1
|
Iwase M, Tanaka YK, Fukumoto Y, Suzuki N, Ogra Y. Laser Ablation Coupled with LC-ICP-MS for Local Speciation of Trace Elements in Tissues. Anal Chem 2025; 97:5306-5312. [PMID: 39945116 DOI: 10.1021/acs.analchem.5c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
The body mitigates the toxic effects of metals through diverse detoxification mechanisms that are activated depending on the chemical species and the burden of metals in each tissue. In this regard, analytical methods that can obtain information on the chemical form and the abundance of metals are required to elucidate the full range of detoxification mechanisms. Laser ablation (LA) is used to trim a specific microregion from tissue sections and visualize elements in it. Speciation analysis by liquid chromatography (LC) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) has been optimized for microvolume samples from small tissue sections. In this study, we developed a combined method of LA and LC-ICP-MS (LA/LC-ICP-MS) and applied it to rat brain and kidney tissues. Differences in copper (Cu) and zinc (Zn) abundance in each brain tissue region are reflected in the peak intensities of metallothioneins (MTs) detected by LC-ICP-MS analysis. In addition to revealing differences in the distribution and the concentration of mercury (Hg) in the kidneys of rats exposed to inorganic mercury (iHg) or methylmercury (MeHg) by LA-ICP-MS, we also revealed differences in the type of proteins that bind these Hg species by LC-ICP-MS. We found that in the iHg-exposed group, MT induction occurred mainly in the renal cortex and the outer medulla with elevated Cu and Zn, whereas in the MeHg-exposed group, Hg was mainly bound to hemoglobin (Hb). LA/LC-ICP-MS can simultaneously provide qualitative and quantitative information on metals in a small tissue region.
Collapse
Affiliation(s)
- Makiko Iwase
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba 260-8675, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba 260-8675, Japan
| | - Yasunori Fukumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. The predominant role of p62/SQSTM1 over NBR1 in methylmercury-induced cytotoxicity and cellular defense. Biochem Biophys Res Commun 2025; 752:151461. [PMID: 39946983 DOI: 10.1016/j.bbrc.2025.151461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
p62/SQSTM1 (p62) and neighbor of BRCA1 gene 1 (NBR1) are two important cargo receptors involved in selective autophagy. While p62 is known to safeguard cells against the toxic effects of the environmental toxicant methylmercury (MeHg), the specific functions of p62 and NBR1 in MeHg-exposed cells remain unclear. In this study, we aimed to elucidate the distinct roles of p62 and NBR1 in conferring protection against cytotoxicity induced by MeHg. We found that MeHg increased both the mRNA and protein levels of p62 while decreasing those of NBR1. Upon exposure to MeHg, p62-knockout (KO) cells exhibited an approximately 30 % reduction in cell viability compared to wild-type (WT) cells; however, no such reduction was observed in NBR1KO cells. Additionally, p62KO cells exhibited a 1.5-fold increase in intracellular mercury (Hg) concentration compared to the WT following MeHg exposure, whereas NBR1KO cells had Hg levels comparable to those of WT cells. Upon exposure to MeHg, Nrf2 signaling activation was significantly reduced in p62KO cells compared to that in WT cells, whereas NBR1KO cells displayed Nrf2 activation levels similar to those of WT cells. Overall, these results suggest that p62, rather than NBR1, plays a crucial role in mitigating MeHg-induced cytotoxicity by reducing intracellular Hg levels through the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kazuma Sakai
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
3
|
Majumdar A, Upadhyay MK, Ojha M, Biswas R, Dey S, Sarkar S, Moulick D, Niazi NK, Rinklebe J, Huang JH, Roychowdhury T. A critical review on the organo-metal(loid)s pollution in the environment: Distribution, remediation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175531. [PMID: 39147056 DOI: 10.1016/j.scitotenv.2024.175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom; School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Megha Ojha
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan, Maharashtra 411008, India
