1
|
Kort EJ, Sayed N, Liu C, Mondéjar-Parreño G, Forsberg J, Eugster E, Wu SM, Wu JC, Jovinge S. Olmesartan Restores LMNA Function in Haploinsufficient Cardiomyocytes. Circulation 2025. [PMID: 40166828 DOI: 10.1161/circulationaha.121.058621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Gene mutations are responsible for a sizeable proportion of cases of heart failure. However, the number of patients with any specific mutation is small. Repositioning of existing US Food and Drug Administration-approved compounds to target specific mutations is a promising approach to efficient identification of new therapies for these patients. METHODS The National Institutes of Health Library of Integrated Network-Based Cellular Signatures database was interrogated to identify US Food and Drug Administration-approved compounds that demonstrated the ability to reverse the transcriptional effects of LMNA knockdown. Top hits from this screening were validated in vitro with patient-specific induced pluripotent stem cell-derived cardiomyocytes combined with force measurement, gene expression profiling, electrophysiology, and protein expression analysis. RESULTS Several angiotensin receptor blockers were identified from our in silico screen. Of these, olmesartan significantly elevated the expression of sarcomeric genes and rate and force of contraction and ameliorated arrhythmogenic potential. In addition, olmesartan exhibited the ability to reduce phosphorylation of extracellular signal-regulated kinase 1 in LMNA-mutant induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS In silico screening followed by in vitro validation with induced pluripotent stem cell-derived models can be an efficient approach to identifying repositionable therapies for monogenic cardiomyopathies.
Collapse
Affiliation(s)
- Eric J Kort
- DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum Health and Van Andel Institute, Grand Rapids, MI (E.J.K., J.F., E.E., S.J.)
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids (E.J.K.)
- Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI (E.J.K.)
| | - Nazish Sayed
- Cardiovascular Institute (N.S., C.L., G.M.-P., S.M.W., J.C.W., S.J.)
- Division of Vascular Surgery, Department of Surgery (N.S.)
| | - Chun Liu
- Cardiovascular Institute (N.S., C.L., G.M.-P., S.M.W., J.C.W., S.J.)
| | | | - Jens Forsberg
- DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum Health and Van Andel Institute, Grand Rapids, MI (E.J.K., J.F., E.E., S.J.)
| | - Emily Eugster
- DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum Health and Van Andel Institute, Grand Rapids, MI (E.J.K., J.F., E.E., S.J.)
| | - Sean M Wu
- Cardiovascular Institute (N.S., C.L., G.M.-P., S.M.W., J.C.W., S.J.)
- Department of Medicine, Division of Cardiovascular Medicine (S.M.W., J.C.W.)
| | - Joseph C Wu
- Cardiovascular Institute (N.S., C.L., G.M.-P., S.M.W., J.C.W., S.J.)
- Department of Medicine, Division of Cardiovascular Medicine (S.M.W., J.C.W.)
- Department of Radiology, Stanford University, CA (J.C.W.)
| | - Stefan Jovinge
- DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum Health and Van Andel Institute, Grand Rapids, MI (E.J.K., J.F., E.E., S.J.)
- Cardiovascular Institute (N.S., C.L., G.M.-P., S.M.W., J.C.W., S.J.)
- Skåne University Hospital, Lund University, Lund, Sweden (S.J.)
| |
Collapse
|
2
|
Guerrelli D, Pressman J, Salameh S, Posnack N. hiPSC-CM electrophysiology: impact of temporal changes and study parameters on experimental reproducibility. Am J Physiol Heart Circ Physiol 2024; 327:H12-H27. [PMID: 38727253 PMCID: PMC11390151 DOI: 10.1152/ajpheart.00631.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.
Collapse
Affiliation(s)
- Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Nikki Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
3
|
Seguret M, Davidson P, Robben S, Jouve C, Pereira C, Lelong Q, Deshayes L, Cerveau C, Le Berre M, Rodrigues Ribeiro RS, Hulot JS. A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell-derived cardiomyocytes. eLife 2024; 12:RP87739. [PMID: 38578976 PMCID: PMC11001295 DOI: 10.7554/elife.87739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.
