1
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
2
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
3
|
Stavropoulos A, Divolis G, Manioudaki M, Gavriil A, Kloukina I, Perrea DN, Sountoulidis A, Ford E, Doulou A, Apostolidou A, Katsantoni E, Ritvos O, Germanidis G, Xilouri M, Sideras P. Coordinated activation of TGF-β and BMP pathways promotes autophagy and limits liver injury after acetaminophen intoxication. Sci Signal 2022; 15:eabn4395. [PMID: 35763560 DOI: 10.1126/scisignal.abn4395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ligands of the transforming growth factor-β (TGF-β) superfamily, including TGF-βs, activins, and bone morphogenetic proteins (BMPs), have been implicated in hepatic development, homeostasis, and pathophysiology. We explored the mechanisms by which hepatocytes decode and integrate injury-induced signaling from TGF-βs and activins (TGF-β/Activin) and BMPs. We mapped the spatiotemporal patterns of pathway activation during liver injury induced by acetaminophen (APAP) in dual reporter mice carrying a fluorescent reporter of TGF-β/Activin signaling and a fluorescent reporter of BMP signaling. APAP intoxication induced the expression of both reporters in a zone of cells near areas of tissue damage, which showed an increase in autophagy and demarcated the borders between healthy and injured tissues. Inhibition of TGF-β superfamily signaling by overexpressing the inhibitor Smad7 exacerbated acute liver histopathology but eventually accelerated tissue recovery. Transcriptomic analysis identified autophagy as a process stimulated by TGF-β1 and BMP4 in hepatocytes, with Trp53inp2, which encodes a rate-limiting factor for autophagy initiation, as the most highly induced autophagy-related gene. Collectively, these findings illustrate the functional interconnectivity of the TGF-β superfamily signaling system, implicate the coordinated activation of TGF-β/Activin and BMP pathways in balancing tissue reparatory and regenerative processes upon APAP-induced hepatotoxicity, and highlight opportunities and potential risks associated with targeting this signaling system for treating hepatic diseases.
Collapse
Affiliation(s)
- Athanasios Stavropoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Manioudaki
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ariana Gavriil
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Sountoulidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ethan Ford
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasia Doulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elena Katsantoni
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Olli Ritvos
- Department of Bacteriology and Immunology and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paschalis Sideras
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
Nguyen NT, Umbaugh DS, Huang EL, Adelusi OB, Sanchez Guerrero G, Ramachandran A, Jaeschke H. Recovered Hepatocytes Promote Macrophage Apoptosis through CXCR4 after Acetaminophen-Induced Liver Injury in Mice. Toxicol Sci 2022; 188:248-260. [PMID: 35642939 DOI: 10.1093/toxsci/kfac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP) overdose is the main cause of acute liver failure in Western countries. The mechanism of APAP hepatotoxicity is associated with centrilobular necrosis which initiates infiltration of neutrophils, monocytes, and other leukocytes to the area of necrosis. While it has been recognized that this infiltration of immune cells plays a critical role in promoting liver repair, mechanism of immune cell clearance that is important for resolution of inflammation and the return to normal homeostasis are not well characterized. CXCR4 is a chemokine receptor expressed on hepatocytes as well as neutrophils, monocytes, and hematopoietic stem cells. CXCR4 function is dependent on its selective expression on different cell types and thus can vary depending on the pathophysiology. This study aimed to investigate the crosstalk between hepatocytes and macrophages through CXCR4 to promote macrophage apoptosis after APAP overdose. C57BL/6J mice were subjected to APAP overdose (300 mg/kg). Flow cytometry and immunohistochemistry were used to determine the mode of cell death of macrophages and expression pattern of CXCR4 during the resolution phase of APAP hepatotoxicity. The impact of CXCR4 in regulation of macrophage apoptosis and liver recovery was assessed after administration of a monoclonal antibody against CXCR4. RNAseq analysis was performed on flow cytometry sorted CXCR4+ macrophages at 72 h to confirm the apoptotic cell death of macrophages. Our data indicate that the inflammatory response is resolved by recovering hepatocytes through induction of CXCR4 on macrophages, which triggers their cell death by apoptosis at the end of the recovery phase.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eileen L Huang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olamide B Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Giselle Sanchez Guerrero