| | - Rakesh Biswas
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Takanezawa Y, Ishikawa K, Nakayama S, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Conversion of methylmercury into inorganic mercury via organomercurial lyase (MerB) activates autophagy and aggresome formation. Sci Rep 2023; 13:19958. [PMID: 37968352 PMCID: PMC10651920 DOI: 10.1038/s41598-023-47110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Methylmercury (MeHg) is converted to inorganic mercury (iHg) in several organs; however, its impact on tissues and cells remains poorly understood. Previously, we established a bacterial organomercury lyase (MerB)-expressing mammalian cell line to overcome the low cell permeability of iHg and investigate its effects. Here, we elucidated the cytotoxic effects of the resultant iHg on autophagy and deciphered their relationship. Treatment of MerB-expressing cells with MeHg significantly increases the mRNA and protein levels of LC3B and p62, which are involved in autophagosome formation and substrate recognition, respectively. Autophagic flux assays using the autophagy inhibitor chloroquine (CQ) revealed that MeHg treatment activates autophagy in MerB-expressing cells but not in wild-type cells. Additionally, MeHg treatment induces the accumulation of ubiquitinated proteins and p62, specifically in MerB-expressing cells. Confocal microscopy revealed that large ubiquitinated protein aggregates (aggresomes) associated with p62 are formed transiently in the perinuclear region of MerB-expressing cells upon MeHg exposure. Meanwhile, inhibition of autophagic flux decreases the MeHg-induced cell viability of MerB-expressing cells. Overall, our results imply that cells regulate aggresome formation and autophagy activation by activating LC3B and p62 to prevent cytotoxicity caused by iHg. These findings provide insights into the role of autophagy against iHg-mediated toxicity.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kouhei Ishikawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shunsuke Nakayama
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
5
|
Palomar A, Quiñonero A, Medina-Laver Y, Gonzalez-Martin R, Pérez-Debén S, Alama P, Domínguez F. Antioxidant Supplementation Alleviates Mercury-Induced Cytotoxicity and Restores the Implantation-Related Functions of Primary Human Endometrial Cells. Int J Mol Sci 2023; 24:ijms24108799. [PMID: 37240143 DOI: 10.3390/ijms24108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.
Collapse
Affiliation(s)
- Andrea Palomar
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Alicia Quiñonero
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Yassmin Medina-Laver
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Roberto Gonzalez-Martin
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | | | - Pilar Alama
- Department of Gynecology, IVIRMA-Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| |
Collapse
|
6
|
Takanezawa Y, Kashiwano Y, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Methylmercury drives lipid droplet formation and adipokine expression during the late stages of adipocyte differentiation in 3T3-L1 cells. Toxicology 2023; 486:153446. [PMID: 36708982 DOI: 10.1016/j.tox.2023.153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Chronic exposure to methylmercury (MeHg) is positively associated with obesity and metabolic syndromes. However, the effect of MeHg on adipogenesis has not been thoroughly investigated. This study investigated the effects of continuous exposure to 0.5 µM MeHg on adipocyte differentiation in 3T3-L1 cells. Oil Red O staining and triglycerides (TG) assays demonstrated that MeHg enhanced the TG content in 3T3-L1 cells. MeHg enhanced the mRNA and protein expression of adipocyte differentiation markers including peroxisome proliferator-activated receptor γ, adiponectin, and fatty acid-binding protein, and their expression levels were prominent during the late stages (days 6-8) after the induction of differentiation. In addition, 0.5 µM MeHg promoted the expression of autophagy-related genes, including light chain 3 B-II and p62, after induction of differentiation. Treatment of 3T3-L1 cells with chloroquine (CQ), an autophagy inhibitor, during the early stages (days 0-2) after induction of differentiation inhibited cellular lipid accumulation in the