Collapse
|
4
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Li J, Hua Y, Liu Y, Qu X, Zhang J, Ishida M, Yoshida N, Tabata A, Miyoshi H, Shiba M, Higo S, Sougawa N, Takeda M, Kawamura T, Matsuura R, Okuzaki D, Toyofuku T, Sawa Y, Liu L, Miyagawa S. Human induced pluripotent stem cell-derived closed-loop cardiac tissue for drug assessment. iScience 2024; 27:108992. [PMID: 38333703 PMCID: PMC10850789 DOI: 10.1016/j.isci.2024.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Human iPSC-derived cardiomyocytes (hiPSC-CMs) exhibit functional immaturity, potentially impacting their suitability for assessing drug proarrhythmic potential. We previously devised a traveling wave (TW) system to promote maturation in 3D cardiac tissue. To align with current drug assessment paradigms (CiPA and JiCSA), necessitating a 2D monolayer cardiac tissue, we integrated the TW system with a multi-electrode array. This gave rise to a hiPSC-derived closed-loop cardiac tissue (iCT), enabling spontaneous TW initiation and swift pacing of cardiomyocytes from various cell lines. The TW-paced cardiomyocytes demonstrated heightened sarcomeric and functional maturation, exhibiting enhanced response to isoproterenol. Moreover, these cells showcased diminished sensitivity to verapamil and maintained low arrhythmia rates with ranolazine-two drugs associated with a low risk of torsades de pointes (TdP). Notably, the TW group displayed increased arrhythmia rates with high and intermediate risk TdP drugs (quinidine and pimozide), underscoring the potential utility of this system in drug assessment applications.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hayato Miyoshi
- Fujifilm Corporation, Ashigarakami 258-8577, Kanagawa, Japan
| | - Mikio Shiba
- Cardiovascular Division, Osaka Police Hospital, Tennoji 543-0035, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Physiology, Osaka Dental University, 8-1 Kuzuha Hanazono-cho, Hirakata 573-1121, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Butler AS, Ascione R, Marrion NV, Harmer SC, Hancox JC. In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition. Sci Rep 2024; 14:3185. [PMID: 38326449 PMCID: PMC10850090 DOI: 10.1038/s41598-024-53571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, > 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p < 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, BS2 8HW, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
7
|
Schwarzová B, Stüdemann T, Sönmez M, Rössinger J, Pan B, Eschenhagen T, Stenzig J, Wiegert JS, Christ T, Weinberger F. Modulating cardiac physiology in engineered heart tissue with the bidirectional optogenetic tool BiPOLES. Pflugers Arch 2023; 475:1463-1477. [PMID: 37863976 PMCID: PMC10730631 DOI: 10.1007/s00424-023-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.
Collapse
Affiliation(s)
- Barbora Schwarzová
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Muhammed Sönmez
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Bangfen Pan
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany.
| |
Collapse
|
8
|
Guerrelli D, Pressman J, Posnack N. hiPSC-CM Electrophysiology: Impact of Temporal Changes and Study Parameters on Experimental Reproducibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560475. [PMID: 37873094 PMCID: PMC10592927 DOI: 10.1101/2023.10.02.560475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative. Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. Our study aimed to investigate the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. hiPSC-CMs (iCell cardiomyocyte 2 ) were cultured for 14 days and biosignals were acquired using a microelectrode array (MEA) system. Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-minute equilibration period. Location specific differences across a multiwell plate were also observed, with hiPSC-CMs in the outer rows beating 8.8 beats per minute (BPM) faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2-14 days the beating rate decreased (-12.7 BPM), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted hiPSC-CM drug responsiveness (E-4031, nifedipine, isoproterenol). Our study highlights multiple sources of variability that should be considered and addressed when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., culture time, equilibration time, electrical stimulation settings, report raw data values). New & Noteworthy We demonstrate that hiPSC-CM electrophysiology measurements are significantly impacted by slight deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first two weeks following defrost.
