system. However, there is a paucity of study on the effects of serum BFRs on bone mineral density (BMD). This study aims to investigate the relationship between exposure to BFRs and BMD in a nationally representative sample of U.S. adults. METHODS 3079 participants aged between 20 and 80 years with complete data were included in the study. Serum levels of BFRs were measured using automated liquid-liquid extraction and subsequent sample clean-up. The BMD of all participants were assessed by DXA examinations. Generalize linear model, Restricted cubic spline (RCS), subgroup, weighted quantile sum (WQS) and bayesian kernel machine regression (BKMR) were used to estimate the association between serum BFRs and BMD. RESULTS Multivariate linear regression analyses revealed that, after adjusting for covariates, PBB153 was significantly associated with TF-BMD (β = 0.0177, 95%CI: 0.0103-0.0252), FN-BMD (β = 0.009, 95%CI: 0.0036-0.0145), TS-BMD (β = 0.0081, 95%CI: 0.0013-0.015) and L1-BMD (β = 0.0144, 95%CI: 0.0075-0.0213). However, the associations lose their statistical significance after further adjustment for sex. BFRs exhibited S-shaped or line-plateau dose-response curves with BMD. In subgroup analyses, BFRs were significantly associated with BMD in participants who were younger than 55 years, female, overweight (BMI >25 kg/m2), and less alcohol consumption. In WQS and BKMR analyses, the effects of BFRs mixtures on BMD differed by sex, and PBDE153, PBDE209 and PBB153 had the highest weights in the WQS regression model. CONCLUSION This study showed that serum BFRs negatively predicted BMD in men, but not in women or the general population. PBDE153, PBDE209, and PBB153 were significant BMD factors, especially in younger, overweight, and less alcohol consumption individuals.
Collapse
Affiliation(s)
- Tianyu Bai
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiangjun Li
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Han Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenkang Yang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Changlin Lv
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaofan Du
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shiqi Xu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Aiping Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yongming Xi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Li Z, Hales BF, Robaire B. Impact of Exposure to a Mixture of Organophosphate Esters on Adrenal Cell Phenotype, Lipidome, and Function. Endocrinology 2024; 165:bqae024. [PMID: 38376928 PMCID: PMC10914377 DOI: 10.1210/endocr/bqae024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Organophosphate esters (OPEs) are used primarily as flame retardants and plasticizers. Previously, we reported that adrenal cells are important targets of individual OPEs. However, real-life exposures are to complex mixtures of these chemicals. To address this, we exposed H295R human adrenal cells to varying dilutions (1/1000K to 1/3K) of a Canadian household dust-based OPE mixture for 48 hours and evaluated effects on phenotypic, lipidomic, and functional parameters. Using a high-content screening approach, we assessed phenotypic markers at mixture concentrations at which there was greater than 70% cell survival; the most striking effect of the OPE mixture was a 2.5-fold increase in the total area of lipid droplets. We then determined the response of specific lipid species to OPE exposures with novel, nontargeted lipidomic analysis of isolated lipid droplets. These data revealed that house dust OPEs induced concentration-dependent alterations in the composition of lipid droplets, particularly affecting the triglyceride, diglyceride, phosphatidylcholine, and cholesterol ester subclasses. The steroid-producing function of adrenal cells in the presence or absence of a steroidogenic stimulus, forskolin, was determined. While the production of 17β-estradiol remained unaffected, a slight decrease in testosterone production was observed after stimulation. Conversely, a 2-fold increase in both basal and stimulated cortisol and aldosterone production was observed. Thus, exposure to a house dust-based mixture of OPEs exerts endocrine-disrupting effects on adrenal cells, highlighting the importance of assessing the effects of environmentally relevant mixtures.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
5
|
