1
|
Gričar J. Phloem: a missing link in understanding tree growth response in a changing environment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6898-6902. [PMID: 39656672 DOI: 10.1093/jxb/erae410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
This article comments on:
Dusart N, Moulia B, Saudreau M, Serre C, Charrier G, Hartmann FP. 2024. Differential warming at crown scale impacts walnut primary growth onset and secondary growth rate. Journal of Experimental Botany 75, https://doi.org/10.1093/jxb/erae360
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| |
Collapse
|
2
|
Shtein I, Gričar J, Lev-Yadun S, Oskolski A, Pace MR, Rosell JA, Crivellaro A. Priorities for Bark Anatomical Research: Study Venues and Open Questions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1985. [PMID: 37653902 PMCID: PMC10221070 DOI: 10.3390/plants12101985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 09/02/2023]
Abstract
The bark fulfils several essential functions in vascular plants and yields a wealth of raw materials, but the understanding of bark structure and function strongly lags behind our knowledge with respect to other plant tissues. The recent technological advances in sampling and preparation of barks for anatomical studies, along with the establishment of an agreed bark terminology, paved the way for more bark anatomical research. Whilst datasets reveal bark's taxonomic and functional diversity in various ecosystems, a better understanding of the bark can advance the understanding of plants' physiological and environmental challenges and solutions. We propose a set of priorities for understanding and further developing bark anatomical studies, including periderm structure in woody plants, phloem phenology, methods in bark anatomy research, bark functional ecology, relationships between bark macroscopic appearance, and its microscopic structure and discuss how to achieve these ambitious goals.
Collapse
Affiliation(s)
- Ilana Shtein
- Department of Molecular Biology, Milken Campus, Ariel University, Ariel 40700, Israel
- Eastern R&D Center, Milken Campus, Ariel 40700, Israel
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, 1000 Ljubljana, Slovenia
| | - Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| | - Alexei Oskolski
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
- Komarov Botanical Institute, Russian Academy of Science, Prof. Popov Str. 2, 197376 St. Petersburg, Russia
| | - Marcelo R. Pace
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Julieta A. Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alan Crivellaro
- Forest Biometrics Laboratory, Faculty of Forestry, “Stefan cel Mare” University of Suceava, Str. Universitatii 13, 720229 Suceava, Romania
| |
Collapse
|
3
|
Chen Y, Rademacher T, Fonti P, Eckes‐Shephard AH, LeMoine JM, Fonti MV, Richardson AD, Friend AD. Inter-annual and inter-species tree growth explained by phenology of xylogenesis. THE NEW PHYTOLOGIST 2022; 235:939-952. [PMID: 35488501 PMCID: PMC9325364 DOI: 10.1111/nph.18195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Wood formation determines major long-term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation. In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring-porous; red maple: diffuse-porous; white pine: coniferous) in a temperate mixed forest during 2017-2019. We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter-annual fluctuations of NSC than the coniferous species. Inter-annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation.
Collapse
Affiliation(s)
- Yizhao Chen
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
| | - Tim Rademacher
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
- Harvard ForestHarvard UniversityPetershamMA01366USA
- Institut des Sciences de la Forêt TempéréeUniversité du Québec en OutaouaisRiponQCJOV1V0Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSLBirmensdorfCH‐8903Switzerland
| | - Annemarie H. Eckes‐Shephard
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundS‐223 62Sweden
| | - James M. LeMoine
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Marina V. Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSLBirmensdorfCH‐8903Switzerland
- Institute of Ecology and GeographySiberian Federal UniversitySvobodny pr 79Krasnoyarsk660041Russia
| | - Andrew D. Richardson
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Andrew D. Friend
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
| |
Collapse
|
4
|
Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone. FORESTS 2022. [DOI: 10.3390/f13071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nitrogen is a necessary macroelement in plant growth and is usually considered a limiting factor in many forest ecosystems. Increasing N deposition has been reported to affect tree growth. However, the effects still remain controversial due to variable N fertilization methods used. In order to study the realistic responses of tree growth to increasing N deposition, we investigated effects of canopy and understory N addition on tree-ring growth and vessel traits of Quercus variabilis Blume. Since 2013, 50 kg N ha−1 year was applied monthly from April to December to either the canopy (CN) or understory (UN) of trees in a warm-temperate forest in Central China. During 2013–2018, tree-ring growth and vessel-related traits (mean vessel area, theoretical xylem hydraulic conductivity (KH), relative ratio of KH, etc.) were analyzed. Tree rings were negatively impacted by both CN and UN treatments, but only the effect of UN was significant. Neither CN nor UN significantly impacted the detected vessel traits. However, some diverging influencing trends were still showed in some vessel traits. Both CN and UN treatments positively affected the percentage of annual total vessel area and vessel density, with the effect of UN on vessel density being more severe. All the detected vessel traits of the large vessels formed at the beginning of the tree-ring responded positively to CN, whereas the opposite response to UN was showed on mean vessel area and the relative ratio of KH. All these diverging responses in different vessel traits likely reflected the compensation and trade-off between maximizing growth and adapting to CN and UN treatments. Six-year long N addition negatively and positively affected tree-ring growth and vessel traits of Q. variabilis in Central China, respectively. UN treatment could not fully simulate the real effect on tree growth, especially on the hydraulic architecture.