Collapse
|
9
|
Stebbeds W, Raniga K, Standing D, Wallace I, Bayliss J, Brown A, Kasprowicz R, Dalmas Wilk D, Deakyne J, Clements P, Chaudhary KW, Rossman EI, Bahinski A, Francis J. CardioMotion: identification of functional and structural cardiotoxic liabilities in small molecules through brightfield kinetic imaging. Toxicol Sci 2023; 195:61-70. [PMID: 37462734 DOI: 10.1093/toxsci/kfad065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular toxicity is an important cause of drug failures in the later stages of drug development, early clinical safety assessment, and even postmarket withdrawals. Early-stage in vitro assessment of potential cardiovascular liabilities in the pharmaceutical industry involves assessment of interactions with cardiac ion channels, as well as induced pluripotent stem cell-derived cardiomyocyte-based functional assays, such as calcium flux and multielectrode-array assays. These methods are appropriate for the identification of acute functional cardiotoxicity but structural cardiotoxicity, which manifests effects after chronic exposure, is often only captured in vivo. CardioMotion is a novel, label-free, high throughput, in vitro assay and analysis pipeline which records and assesses the spontaneous beating of cardiomyocytes and identifies compounds which impact beating. This is achieved through the acquisition of brightfield images at a high framerate, combined with an optical flow-based python analysis pipeline which transforms the images into waveform data which are then parameterized. Validation of this assay with a large dataset showed that cardioactive compounds with diverse known direct functional and structural mechanisms-of-action on cardiomyocytes are identified (sensitivity = 72.9%), importantly, known structural cardiotoxins also disrupt cardiomyocyte beating (sensitivity = 86%) in this method. Furthermore, the CardioMotion method presents a high specificity of 82.5%.
Collapse
Affiliation(s)
- William Stebbeds
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Kavita Raniga
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
- The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David Standing
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Iona Wallace
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - James Bayliss
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Andrew Brown
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Richard Kasprowicz
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | | | - Julianna Deakyne
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | | | | | - Eric I Rossman
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | - Anthony Bahinski
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | - Jo Francis
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| |
Collapse
|
10
|
Daily N, Elson J, Wakatsuki T. Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11959. [PMID: 37569335 PMCID: PMC10418415 DOI: 10.3390/ijms241511959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Among various cardiac safety concerns, proarrhythmia risks, including QT prolongation leading to Torsade de Pointes, is one of major cause for drugs being withdrawn (~45% 1975-2007). Preclinical study requires the evaluation of proarrhythmia using in silico, in vitro, and/or animal models. Considering that the primary consumers of prescription drugs are elderly patients, applications of "aging-in-a-dish" models would be appropriate for screening proarrhythmia risks. However, acquiring such models, including cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs), presents extensive challenges. We proposed the hypothesis that CMs differentiated from iPSCs derived from Hutchinson-Gilford progeria syndrome (HGPS, progeria) patients, an ultra-rare premature aging syndrome, can mimic the phenotypes of aging CMs. Our objective, therefore, was to examine this hypothesis by analyzing the response of 11 reference compounds utilized by the Food and Drug Administration (FDA)'s Comprehensive in vitro Proarrhythmia Assay (CiPA) using progeria and control CMs. As a sensitive surrogate marker of modulating cardiac excitation-contraction coupling, we evaluated drug-induced changes in calcium transient (CaT). We observed that the 80% CaT peak duration in the progeria CMs (0.98 ± 0.04 s) was significantly longer than that of control CMs (0.70 ± 0.05 s). Furthermore, when the progeria CMs were subjected to four doses of 11 compounds from low-, intermediate-, and high-risk categories, they demonstrated greater arrhythmia susceptibility than control cells, as shown through six-parameter CaT profile analyses. We also employed the regression analysis established by CiPA to classify the 11 reference compounds and compared proarrhythmia susceptibilities between the progeria and control CMs. This analysis revealed a greater proarrhythmia susceptibility in the progeria CMs compared to the control CMs. Interestingly, in both CMs, the compounds categorized as low risk did not exceed the safety risk threshold of 0.8. In conclusion, our study demonstrates increased proarrhythmia sensitivity in progeria CMs when tested with reference compounds. Future studies are needed to analyze underlying mechanisms and further validate our findings using a larger array of reference compounds.