Ye L, Li J, Gong S, Herczegh SM, Zhang Q, Letcher RJ, Su G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132095. [PMID: 37523961 DOI: 10.1016/j.jhazmat.2023.132095] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The list of organophosphate esters (OPEs) reported in the environment continues to expand as evidenced by the increasing number of OPE studies in the literature. However, there remains a general dearth of information on more recently produced and used OPEs that are proving to be emerging environmental contaminants. The present review summarizes the available studies in a systematic framework of the current state of knowledge on the analysis, environmental fate, and behavior of emerging OPEs. This review also details future directions to better understand emerging OPEs in the environment. Firstly, we make recommendations that the current structural/practical abbreviations and naming of OPEs be revised and updated. A chemical database (CDB) containing 114 OPEs is presently established based on the suspect list from the current scientific literature. There are 12 established OPEs and a total of 83 emerging OPEs that have been reported in human and/or biota samples. Of the emerging OPEs more than 80% have nearly 100% detection frequencies in samples of certain environmental media including indoor air, wastewater treatment plants, sediment, and fish. In contrast to OPEs considered established contaminants, most emerging OPEs have been identified more recently due to the more pervasive use of high-resolution mass spectrometry (HRMS) based approaches and especially gas or liquid chromatography coupled with HRMS-based non-target analysis (NTA) of environmental sample fractions. Intentional/unintentional industrial use and non-industrial formation are sources of emerging OPEs in the environment. Predicted physical-chemical properties in silico of newer, molecularly larger and more oligomeric OPEs strongly suggest that some compounds such as bisphenol A diphenyl phosphate (BPA-DPP) are highly persistent, bioaccumulative and/or toxic. Limited information on laboratory-based toxicity data has shown that some emerging OPEs elicit harmful effects such as cytotoxicity, development toxicity, hepatotoxicity, and endocrine disruption in exposed humans and mammals. Established, and to a much lesser degree emerging OPEs, have also been shown to transform and degrade in biota and possibly alter their toxicological effects. Research on emerging OPE contaminants is presently limited and more study is warranted on sample analysis methods, source apportionment, transformation processes, environmental behavior, biomarkers of exposure and toxicity.
Collapse
Affiliation(s)
- Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Qi Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Schkoda S, Horman B, Witchey SK, Jansson A, Macari S, Patisaul HB. Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat. FRONTIERS IN TOXICOLOGY 2023; 5:1216388. [PMID: 37577032 PMCID: PMC10414991 DOI: 10.3389/ftox.2023.1216388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Shannah K. Witchey
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anton Jansson
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, United States
| | - Soraia Macari
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
7
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Shi C, Wang C, Zeng L, Peng Y, Li Y, Hao H, Zheng Y, Chen C, Chen H, Zhang J, Xiang M, Huang Y, Li H. Triphenyl phosphate induced reproductive toxicity through the JNK signaling pathway in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130643. [PMID: 36586333 DOI: 10.1016/j.jhazmat.2022.130643] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Triphenyl phosphate (TPHP) is a widely used aryl organophosphate flame retardant (OPFR) that has attracted attention due to its frequent detection in the environment and living organisms. To date, the reproductive toxicity of TPHP has been investigated in organisms, but its molecular mechanisms are not fully understood. Caenorhabditis elegans (C. elegans) is the ideal animal for the study of reproductive toxicity following environmental pollutants, with short generation times, intact reproductive structures, and hermaphroditic fertilization. This study aimed to explore the reproductive dysfunction and molecular mechanisms induced by TPHP exposure in C. elegans. Specifically, exposure to TPHP resulted in a reduction in the number of eggs laid and developing embryos in utero, an increase in the number of apoptotic gonadal cells, and germ cell cycle arrest. The JNK signaling pathway is a potential pathway inducing reproductive toxicity following TPHP exposure based on transcriptome sequencing (RNA-seq). Moreover, TPHP exposure induced down-regulation of vhp-1 and kgb-2 gene transcription levels, and the knockout of vhp-1 and kgb-2 in the mutant strains exhibited more severe toxicity in apoptotic gonad cells, embryos, and eggs developing in utero, suggesting that vhp-1 and kgb-2 genes play a crucial role in TPHP-induced reproductive toxicity. Our data provide convergent evidence showing that TPHP exposure results in reproductive dysfunction through the JNK signaling pathway and improve our understanding of the ecotoxicity and toxicological mechanisms of aryl-OPFRs.