Collapse
|
5
|
Nie ZF, Liao ZQ, Yao GQ, Tian XQ, Bi MH, Teixeira da Silva JA, Gao TP, Fang XW. Divergent stem hydraulic strategies of Caragana korshinskii resprouts following a disturbance. TREE PHYSIOLOGY 2022; 42:325-336. [PMID: 34387352 DOI: 10.1093/treephys/tpab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Resprouting plants are distributed in many vegetation communities worldwide. With increasing resprout age post-severe-disturbance, new stems grow rapidly at their early age, and decrease in their growth with gradually decreasing water status thereafter. However, there is little knowledge about how stem hydraulic strategies and anatomical traits vary post-disturbance. In this study, the stem water potential (Ψstem), maximum stem hydraulic conductivity (Kstem-max), water potential at 50% loss of hydraulic conductivity (Kstem P50) and anatomical traits of Caragana korshinkii resprouts were measured during a 1- to 13-year post-disturbance period. We found that the Kstem-max decreased with resprout age from 1-year-old resprouts (84.2 mol m-1 s-1 MPa-1) to 13-year-old resprouts (54.2 mol m-1 s-1 MPa-1) as a result of decreases in the aperture fraction (Fap) and the sum of aperture area on per unit intervessel wall area (Aap). The Kstem P50 of the resprouts decreased from 1-year-old resprouts (-1.8 MPa) to 13-year-old resprouts (-2.9 MPa) as a result of increases in vessel implosion resistance (t/b)2, wood density (WD), vessel grouping index (GI) and decreases in Fap and Aap. These shifts in hydraulic structure and function resulted in an age-based divergence in hydraulic strategies i.e., a change from an acquisitive strategy to a conservative strategy, with increasing resprout age post-disturbance.
Collapse
Affiliation(s)
- Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Qiang Liao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | - Tian-Peng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Gričar J, Jevšenak J, Hafner P, Prislan P, Ferlan M, Lavrič M, Vodnik D, Eler K. Climatic regulation of leaf and cambial phenology in Quercus pubescens: Their interlinkage and impact on xylem and phloem conduits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149968. [PMID: 34525737 DOI: 10.1016/j.scitotenv.2021.149968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Increased frequency and severity of stressful events affects the growth patterns and functioning of trees which adjust their phenology to given conditions. Here, we analysed environmental effects (temperature, precipitation, VPD and SWC) on the timing of leaf phenology, seasonal stem radial growth patterns, and xylem and phloem anatomy of Quercus pubescens in the sub-Mediterranean in the period 2014-2019, when various adverse weather events occurred, i.e. spring drought in 2015, summer fire in 2016 and summer drought in 2017. Results showed that the timings of leaf and cambium phenology do not occur simultaneously in Q. pubescens, reflecting different environmental and internal constraints. Although year-to-year variability in the timings of leaf and cambial phenology exists, their chronological sequence is fairly fixed. Different effects of weather conditions on different stages of leaf development in spring were observed. Common climatic drivers (i.e., negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer) were found to affect the widths of xylem and phloem increments with more pronounced effect on late formed parts. A legacy effect of the timing of leaf and cambial phenology of the previous growing season on the timing of phenology of the following spring was confirmed. Rarely available phloem data permitted a comprehensive insight into the interlinkage of the timing of cambium and leaf phenology and adjustment strategies of vascular tissues in Mediterranean pubescent oak to various environmental constraints, including frequent extreme events (drought, fire). Our results suggest that predicted changes in autumn/winter and spring climatic conditions for this area could affect the timings of leaf and stem cambial phenology of Q. pubescens in the coming years, which would affect stem xylem and phloem structure and hydraulic properties, and ultimately its performance.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia.
| | - Jernej Jevšenak
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department of Forest Techniques and Economics, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Mitja Ferlan
- Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Klemen Eler
- Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia; Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Bär A, Schröter DM, Mayr S. When the heat is on: High temperature resistance of buds from European tree species. PLANT, CELL & ENVIRONMENT 2021; 44:2593-2603. [PMID: 33993527 PMCID: PMC8362042 DOI: 10.1111/pce.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The heat resistance of meristematic tissues is crucial for the survival of plants exposed to high temperatures, as experienced during a forest fire. Although the risk and frequency of forest fires are increasing due to climate change, knowledge about the heat susceptibility of buds, which enclose apical meristems and thus enable resprouting and apical growth, is scarce. In this study, the heat resistance of buds in two different phenological stages was experimentally assessed for 10 European tree species. Cellular heat tolerance of buds was analyzed by determining the electrolyte leakage following heat exposure. Further, the heat insulation capability was tested by measuring the time required to reach lethal internal temperatures linked to bud traits. Our results highlighted differences in cellular heat tolerance and insulation capability among the study species. The phenological stage was found to affect both the thermal stability of cells and the buds' insulation. Further, a good relationship between size-related bud traits and insulation capability was established. Species-specific data on the heat resistance of buds give a more accurate picture of the fire susceptibility of European tree species and provide useful information for estimating tree post-fire responses more precisely.
Collapse
Affiliation(s)
- Andreas Bär
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Stefan Mayr
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Hood SM. Physiological responses to fire that drive tree mortality. PLANT, CELL & ENVIRONMENT 2021; 44:692-695. [PMID: 33410515 DOI: 10.1111/pce.13994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
This article comments on: Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings.
Collapse
Affiliation(s)
- Sharon M Hood
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, Montana, USA
| |
Collapse
|
9
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|