Collapse
|
11
|
Baltov B, Beyl S, Baburin I, Reinhardt J, Szkokan P, Garifulina A, Timin E, Kraushaar U, Potterat O, Hamburger M, Kügler P, Hering S. Assay for evaluation of proarrhythmic effects of herbal products: Case study with 12 Evodia preparations. Toxicol Rep 2023; 10:589-599. [PMID: 37213814 PMCID: PMC10196857 DOI: 10.1016/j.toxrep.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Guidelines for preclinical drug development reduce the occurrence of arrhythmia-related side effects. Besides ample evidence for the presence of arrhythmogenic substances in plants, there is no consensus on a research strategy for the evaluation of proarrhythmic effects of herbal products. Here, we propose a cardiac safety assay for the detection of proarrhythmic effects of plant extracts based on the experimental approaches described in the Comprehensive In vitro Proarrhythmia Assay (CiPA). Microelectrode array studies (MEAs) and voltage sensing optical technique on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were combined with ionic current measurements in mammalian cell lines, In-silico simulations of cardiac action potentials (APs) and statistic regression analysis. Proarrhythmic effects of 12 Evodia preparations, containing different amounts of the hERG inhibitors dehydroevodiamine (DHE) and hortiamine were analysed. Extracts produced different prolongation of the AP, occurrence of early after depolarisations and triangulation of the AP in hiPSC-CMs depending on the contents of the hERG inhibitors. DHE and hortiamine dose-dependently prolonged the field potential duration in hiPSC-CMs studied with MEAs. In-silico simulations of ventricular AP support a scenario where proarrhythmic effects of Evodia extracts are predominantly caused by the content of the selective hERG inhibitors. Statistic regression analysis revealed a high torsadogenic risk for both compounds that was comparable to drugs assigned to the high-risk category in a CiPA study.
Collapse
Affiliation(s)
- Bozhidar Baltov
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
| | | | - Igor Baburin
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
| | - Jakob Reinhardt
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Aleksandra Garifulina
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Eugen Timin
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Olivier Potterat
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Philipp Kügler
- University of Hohenheim, Institute of Applied Mathematics and Statistics and Computational Science Hub, 70599 Stuttgart, Germany
| | - Steffen Hering
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
- Correspondence to: Am Kanal 27,2/3/5–7, 1110 Vienna, Austria.
| |
Collapse
|
12
|
Yang Y, Liu A, Tsai CT, Liu C, Wu JC, Cui B. Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens Bioelectron 2022; 216:114617. [PMID: 36027802 PMCID: PMC9930661 DOI: 10.1016/j.bios.2022.114617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 01/11/2023]
Abstract
Unintended binding of small-molecule drugs to ion channels affects electrophysiological properties of cardiomyocytes and potentially leads to arrhythmia and heart failure. The waveforms of intracellular action potentials reflect the coordinated activities of cardiac ion channels and serve as a reliable means for assessing drug toxicity, but the implementation is limited by the low throughput of patch clamp for intracellular recording measurements. In the last decade, several new technologies are being developed to address this challenge. We recently developed the nanocrown electrode array (NcEA) technology that allows robust, parallel, and long-duration recording of intracellular action potentials (iAPs). Here, we demonstrate that NcEAs allow comparison of iAP waveforms before and after drug treatment from the same cell. This self-referencing comparison not only shows distinct drug effects of sodium, potassium, and calcium blockers, but also reveals subtle differences among three subclasses of sodium channel blockers with sub-millisecond accuracy. Furthermore, self-referencing comparison unveils heterogeneous drug responses among different cells. In our study, whole-panel simultaneous intracellular recording can be reliably achieved with ∼94% success rate. The average duration of intracellular recording is ∼30 min and some last longer than 2 h. With its high reliability, long recording duration, and easy-to-use nature, NcEA would be useful for iAP-based preclinical drug screening.