Collapse
Affiliation(s)
- Chongli Shi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lingjun Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yeyong Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibin Hao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yang Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghui Xiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuan Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Kuiper JR, Vuong AM, Lanphear BP, Calafat AM, Ospina M, Cecil KM, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Chen A, Buckley JP. Early life organophosphate ester exposures and bone health at age 12 years: The Health Outcomes and Measures of the Environment (HOME) Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158246. [PMID: 36030851 PMCID: PMC9606835 DOI: 10.1016/j.scitotenv.2022.158246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND No human studies have evaluated early life organophosphate ester (OPE) exposures with bone health outcomes, despite evidence of osteotoxicity. OBJECTIVES We assessed associations of urinary OPE metabolites measured across early life with areal bone mineral density (aBMD) and bone mineral content (BMC) at age 12 years. METHODS Among 223 mother-child dyads enrolled in the Health Outcomes and Measures of the Environment (HOME) Study, we quantified concentrations of bis-2-chloroethyl phosphate (BCEP), bis-(1,3-dichloro-2-propyl) (BDCIPP), di-n-butyl phosphate (DnBP), and diphenyl phosphate (DPHP) in urine collected from mothers during pregnancy and children at ages 1, 2, 3, 5, and 8 years. At age 12 years, we performed dual energy x-ray absorptiometry and calculated aBMD and BMC z-scores at six skeletal sites. We estimated overall and sex-stratified BMD/BMC z-score differences per interquartile range (IQR) increase in OPE concentrations at multiple exposure timepoints: gestation (average) and 1-3 (average), 5, and 8 years. RESULTS In adjusted models, overall associations of BCEP and BDCIPP with total hip and 1/3rd distal radius aBMD and BMC varied significantly by exposure timepoint, as did BDCIPP with whole body aBMD. For example, differences (95 % CI) in total hip aBMD z-score per IQR increase in BDCIPP were 0.33 (0.01, 0.64), -0.10 (-0.34, 0.14), -0.18 (-0.40, 0.05), and 0.14 (-0.09, 0.38) for concentrations during gestation and at 1-3, 5, and 8 years, respectively. Overall DnBP and DPHP associations were generally null at all timepoints. We observed sex-specific associations for some timepoints and skeletal sites. For example, an IQR increase in 8-year DPHP was associated with a 0.21 (0.05, 0.38) greater total hip aBMD z-score among females but -0.19 (-0.43, 0.05) lower z-score among males. DISCUSSION Early life OPE exposures may be associated with sex- and exposure period-dependent alterations in early adolescent bone mineral accrual and strength.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Ye L, Su G. Elevated concentration and high Diversity of organophosphate esters (OPEs) were Discovered in Sediment from Industrial, and E-Waste Recycling Areas. WATER RESEARCH 2022; 217:118362. [PMID: 35398804 DOI: 10.1016/j.watres.2022.118362] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Aquatic environments in industrial, and e-waste recycling areas might undergo severe contamination; however, there are few studies comprehensively assessing the pollution status of organophosphate esters (OPEs) in these two areas. Here, we applied both atmospheric pressure chemical ionization (APCI) and electron spray ionization (ESI) sources in our target, suspect, and functional group-dependent screening strategy, which enhanced the confidence for confirmation on precursor ions of OPEs. Then, n=53 sediment samples (30 from the industrial area, and 23 from the e-waste recycling area) were analyzed. Twenty-three out of 30 target OPEs were quantifiable in these analyzed samples. Total OPE concentrations (Σ30OPEs) in samples from e-waste recycling area range from 12.8 to 9250 ng/g dry weight (dw), that are statistically significantly greater (t-test, p < 0.001) than those from industrial area (25.1-5520 ng/g dw). Σ30OPEs in the sediments from industrial, or e-waste recycling area are statistically significantly greater (one-way ANOVA, p < 0.001) as compared to those (32.0-369 ng/g dw) from Taihu Lake in our previous study. In sediment from three areas, suspect and non-target analysis fully or tentatively identified other 20 OPEs. Four of them have not been recorded or registered in any of online chemical databases, and they are tentatively named as ((methoxy(phenoxy)phosphoryl)oxy)phenyl diphenyl phosphate (mPPODP), (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP), bis(dichlorophenyl) propane-1,3-diyl bis(hexylated phosphate) (BDCBHP), and bis(2-hexadecoxyethyl) ethyl phosphate (BHEPP). Overall, this study provided new insights regarding both analytical methodology and pollution status of OPEs, and highlights that elevated concentrations and high diversity of OPEs exist in sediments from industrial, and e-waste recycling areas.