presence of 0.5 µM MeHg. However, treatment with CQ during the late stages (days 6-8) had little effect on the MeHg-induced increase in TG content and the expression of adipocyte differentiation markers. Although the underlying mechanisms in the late stages remain to be completely elucidated, but the present data suggest that autophagy and other mechanisms play critical roles in adipogenesis during MeHg-induced differentiation. Collectively, our results suggest that continuous exposure to MeHg induces TG accumulation and expression of genes related to adipogenesis, especially during the late stages of 3T3-L1 differentiation, which may contribute to an improved understanding of MeHg-induced adipogenesis.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yui Kashiwano
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
7
|
Yang Q, Guo Y, Xiang Y, Chen L, Liu G, Liu Y, Shi J, Hu L, Liang Y, Yin Y, Cai Y, Jiang G. Toward efficient bioremediation of methylmercury in sediment using merB overexpressed Escherichia coli. WATER RESEARCH 2023; 229:119502. [PMID: 36549184 DOI: 10.1016/j.watres.2022.119502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Sediment is the primary hotspot for microbial production of toxic and bio-accumulative methylmercury (MeHg). Common remediation strategies such as sediment dredging and capping can be too expensive and cannot degrade MeHg efficiently. Here, we constructed an Escherichia coli strain overexpressing merB gene (DH5α J23106) and assessed the effectiveness of this recombinant strain in degradation of MeHg in culture medium and sediment. DH5α J23106 can efficiently degrade MeHg (with initial concentration from 0.01 to 50 ng/mL) to more than 81.6% in a culture medium under anoxic and oxic conditions. Enriched isotope addition (199HgCl2) revealed that this recombinant strain can degrade 78.6% of newly produced Me199Hg in actual sediment, however the biodegradation decreased to 36.3% for intrinsic MeHg. Degradation of spiked MeHg after aging in anoxic and oxic sediments further demonstrated DH5α J23106 can efficiently degrade newly produced MeHg and the degradation decreased with aging significantly, especially for oxic sediment. Eight sediments were further assessed for the biodegradation of aged MeHg by DH5α J23106 under oxic conditions, with degradation ratios ranging from 9.0% to 66.9%. When combined with (NH4)2S2O3 leaching, the degradation of MeHg increased by 15.8-38.8% in on-site and off-site modes through enhanced MeHg bioavailability in some of these sediments. Thus, this recombinant strain DH5α J23106 can degrade MeHg efficiently and have the potential for remediating bioavailable MeHg in contaminated sediments.
Collapse
Affiliation(s)
- Qingqing Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lufeng Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China; School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Inhibition of p38 Mitogen-Activated Protein Kinases Attenuates Methylmercury Toxicity in SH-SY5Y Neuroblastoma Cells. Biol Pharm Bull 2023; 46:1203-1210. [PMID: 37661399 DOI: 10.1248/bpb.b23-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is a toxic metal that causes irreversible damage to the nervous system, making it a risk factor for neuronal degeneration and diseases. MeHg activates various cell signaling pathways, particularly the mitogen-activated protein kinase (MAPK) cascades, which are believed to be important determinants of stress-induced cell fate. However, little is known about the signaling pathways that mitigate the neurotoxic effects of MeHg. Herein, we showed that pretreatment with a p38 MAPK-specific inhibitor, SB203580, attenuates MeHg toxicity in human neuroblastoma SH-SY5Y cells, whereas pretreatment with the extracellular signaling-regulated kinase inhibitor U0126 and the c-Jun N-terminal kinase inhibitor SP600125 does not. Specifically, we quantified the levels of intracellular mercury (Hg) and found that pretreatment with SB203580 reduced Hg levels compared to MeHg treatment alone. Further analysis showed that pretreatment with SB203580 increased multidrug resistance-associated protein 2 (MRP2) mRNA levels after MeHg treatment. These results indicate that detoxification of MeHg by p38 MAPK inhibitors may involve an efflux function of MeHg by inducing MRP2 expression.