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA,Department of Medicine, Stanford University, Stanford, CA, USA,Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA; Wu-Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Feaster TK, Feric N, Pallotta I, Narkar A, Casciola M, Graziano MP, Aschar-Sobbi R, Blinova K. Acute effects of cardiac contractility modulation stimulation in conventional 2D and 3D human induced pluripotent stem cell-derived cardiomyocyte models. Front Physiol 2022; 13:1023563. [PMID: 36439258 PMCID: PMC9686332 DOI: 10.3389/fphys.2022.1023563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters in vitro. HiPSC-CMs were studied in conventional 2D monolayer format, on stiff substrate (i.e., glass), and as 3D human engineered cardiac tissues (ECTs). Cardiac contractile properties were evaluated by video (i.e., pixel) and force-based analysis. CCM pulses were assessed at varying electrical ‘doses’ using a commercial pulse generator. A robust CCM contractile response was observed for 3D ECTs. Under comparable conditions, conventional 2D monolayer hiPSC-CMs, on stiff substrate, displayed no contractile response. 3D ECTs displayed enhanced contractile properties including increased contraction amplitude (i.e., force), and accelerated contraction and relaxation slopes under standard acute CCM stimulation. Moreover, 3D ECTs displayed enhanced contractility in a CCM pulse parameter-dependent manner by adjustment of CCM pulse delay, duration, amplitude, and number relative to baseline. The observed acute effects subsided when the CCM stimulation was stopped and gradually returned to baseline. These data represent the first study of CCM in 3D hiPSC-CM models and provide a nonclinical tool to assess various CCM device signals in 3D human cardiac tissues prior to in vivo animal studies. Moreover, this work provides a foundation to evaluate the effects of additional cardiac medical devices in 3D ECTs.
Collapse
Affiliation(s)
- Tromondae K. Feaster
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Nicole Feric
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Isabella Pallotta
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Akshay Narkar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Maura Casciola
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Michael P. Graziano
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Roozbeh Aschar-Sobbi
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
- *Correspondence: Ksenia Blinova,
| |
Collapse
|
14
|
Sánchez de la Nava AM, Gómez-Cid L, Domínguez-Sobrino A, Fernández-Avilés F, Berenfeld O, Atienza F. Artificial intelligence analysis of the impact of fibrosis in arrhythmogenesis and drug response. Front Physiol 2022; 13:1025430. [PMID: 36311248 PMCID: PMC9596790 DOI: 10.3389/fphys.2022.1025430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023] Open
Abstract
Background: Cardiac fibrosis has been identified as a major factor in conduction alterations leading to atrial arrhythmias and modification of drug treatment response. Objective: To perform an in silico proof-of-concept study of Artificial Intelligence (AI) ability to identify susceptibility for conduction blocks in simulations on a population of models with diffused fibrotic atrial tissue and anti-arrhythmic drugs. Methods: Activity in 2D cardiac tissue planes were simulated on a population of variable electrophysiological and anatomical profiles using the Koivumaki model for the atrial cardiomyocytes and the Maleckar model for the diffused fibroblasts (0%, 5% and 10% fibrosis area). Tissue sheets were of 2 cm side and the effect of amiodarone, dofetilide and sotalol was simulated to assess the conduction of the electrical impulse across the planes. Four different AI algorithms (Quadratic Support Vector Machine, QSVM, Cubic Support Vector Machine, CSVM, decision trees, DT, and K-Nearest Neighbors, KNN) were evaluated in predicting conduction of a stimulated electrical impulse. Results: Overall, fibrosis implementation lowered conduction velocity (CV) for the conducting profiles (0% fibrosis: 67.52 ± 7.3 cm/s; 5%: 58.81 ± 14.04 cm/s; 10%: 57.56 ± 14.78 cm/s; p < 0.001) in combination with a reduced 90% action potential duration (0% fibrosis: 187.77 ± 37.62 ms; 5%: 93.29 ± 82.69 ms; 10%: 106.37 ± 85.15 ms; p < 0.001) and peak membrane potential (0% fibrosis: 89.16 ± 16.01 mV; 5%: 70.06 ± 17.08 mV; 10%: 82.21 ± 19.90 mV; p < 0.001). When the antiarrhythmic drugs were present, a total block was observed in most of the profiles. In those profiles in which electrical conduction was preserved, a decrease in CV was observed when simulations were performed in the 0% fibrosis tissue patch (Amiodarone ΔCV: -3.59 ± 1.52 cm/s; Dofetilide ΔCV: -13.43 ± 4.07 cm/s; Sotalol ΔCV: -0.023 ± 0.24 cm/s). This effect was preserved for amiodarone in the 5% fibrosis patch (Amiodarone ΔCV: -4.96 ± 2.15 cm/s; Dofetilide ΔCV: 0.14 ± 1.87 cm/s; Sotalol ΔCV: 0.30 ± 4.69 cm/s). 10% fibrosis simulations showed that part of the profiles increased CV while others showed a decrease in this variable (Amiodarone ΔCV: 0.62 ± 9.56 cm/s; Dofetilide ΔCV: 0.05 ± 1.16 cm/s; Sotalol ΔCV: 0.22 ± 1.39 cm/s). Finally, when the AI algorithms were tested for predicting conduction on input of variables from the population of modelled, Cubic SVM showed the best performance with AUC = 0.95. Conclusion: In silico proof-of-concept study demonstrates that fibrosis can alter the expected behavior of antiarrhythmic drugs in a minority of atrial population models and AI can assist in revealing the profiles that will respond differently.