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Gs T, Aa A, Lr T, D CL, Oc M, Rs A, Mc W, Em DS. Suppression of TGF-β/Smad2 signaling by GW788388 enhances DENV-2 clearance in macrophages. J Med Virol 2022; 94:4359-4368. [PMID: 35596058 PMCID: PMC9544077 DOI: 10.1002/jmv.27879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022]
Abstract
Dengue fever, caused by the dengue virus (DENV‐1, −2, −3, and −4), affects millions of people in the tropical and subtropical regions worldwide. Severe dengue is correlated with high viraemia and cytokine storm, such as high levels of transforming growth factor‐β1 (TGF‐β1) in the patient's serum. Here, the TGF‐β1 signaling was investigated in the context of in vitro viral clearance. Macrophages were infected with DENV‐2 at MOI 5 and treated with the TGF‐β receptor 1 and 2 inhibitor, GW788388. TGF‐β1 expression, signal transduction and viral load were evaluated 48 h after DENV‐2 infection by enzyme‐linked immunoassay, immunofluorescence, and RT‐qPCR assays. Total TGF‐β1 level was reduced in 15% after DENV‐2 infection, but the secretion of its biologically active form increased threefold during infection, which was followed by the phosphorylation of Smad2 protein. Phosphorylation of Smad2 was reduced by treatment with GW788388 and it was correlated with reduced cytokine production. Importantly, treatment led to a dose‐dependent reduction in viral load, ranging from 6.6 × 105 RNA copies/ml in untreated cultures to 2.3 × 103 RNA copies/ml in cultures treated with 2 ng/ml of GW788388. The anti‐TGF‐β1 antibody treatment also induced a significant reduction in viral load to 1.6 × 103 RNA copies/ml. On the other hand, the addition of recombinant TGF‐β1 in infected cultures promoted an increase in viral load to 7.0 × 106 RNA copies/ml. These results support that TGF‐β1 plays a significant role in DENV‐2 replication into macrophages and suggest that targeting TGF‐β1 may represent an alternative therapeutic strategy to be explored in dengue infection.
Collapse
Affiliation(s)
- Teixeira Gs
- Laboratório de Morfologia e Morfogênese Viral
| | | | | | - Couto-Lima D
- Laboratório de Mosquitos Transmissores de Hematozoário
| | - Moreira Oc
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular e Doenças Endêmicas
| | - Abreu Rs
- Laboratório de Genômica Funcional e Bioinformática; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Waghabi Mc
- Laboratório de Genômica Funcional e Bioinformática; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - de Souza Em
- Laboratório de Morfologia e Morfogênese Viral.,Laboratório de Virologia Molecular
| |
Collapse
|
6
|
Ogino N, Nagaoka K, Tomizuka K, Matsuura-Harada Y, Eitoku M, Suganuma N, Ogino K. Compromised glutathione synthesis results in high susceptibility to acetaminophen hepatotoxicity in acatalasemic mice. Food Chem Toxicol 2021; 156:112509. [PMID: 34390818 DOI: 10.1016/j.fct.2021.112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022]
Abstract
Acatalasemia is caused by genetic defect in the catalase gene. Human achatalasemia patients are able to scavenge physiological hydrogen peroxide but are vulnerable to exogenous oxidative stress. In the present study, we used an acetaminophen-induced hepatotoxicity model in acatalasemic mice to explore this vulnerability. Interestingly, the acetaminophen-induced decrease in total glutathione levels was more prolonged in acatalasemic mice. While the subunits of glutamate-cysteine ligase, a glutathione synthase enzyme, were increased by acetaminophen in the liver of wild-type mice, their expression was lower and was further reduced by acetaminophen in acatalasemic mice. This feature was also observed in immortalized hepatocytes derived from the livers of these mice. However, when catalase was knocked down in HepG2 cells, a cultured human liver cell line, the expression of glutamate-cysteine ligase subunits was increased, suggesting that the low expression of glutamate-cysteine ligase subunits in acatalasemia may be due to other mechanism than catalase deficiency. Therefore, when other factors were investigated, it was found that transforming growth factor-β1 was up-regulated by acetaminophen in the liver of acatalasemic mice, which may inhibit the expression of glutamate-cysteine ligase subunits. The results of this study suggest a new toxic mechanism of acetaminophen-induced liver injury in patients with acatalasemia.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan; Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Kotomi Tomizuka
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Yuki Matsuura-Harada
- Department of Biofunction Imaging Analysis, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University,1-1-1 Tsushima Naka, Kita-ku, Okayama, 7008530, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Keiki Ogino
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|
7
|
Effects of TGF-β1 Receptor Inhibitor GW788388 on the Epithelial to Mesenchymal Transition of Peritoneal Mesothelial Cells. Int J Mol Sci 2021; 22:ijms22094739. [PMID: 33947038 PMCID: PMC8124410 DOI: 10.3390/ijms22094739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