Collapse
Affiliation(s)
- Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
11
|
García-García RD, Garay-Pacheco E, Marín-Llera JC, Chimal-Monroy J. Recombinant Limb Assay as in Vivo Organoid Model. Front Cell Dev Biol 2022; 10:863140. [PMID: 35557939 PMCID: PMC9086426 DOI: 10.3389/fcell.2022.863140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Organ formation initiates once cells become committed to one of the three embryonic germ layers. In the early stages of embryogenesis, different gene transcription networks regulate cell fate after each germ layer is established, thereby directing the formation of complex tissues and functional organs. These events can be modeled in vitro by creating organoids from induced pluripotent, embryonic, or adult stem cells to study organ formation. Under these conditions, the induced cells are guided down the developmental pathways as in embryonic development, resulting in an organ of a smaller size that possesses the essential functions of the organ of interest. Although organoids are widely studied, the formation of skeletal elements in an organoid model has not yet been possible. Therefore, we suggest that the formation of skeletal elements using the recombinant limb (RL) assay system can serve as an in vivo organoid model. RLs are formed from undissociated or dissociated-reaggregated undifferentiated mesodermal cells introduced into an ectodermal cover obtained from an early limb bud. Next, this filled ectoderm is grafted into the back of a donor chick embryo. Under these conditions, the cells can receive the nascent embryonic signals and develop complex skeletal elements. We propose that the formation of skeletal elements induced through the RL system may occur from stem cells or other types of progenitors, thus enabling the study of morphogenetic properties in vivo from these cells for the first time.
Collapse
Affiliation(s)
| | | | | | - Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
12
|
Freid R, Hussein AI, Schlezinger JJ. Tributyltin protects against ovariectomy-induced trabecular bone loss in C57BL/6J mice with an attenuated effect in high fat fed mice. Toxicol Appl Pharmacol 2021; 431:115736. [PMID: 34619157 PMCID: PMC8545923 DOI: 10.1016/j.taap.2021.115736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
Risk factors for poor bone quality include estrogen loss at menopause, a high fat diet and exposures to drugs/chemicals that activate peroxisome proliferator activated receptor gamma (PPARγ). We previously reported that the PPARγ and retinoid X receptor dual ligand, tributyltin (TBT), repressed periosteal bone formation but enhanced trabecular bone formation in vivo. Here, we examined the interaction of diet, ovariectomy (OVX) and TBT exposure on bone structure. C57BL/6J mice underwent either sham surgery or OVX at 10 weeks of age. At 12 weeks of age, they were placed on a low (10% kcal) or high (45% kcal) fat, sucrose-matched diet and treated with vehicle or TBT (1 or 5 mg/kg) for 14 weeks. OVX increased body weight gain in mice on either diet. TBT enhanced body weight gain in intact mice fed a high fat diet, but decreased weight gain in OVX mice. Elemental tin concentrations increased dose-dependently in bone. TBT had marginal effects on cortical and trabecular bone in intact mice fed either diet. OVX caused a reduction in cortical and trabecular bone, regardless of diet. In high fat fed OVX mice, TBT further reduced cortical thickness, bone area and total area. Interestingly, TBT protected against OVX-induced trabecular bone loss in low fat fed mice. The protective effect of TBT was nullified by the high fat. These results show that TBT protects against trabecular bone loss, even in the presence of a strongly resorptive environment, at an even lower level of exposure than we showed repressed homeostatic resorption.
Collapse
Affiliation(s)
- Rachel Freid
- Environmental Health, Boston University School of Public Health, USA
| | - Amira I Hussein
- Orthopaedic Surgery, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
13
|
Hong H, Zhao Y, Huang L, Zhong D, Shi D. Bone developmental toxicity of organophosphorus flame retardants TDCIPP and TPhP in marine medaka Oryzias melastigma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112605. [PMID: 34371453 DOI: 10.1016/j.ecoenv.2021.112605] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The global phase-out has decreased the use of polybrominated diphenyl ethers (PBDEs), thereby, rapidly increasing the production and use of their important surrogates, organophosphorus flame retardants (OPFRs). Currently, OPFRs are often found at higher levels in the environments compared to PBDEs. Although the two typical OPFRs, tris (1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP), have been frequently detected in marine environments with significant concentrations, their toxicity to marine organisms remains unknown. We used Oryzias melastigma to investigate and compare their developmental toxicity in marine organisms through two-generational chronic exposure. The results showed that TDCIPP and TPhP exposure shortened the body length and length of the pectoral fin of O. melastigma. Both TDCIPP and TPhP deformed the pectoral fins in the 1st fry and caused spinal curvature in adult fish. Therefore, these two chemicals may pose potential risks to marine fish and marine ecosystems. Further studies suggested that although these two chemicals caused similar developmental bone toxicity, they had different modes of modulating the expression of bone developmental genes such as, bmp4, bmp2 and runx2.