Collapse
Affiliation(s)
- Ana María Sánchez de la Nava
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alonso Domínguez-Sobrino
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,Universidad Complutense de Madrid, Madrid, Spain
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,Universidad Complutense de Madrid, Madrid, Spain,*Correspondence: Felipe Atienza,
| |
Collapse
|
15
|
Cardiovascular Diseases in the Digital Health Era: A Translational Approach from the Lab to the Clinic. BIOTECH 2022; 11:biotech11030023. [PMID: 35892928 PMCID: PMC9326743 DOI: 10.3390/biotech11030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Translational science has been introduced as the nexus among the scientific and the clinical field, which allows researchers to provide and demonstrate that the evidence-based research can connect the gaps present between basic and clinical levels. This type of research has played a major role in the field of cardiovascular diseases, where the main objective has been to identify and transfer potential treatments identified at preclinical stages into clinical practice. This transfer has been enhanced by the intromission of digital health solutions into both basic research and clinical scenarios. This review aimed to identify and summarize the most important translational advances in the last years in the cardiovascular field together with the potential challenges that still remain in basic research, clinical scenarios, and regulatory agencies.
Collapse
|
16
|
Narkar A, Willard JM, Blinova K. Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). Int J Mol Sci 2022; 23:ijms23063199. [PMID: 35328619 PMCID: PMC8953833 DOI: 10.3390/ijms23063199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - James M. Willard
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Ksenia Blinova
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
17
|
Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-free cardiac constructs for drug testing. Biofabrication 2021; 13. [PMID: 34233316 DOI: 10.1088/1758-5090/ac1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
The safety and therapeutic efficacy of new drugs are tested in experimental animals. However, besides being a laborious, costly process, differences in drug responses between humans and other animals and potential cardiac adverse effects lead to the discontinued development of new drugs. Thus, alternative approaches to animal tests are needed. Cardiotoxicity and responses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to drugs are conventionally evaluated by cell seeding and two-dimensional (2D) culture, which allows measurements of field potential duration and the action potentials of CMs using multielectrode arrays. However, 2D-cultured hiPSC-CMs lack 3D spatial adhesion, and have fewer intercellular and extracellular matrix interactions, as well as different contractile behavior from CMsin vivo. This issue has been addressed using tissue engineering to fabricate three-dimensional (3D) cardiac constructs from hiPSC-CMs culturedin vitro. Tissue engineering can be categorized as scaffold-based and scaffold-free. In scaffold-based tissue engineering, collagen and fibrin gel scaffolds comprise a 3D culture environment in which seeded cells exhibit cardiac-specific functions and drug responses, whereas 3D cardiac constructs fabricated by tissue engineering without a scaffold have high cell density and form intercellular interactions. This review summarizes the characteristics of scaffold-based and scaffold-free cardiac tissue engineering and discusses the applications of fabricated cardiac constructs to drug screening.