We investigated the effectiveness of the transforming growth factor beta-1 (TGF-β) receptor inhibitor GW788388 on the epithelial to mesenchymal transition (EMT) using human peritoneal mesothelial cells (HPMCs) and examined the effectiveness of GW788388 on the peritoneal membrane using a peritoneal fibrosis mouse model. HPMCs were treated with TGF-β with or without GW788388. Animal experiments were conducted on male C57/BL6 mice. Peritoneal fibrosis was induced by intraperitoneal injection of chlorhexidine gluconate. GW788388 was administered by once-daily oral gavage. The morphological change, cell migration, and invasion resulted from TGF-β treatment, but these changes were attenuated by cotreatment with GW788388. TGF-β-treated HPMCs decreased the level of the epithelial cell marker and increased the levels of the mesenchymal cell markers. Cotreatment with GW788388 reversed these changes. Phosphorylated Smad2 and Smad3 protein levels were stimulated with TGF-β and the change was attenuated by cotreatment with GW788388. For the peritoneal fibrosis mice, thickness and collagen deposition of parietal peritoneum was increased, but this change was attenuated by cotreatment with GW788388. GW788388, an orally available potent TGF-β receptor type 1 inhibitor, effectively attenuated TGF-β-induced EMT in HPMCs. Cotreatment with GW788388 improved peritoneal thickness and fibrosis, and recovered peritoneal membrane function in a peritoneal fibrosis mouse model.
Collapse
|
8
|
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y, Huang S, Gao L, Lv Z. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging (Albany NY) 2021; 13:6592-6605. [PMID: 33707345 PMCID: PMC7993700 DOI: 10.18632/aging.202409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Acute hepatic damage is a severe condition characterized by inflammation and oxidative stress, which is a serious threat to people's life and health. But there are few effective treatments for acute liver injury. Therefore, safe and effective therapeutic approaches for preventing acute liver damage are urgently needed. Lupeol is a natural compound, which has significant antioxidant and anti-inflammatory properties in liver disease. However, the protective mechanism of lupeol against acute liver injury remains unclear. Here, zebrafish and mutant mice were utilized to investigate the protective effects of lupeol against lipopolysaccharide (LPS)/ D-galactosamine(D-GalN) -induced liver injury and the underlying mechanisms. We found that pretreatment with lupeol attenuated the LPS/D-GalN-induced liver injury by decreasing the infiltration of inflammatory cells and reducing pro-inflammatory cytokines. We also demonstrated that lupeol could protect injured liver from oxidative stress by downregulating the expression of TGFβ1 and upregulating Nrf2. Notably, our experimental results provided the support that lupeol effectively protected against LPS/D-GalN-induced acute liver injury via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via downregulating TGFβ1.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shunwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
9
|
Frampton G, Reddy P, Jefferson B, Ali M, Khan D, McMillin M. Inhibition of thrombospondin-1 reduces glutathione activity and worsens acute liver injury during acetaminophen hepatotoxicity in mice. Toxicol Appl Pharmacol 2020; 409:115323. [PMID: 33176120 PMCID: PMC8364670 DOI: 10.1016/j.taap.2020.115323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/07/2023]
Abstract
Acetaminophen (N-Acetyl-p-Aminophenol or APAP)-induced hepatotoxicity is the most common cause of acute liver failure in the United States and Western Europe. Previous studies have shown that TGFβ1 is elevated during APAP-induced hepatotoxicity and promotes liver injury by reducing liver regeneration while inducing hepatocyte senescence. At this time, little is known about the role of proteins that activate latent TGFβ1 and their effects during APAP-induced hepatotoxicity. Thrombospondin-1 (TSP1) is a homotrimeric protein that can not only activate latent TGFβ1 but can also interact with other proteins including Nrf2 to induce antioxidant signaling. The aim of the current study was to assess the role of thrombospondin-1 (TSP1) in both TGFβ1 activation and its contribution to APAP-induced liver injury. C57Bl/6 mice or TSP1 null mice (TSP1-/-) were administered 300 mg/kg or 600 mg/kg of APAP. TGFβ1 signaling, TSP1 expression, measures of hepatic injury, Nrf2 expression, measures of oxidative/nitrosative stress and GSH metabolism were assessed. The expression of TGFβ1, TSP1 and phosphorylation of SMAD proteins increased in APAP-treated mice compared to controls. TSP1-/- mice had reduced TGFβ1 expression and phosphorylation of SMAD proteins but increased liver injury. Hepatocyte cell death was increased in TSP1-/- mice and this was associated with decreased Nrf2 activity, decreased GSH levels and increased oxidative stress in comparison to wild-type C57Bl/6 mice. Together, these data demonstrate that elimination of TSP1 protein in APAP-treated mice reduces TGFβ1 signaling but leads to increased liver injury by reducing Nrf2 expression and GSH activity, ultimately resulting in increased cell death.