Collapse
Affiliation(s)
- Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yunchen Zhao
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lingming Huang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Daiyin Zhong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
15
|
Yan H, Hales BF. Exposure to tert-Butylphenyl Diphenyl Phosphate, an Organophosphate Ester Flame Retardant and Plasticizer, Alters Hedgehog Signaling in Murine Limb Bud Cultures. Toxicol Sci 2020; 178:251-263. [PMID: 32976586 DOI: 10.1093/toxsci/kfaa145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Organophosphate esters have become widely used as flame retardants since the phase out of polybrominated diphenyl ethers. Previously, we demonstrated that some organophosphate esters, such as tert-butylphenyl diphenyl phosphate (BPDP), were more detrimental to endochondral ossification in murine limb bud cultures than one of the major polybrominated diphenyl ethers that they replaced, 2,2',4,4'-tetrabromodiphenyl ether. Here, we used a transcriptomic approach to elucidate the mechanism of action of BPDP in the developing limb. Limb buds collected from gestation day 13 CD1 mouse embryos were cultured for 3 or 24 h in the presence of vehicle, 1 μM, or 10 μM BPDP. RNA sequencing analyses revealed that exposure to 1 µM BPDP for 24 h increased the expression of 5 transcripts, including Ihh, and decreased 14 others, including Gli1, Ptch1, Ptch2, and other targets of Hedgehog (Hh) signaling. Pathway analysis predicted the inhibition of Hh signaling. Attenuation of Hh signaling activity began earlier and reached a greater magnitude after exposure to 10 µM BPDP. Because this pathway is part of the regulatory network governing endochondral ossification, we used a known Hh agonist, purmorphamine, to determine the contribution of Hh signaling inhibition to the negative impact of BPDP on endochondral ossification. Cotreatment of limbs with purmorphamine rescued the detrimental morphological changes in the cartilage template induced by BPDP exposure though it did not restore the expression of key transcription factors, Runx2 and Sp7, to control levels. These data highlight Hh signaling as a developmentally important pathway vulnerable to environmental chemical exposures.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
16
|
Cui H, Chang Y, Jiang X, Li M. Triphenyl phosphate exposure induces kidney structural damage and gut microbiota disorders in mice under different diets. ENVIRONMENT INTERNATIONAL 2020; 144:106054. [PMID: 32818822 DOI: 10.1016/j.envint.2020.106054] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Exposure of humans to organophosphate flame retardants (OPFRs) and the consequent health risk have increased owing to the latter's widespread application. Although triphenyl phosphate (TPP), an OPFR, is a potential chemical determinant of liver function damage, its effects on kidney function in mice under high fructose/fat (HFF) diet are still unclear. In this study, C57BL/6J mice were fed HFF to generate an obesity model and mice were exposed to low dose (0.01 mg/kg/day; TPP-L) and high dose (1 mg/kg/day; TPP-H) of TPP for 12 weeks. Results showed that TPP-L and TPP-H combined with HFF, as well as TPP-H alone, caused kidney structural damage and gut microbiota disorders in mice. Inflammatory response induced by nuclear factor kappa B (NF-κB p65)/nod-like receptor protein 3 (NLRP3) and caspase-3 promoted kidney structure damage, as well as accumulation of triglyceride and total cholesterol and the protein residues in urine. Although TPP-L did not cause obvious structural damage in the kidneys, 0.01 mg/kg TPP induced significant inflammation and gut microbiota disorders. These findings provide new insights regarding health risk assessment after chronic exposure to TPP and HFF alone, as well as a combination of TPP with HFF in mice.