Collapse
Affiliation(s)
- Kenichi Arai
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan.,Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takahiro Kitsuka
- Department of Cardiovascular Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
18
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
19
|
Gintant G, Kaushik EP, Feaster T, Stoelzle-Feix S, Kanda Y, Osada T, Smith G, Czysz K, Kettenhofen R, Lu HR, Cai B, Shi H, Herron TJ, Dang Q, Burton F, Pang L, Traebert M, Abassi Y, Pierson JB, Blinova K. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 2020; 117:104756. [PMID: 32822771 DOI: 10.1016/j.yrtph.2020.104756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, 60064, USA.
| | | | - Tromondae Feaster
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan.
| | | | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | | | - Ralf Kettenhofen
- Fraunhofer-Institute for Biomed Engineering IBMT, Sulzbach, Germany.
| | - Hua Rong Lu
- Nonclinical Safety, Johnson & Johnson R&D, Beerse, Belgium.
| | - Beibei Cai
- Takeda California, Inc., San Diego, CA, 92121, USA.
| | - Hong Shi
- Bristol-Myers Squibb, New York, NY, 10016, USA.
| | - Todd Joseph Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Qianyu Dang
- Office of Biostatistics, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Francis Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| | | | - Yama Abassi
- Agilent Technologies, San Diego, CA, 92121, USA.
| | | | - Ksenia Blinova
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
20
|
Bai S, Pei J, Chen K, Zhao Y, Cao H, Tian L, Ma Y, Dong H. Assessment of Drug Proarrhythmic Potential in Electrically Paced Human Induced Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes Using Multielectrode Array. SLAS DISCOVERY 2020; 26:364-372. [PMID: 32914673 DOI: 10.1177/2472555220953207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for the assessment of drug proarrhythmic potential through multielectrode array (MEA). HiPSC-CM cultures beat spontaneously with a wide range of frequencies, however, which could affect drug-induced changes in repolarization. Pacing hiPSC-CMs at a physiological heart rate more closely resembles the state of in vivo ventricular myocytes and permits the standardization of test conditions to improve consistency. In this study, we systematically investigated the time window of stable ion currents in high-purity hiPSC-derived ventricular cardiomyocytes (hiPSC-vCMs) and confirmed that these cells could be used to correctly predict the proarrhythmic risk of Comprehensive In Vitro Proarrhythmia Assay (CiPA) reference compounds. To evaluate drug proarrhythmic potentials at a physiological beating rate, we used a MEA to electrically pace hiPSC-vCMs, and we recorded regular field potential waveforms in hiPSC-vCMs treated with DMSO and 10 CiPA reference drugs. Prolongation of field potential duration was detected in cells after exposure to high- and intermediate-risk drugs; in addition, drug-induced arrhythmia-like events were observed. The results of this study provide a simple and feasible method to investigate drug proarrhythmic potentials in hiPSC-CMs at a physiological beating rate.
Collapse
Affiliation(s)
- Shuyun Bai
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junjie Pei
- Biology Unit, Research Service Division, WuXi AppTec, Shanghai, China
| | - Kan Chen
- Biology Unit, Research Service Division, WuXi AppTec, Shanghai, China
| | - Ya Zhao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Henghua Cao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Luyang Tian
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yue Ma
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Medical School of University of Chinese Academy of Sciences, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Haiheng Dong
- Biology Unit, Research Service Division, WuXi AppTec, Shanghai, China
| |
Collapse
|
21
|
Wei F, Pourrier M, Strauss DG, Stockbridge N, Pang L. Effects of Electrical Stimulation on hiPSC-CM Responses to Classic Ion Channel Blockers. Toxicol Sci 2020; 174:254-265. [PMID: 32040191 DOI: 10.1093/toxsci/kfaa010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great potential for personalized cardiac safety prediction, particularly for that of drug-induced proarrhythmia. However, hiPSC-CMs fire spontaneously and the variable beat rates of cardiomyocytes can be a confounding factor that interferes with data interpretation. Controlling beat rates with pacing may reduce batch and assay variations, enable evaluation of rate-dependent drug effects, and facilitate the comparison of results obtained from hiPSC-CMs with those from adult human cardiomyocytes. As electrical stimulation (E-pacing) of hiPSC-CMs has not been validated with high-throughput assays, herein, we compared the responses of hiPSC-CMs exposed with classic cardiac ion channel blockers under spontaneous beating and E-pacing conditions utilizing microelectrode array technology. We found that compared with spontaneously beating hiPSC-CMs, E-pacing: (1) reduced overall assay variabilities, (2) showed limited changes of field potential duration to pacemaker channel block, (3) revealed reverse rate dependence of multiple ion channel blockers on field potential duration, and (4) eliminated the effects of sodium channel block on depolarization spike amplitude and spike slope due to a software error in acquiring depolarization spike at cardiac pacing mode. Microelectrode array optogenetic pacing and current clamp recordings at various stimulation frequencies demonstrated rate-dependent block of sodium channels in hiPSC-CMs as reported in adult cardiomyocytes. In conclusion, pacing enabled more accurate rate- and concentration-dependent drug effect evaluations. Analyzing responses of hiPSC-CMs under both spontaneously beating and rate-controlled conditions may help better assess the effects of test compounds on cardiac electrophysiology and evaluate the value of the hiPSC-CM model.