Collapse
Affiliation(s)
- Gabriel Frampton
- Central Texas Veterans Health Care System, Austin, TX, United States of America; The University of Texas at Austin Dell Medical School, Department of Internal Medicine, Austin, TX, United States of America
| | - Priyanka Reddy
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Brandi Jefferson
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Malaika Ali
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Durreshahwar Khan
- Central Texas Veterans Health Care System, Austin, TX, United States of America
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Austin, TX, United States of America; The University of Texas at Austin Dell Medical School, Department of Internal Medicine, Austin, TX, United States of America.
| |
Collapse
|
10
|
Hreha TN, Collins CA, Daugherty AL, Twentyman J, Paluri N, Hunstad DA. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep 2020; 8:e14401. [PMID: 32227630 PMCID: PMC7104652 DOI: 10.14814/phy2.14401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Renal scarring after pyelonephritis is linked to long-term health risks for hypertension and chronic kidney disease. Androgen exposure increases susceptibility to, and severity of, uropathogenic Escherichia coli (UPEC) pyelonephritis and resultant scarring in both male and female mice, while anti-androgen therapy is protective against severe urinary tract infection (UTI) in these models. This work employed androgenized female C57BL/6 mice to elucidate the molecular mechanisms of post-infectious renal fibrosis and to determine how these pathways are altered by the presence of androgens. We found that elevated circulating testosterone levels primed the kidney for fibrosis by increasing local production of TGFβ1 before the initiation of UTI, altering the ratio of transcription factors Smad2 and Smad3 and increasing the presence of mesenchymal stem cell (MSC)-like cells and Gli1 + activated myofibroblasts, the cells primarily responsible for deposition of scar components. Increased production of TGFβ1 and aberrations in Smad2:Smad3 were maintained throughout the course of infection in the presence of androgen, correlating with renal scarring that was not observed in non-androgenized female mice. Pharmacologic inhibition of TGFβ1 signaling blunted myofibroblast activation. We conclude that renal fibrosis after pyelonephritis is exacerbated by the presence of androgens and involves activation of the TGFβ1 signaling cascade, leading to increases in cortical populations of MSC-like cells and the Gli1 + activated myofibroblasts that are responsible for scarring.
Collapse
Affiliation(s)
- Teri N. Hreha
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | | | | | - Joy Twentyman
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Present address:
Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - Nitin Paluri
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - David A. Hunstad
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
11
|
Bhushan B, Gunewardena S, Edwards G, Apte U. Comparison of liver regeneration after partial hepatectomy and acetaminophen-induced acute liver failure: A global picture based on transcriptome analysis. Food Chem Toxicol 2020; 139:111186. [PMID: 32045647 DOI: 10.1016/j.fct.2020.111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Liver regenerates following surgical removal and after drug-induced liver injury (DILI). However, most of the mechanisms of liver regeneration were identified using partial hepatectomy (PHX) model rather than using DILI models. We compared mechanisms of liver regeneration following PHX and after acetaminophen (APAP) overdose, a DILI model, using transcriptomic approach. Kinetics of hepatocyte proliferation and global gene expression profiles were studied in male C57BL/6J mice either subjected to PHX or following APAP overdose. Liver regeneration was much more synchronized after PHX as compared to APAP overdose. Transcriptomics analysis revealed activation of common upstream regulators in both models including growth factors HGF, EGF and VEGF; and cytokines IL6 and TNFα. However, magnitude of activation and temporality was significantly differed between the two models. HGF and VEGF showed similar activation between PHX and APAP but activation of EGF was significantly stronger in the APAP model. Activation of IL6 and TNFα transcriptional programs was delayed but remarkably higher in APAP. These dissimilarities could be attributed to inherent differences in the two models including significant injury and inflammation exclusively in the APAP model. This study highlights need to study mechanisms of liver regeneration after DILI separately from the mechanisms of regeneration PHX.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Genea Edwards
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|