Collapse
Affiliation(s)
| | - Kazuma Sakai
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University
| |
Collapse
|
9
|
Sarker A. Ecological perspectives on water, food, and health security linkages: the Minamata case in Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14207-8. [PMID: 33931814 DOI: 10.1007/s11356-021-14207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Extant studies address water, food, and health security issues considerably separately and within narrow disciplinary confines. This study investigates the links among these three issues from an ecological viewpoint with a multidisciplinary approach in a modified Millennium Ecosystem Assessment framework developed by the United Nations. The modified framework includes water, food, and health security considerations as the three constituents of human well-being from an ecological (more specifically, ecosystem services) viewpoint. This study examines the links through published data associated with the Minamata incident, which was a historic and horrific methylmercury-induced water, food, and health poisoning crisis in Japan. The results show that when heavy metal pollution changes one component (marine water) of the provisioning ecosystem services, this change subsequently affects another component (seafood) of the services. This then defines the linkages among water, food, and health security as the three constituents of human well-being within the modified framework. The links can have immediate and far-reaching economic, social, legal, ethical, and justice implications within and across generations. This study provides important evidence for emerging economies that ignore the water-food-health security nexus.
Collapse
Affiliation(s)
- Ashutosh Sarker
- Department of Economics, School of Business, Monash University (Malaysia Campus), 47500, Sunway City, Selangor, Malaysia.
| |
Collapse
|
10
|
Farzan SF, Howe CG, Chen Y, Gilbert-Diamond D, Korrick S, Jackson BP, Weinstein AR, Karagas MR. Prenatal and postnatal mercury exposure and blood pressure in childhood. ENVIRONMENT INTERNATIONAL 2021; 146:106201. [PMID: 33129000 PMCID: PMC7775884 DOI: 10.1016/j.envint.2020.106201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 05/25/2023]
Abstract
Elevated blood pressure in childhood is an important risk factor for hypertension in adulthood. Environmental exposures have been associated with elevated blood pressure over the life course and exposure to mercury (Hg) has been linked to cardiovascular effects in adults. As subclinical vascular changes begin early in life, Hg may play a role in altered blood pressure in children. However, the evidence linking early life Hg exposure to altered blood pressure in childhood has been largely inconsistent. In the ongoing New Hampshire Birth Cohort Study, we investigated prenatal and childhood Hg exposure at multiple time points and associations with blood pressure measurements in 395 young children (mean age 5.5 years, SD 0.4). Hg exposure was measured in children's toenail clippings at age 3 and in urine at age 5-6 years, as well as in maternal toenail samples collected at ∼28 weeks gestation and 6 weeks postpartum, the latter two samples reflecting early prenatal and mid-gestation exposures, respectively. Five measurements of systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) were averaged for each child using a standardized technique. In covariate-adjusted linear regression analyses, we observed that a 0.1 μg/g increase in child toenail Hg at age 3 or a 0.1 μg/L urine Hg at age 5-6 were individually associated with greater DBP (toenail β: 0.53 mmHg; 95% CI: -0.02, 1.07; urine β: 0.48 mmHg; 95% CI: 0.10, 0.86) and MAP (toenail β: 0.67 mmHg; 95% CI: 0.002, 1.33; urine β: 0.55 mmHg; 95% CI: 0.10, 1.01). Neither early prenatal nor mid-gestation Hg exposure, as measured by maternal toenails, were related to any changes to child BP. Simultaneous inclusion of both child urine Hg and child toenail Hg in models suggested a potentially stronger relationship of urine Hg at age 5-6 with DBP and MAP, as compared to toenail Hg at age 3. Our findings suggest that Hg exposure during childhood is associated with alterations in BP. Childhood may be an important window of opportunity to reduce the impacts of Hg exposure on children's blood pressure, and in turn, long-term health.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Adam R Weinstein
- Department of Medical Education and Pediatrics, Geisel School of Medicine, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| |
Collapse
|