Collapse
Affiliation(s)
- Feng Wei
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Marc Pourrier
- IonsGate Preclinical Services Inc, Vancouver, British Columbia, Canada
| | - David G Strauss
- Division of Applied and Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
22
|
Pourrier M, Fedida D. The Emergence of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform to Model Arrhythmogenic Diseases. Int J Mol Sci 2020; 21:ijms21020657. [PMID: 31963859 PMCID: PMC7013748 DOI: 10.3390/ijms21020657] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- IonsGate Preclinical Services Inc., Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
23
|
Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020; 21:ijms21020507. [PMID: 31941149 PMCID: PMC7013592 DOI: 10.3390/ijms21020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.
Collapse
Affiliation(s)
- Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Lucio Barile
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Claudia Altomare
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Correspondence:
| |
Collapse
|
24
|
Blinova K, Schocken D, Patel D, Daluwatte C, Vicente J, Wu JC, Strauss DG. Clinical Trial in a Dish: Personalized Stem Cell-Derived Cardiomyocyte Assay Compared With Clinical Trial Results for Two QT-Prolonging Drugs. Clin Transl Sci 2019; 12:687-697. [PMID: 31328865 PMCID: PMC6853144 DOI: 10.1111/cts.12674] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have shown promise in investigating donor-specific phenotypes and pathologies. The iPSC-derived cardiomyocytes (iPSC-CMs) could potentially be utilized in personalized cardiotoxicity studies, assessing individual proarrhythmic risk. However, it is unclear how closely iPSC-CMs derived from healthy subjects can recapitulate a range of responses to drugs. It is well known that QT-prolonging drugs induce subject-specific clinical response and that all healthy subjects do not necessarily develop arrhythmias or exhibit similar amounts of QT prolongation. We previously reported this variability in a study of four human ether-a-go-go-related gene (hERG) potassium channel-blocking drugs in which each subject underwent intensive pharmacokinetic and pharmacodynamic sampling such that subjects had 15 time-matched plasma drug concentration and electrocardiogram measurements throughout 24 hours after dosing in a phase I clinical research unit. In this study, iPSC-CMs were generated from those subjects. Their drug-concentration-dependent QT prolongation response from the clinic was compared with in vitro drug-concentration-dependent action potential duration (APD) prolongation response to the same two hERG-blocking drugs, dofetilide and moxifloxacin. Comparative results showed no significant correlation between the subject-specific APD response slopes and clinical QT response slopes to either moxifloxacin (P = 0.75) or dofetilide (P = 0.69). Similarly, no significant correlation was found between baseline QT and baseline APD measurements (P = 0.93). This result advances our current understanding of subject-specific iPSC-CMs and facilitates discussion into factors obscuring correlation and considerations for future studies of subject-specific phenotypes in iPSC-CMs.
Collapse
Affiliation(s)
- Ksenia Blinova
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Derek Schocken
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dakshesh Patel
- Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chathuri Daluwatte
- Center for Drug Evaluation and Research, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jose Vicente
- Center for Drug Evaluation and Research, Office of New Drugs, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - David G Strauss
- Center for Drug Evaluation and Research, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|