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
17
|
Developmental Exposure to the Flame Retardant Mixture Firemaster 550 Compromises Adult Bone Integrity in Male but not Female Rats. Int J Mol Sci 2020; 21:ijms21072553. [PMID: 32272586 PMCID: PMC7178223 DOI: 10.3390/ijms21072553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Flame retardants (FRs) are used in a variety of common items from furniture to carpet to electronics to reduce flammability and combustion, but the potential toxicity of these compounds is raising health concerns globally. Organophosphate FRs (OPFRs) are becoming more prevalent as older, brominated FRs are phased out, but the toxicity of these compounds, and the FR mixtures that contain them, is poorly understood. Work in a variety of in vitro model systems has suggested that FRs may induce metabolic reprogramming such that bone density is compromised at the expense of increasing adiposity. To address this hypothesis, the present studies maternally exposed Wistar rat dams orally across gestation and lactation to 1000 µg daily of the FR mixture Firemaster 550 (FM 550) which contains a mixture of brominated FRs and OPFRs. At six months of age, the offspring of both sexes were examined for evidence of compromised bone composition. Bone density, composition, and marrow were all significantly affected, but only in males. The fact that the phenotype was observed months after exposure suggests that FM 550 altered some fundamental aspect of mesenchymal stem cell reprogramming. The severity of the phenotype and the human-relevance of the dose employed, affirm this is an adverse outcome meriting further exploration.
Collapse
|
18
|
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020; 21:E912. [PMID: 32019244 PMCID: PMC7037207 DOI: 10.3390/ijms21030912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.
Collapse
Affiliation(s)
- Alexander Sieberath
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| |
Collapse
|
19
|
Edwards L, Watt J, Webster TF, Schlezinger JJ. Assessment of total, ligand-induced peroxisome proliferator activated receptor γ ligand activity in serum. Environ Health 2019; 18:45. [PMID: 31072366 PMCID: PMC6506953 DOI: 10.1186/s12940-019-0486-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Humans are exposed to a complex mixture of environmental chemicals that impact bone and metabolic health, and traditional exposure assessments struggle to capture these exposure scenarios. Peroxisome proliferator activated receptor-gamma (PPARγ) is an essential regulator of metabolic and bone homeostasis, and its inappropriate activation by environmental chemicals can set the stage for adverse health effects. Here, we present the development of the Serum PPARγ Activity Assay (SPAA), a simple and cost-effective method to measure total ligand activity in small volumes of serum. METHODS First, we determined essential components of the bioassay. Cos-7 cells were transfected with combinations of expression vectors for human PPARγ and RXRα, the obligate DNA-binding partner of PPARγ, along with PPRE (DR1)-driven luciferase and control eGFP reporter constructs. Transfected cells were treated with rosiglitazone, a synthetic PPARγ ligand and/or LG100268, a synthetic RXR ligand, to characterize the dose response and determine the simplest and most efficacious format. Following optimization of the bioassay, we assessed the cumulative activation of PPARγ by ligands in serum from mice treated with a PPARγ ligand and commercial human serum samples. RESULTS Cos-7 cells endogenously express sufficient RXR to support efficacious activation of transfected PPARγ. Co-transfection of an RXR expression vector with the PPARγ expression vector did not increase PPRE transcriptional activity induced by rosiglitazone. Treatment with an RXR ligand marginally increased PPRE transcriptional activity in the presence of transfected PPARγ, and co-treatment with an RXR ligand reduced rosiglitazone-induced PPRE transcriptional activity. Therefore, the final bioassay protocol consists of transfecting Cos-7 cells with a PPARγ expression vector along with the reporter vectors, applying rosiglitazone standards and/or 10 μL of serum, and measuring luminescence and fluorescence after a 24 h incubation. Sera from mice dosed with rosiglitazone induced PPRE transcriptional activity in the SPAA in a dose-dependent and PPARγ-dependent manner. Additionally, human serum from commercial sources induced a range of PPRE transcriptional activities in a PPARγ-dependent manner, demonstrating the ability of the bioassay to detect potentially low levels of ligands. CONCLUSIONS The SPAA can reliably measure total PPRE transcriptional activity in small volumes of serum. This system provides a sensitive, straightforward assay that can be reproduced in any cell culture laboratory.
Collapse
Affiliation(s)
- Lariah Edwards
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA
| | - James Watt
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, R-405, Boston, MA, 02118, USA.
| |
Collapse
|