1
|
Wang AY, Li SQ, Cui HX, Liu YN, Lu YJ, Hao GY. Divergence in leaf and cambium phenologies among three temperate tree species of different wood types with special reference to xylem hydraulics. FRONTIERS IN PLANT SCIENCE 2025; 16:1562873. [PMID: 40098642 PMCID: PMC11911365 DOI: 10.3389/fpls.2025.1562873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Leaf and cambium phenologies are both important aspects of tree environmental adaptation in temperate areas. Temperate tree species with non-porous, diffuse-porous and ring-porous woods diverge substantially in the strategy of coping with freezing-induced hydraulic dysfunction, which can be closely associated with the timing of both leaf phenology and xylogenesis. Nevertheless, we still know little about the potential differences in the intra-annual process of xylogenesis among species of the three functional groups as well as its association with leaf phenology. Here, we monitored leaf phenology and xylogenesis in a non-porous (Pinus), a diffuse-porous (Populus), and a ring-porous (Ulmus) temperate tree species in a common garden. The results showed clear divergences in leaf and cambium phenologies and their chronological orders among the three species. The two hardwood species exhibited earlier bud burst and leaf unfolding than the conifer. The cambial activity of the ring-porous species began earlier than the diffuse-porous species, although the leaf phenology of the diffuse-porous species was earlier. The conifer species showed the latest bud break but the initiation of cambium activity was the earliest, which can be attributed to its strong resistance to freezing-induced embolism in the tracheid-based xylem. The leaf phenology preceded the onset of cambial activity in the Populus species, which was permitted by the ability of diffuse-porous species in largely retaining the stem hydraulic function over the winter. In contrast, the Ulmus species with ring-porous wood had to restore its severely hampered stem hydraulic function by winter embolism before leaf flush. The results revealed that leaf and cambium phenologies are closely interconnected due to the coordination between xylem water transport and leaf water demand. These findings contribute to a better understanding of the divergent adaptive strategies of temperate trees with different wood types.
Collapse
Affiliation(s)
- Ai-Ying Wang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Si-Qi Li
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Han-Xiao Cui
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Nan Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Jun Lu
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
2
|
Dusart N, Moulia B, Saudreau M, Serre C, Charrier G, Hartmann FP. Differential warming at crown scale impacts walnut primary growth onset and secondary growth rate. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7127-7144. [PMID: 39225364 DOI: 10.1093/jxb/erae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Trees are exposed to significant spatio-temporal thermal variations, which can induce intra-crown discrepancies in the onset and dynamics of primary and secondary growth. In recent decades, an increase in late winter and early spring temperatures has been observed, potentially accelerating bud break, cambial activation, and their coordination. Intra-crown temperature heterogeneities could lead to asymmetric tree shapes unless there is a compensatory mechanism at the crown level. An original warming experiment was conducted on young Juglans regia trees in a greenhouse. The average temperature difference during the day between warmed and control parts from February to August was 4 °C. The warming treatment advanced the date of budbreak significantly, by up to 14 d. Warming did not alter secondary growth resumption but increased growth rates, leading to higher xylem cell production (by 2-fold) and to an increase in radial increment (+80% compared with control). Meristem resumptions were asynchronous without coordination in response to temperature. Buds on warmed branches began to swell 2 weeks prior to cambial division, which was 1 week earlier than on control branches. A difference in carbon and water remobilization at the end of bud ecodormancy was noted under warming. Overall, our results argue for a lack of compensatory mechanisms at the crown scale, which may lead to significant changes in tree architecture in response to intra-crown temperature heterogeneities.
Collapse
Affiliation(s)
- Nicolas Dusart
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Bruno Moulia
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Marc Saudreau
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Christophe Serre
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Félix P Hartmann
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Marquis B. Simulations reveal variability in exposure to drier conditions during timing of budbreak for tree species of the mixedwood forests of Québec, Canada. FORESTRY RESEARCH 2024; 4:e026. [PMID: 39524433 PMCID: PMC11524311 DOI: 10.48130/forres-0024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 11/16/2024]
Abstract
Due to climate change, the timing of budbreak is occurring earlier in temperate and boreal tree species. Since the warmer conditions also cause snow to melt earlier in the spring, the hypothesis that bud reactivation of tree species of the mixedwood forests of Québec would occur under drier conditions in the future and that species from the temperate forests with late budbreak would be most exposed to dry conditions was tested. The thermal-time bud phenology model was used to predict the timing of budbreak for early and late species using 300 and 500 growing degree-days as the threshold for the timing of budbreak. Climate data was obtained from four CMIP6 climate models from 1950-2100 for two socioeconomic pathways at two locations, one in the temperate forest and one in the boreal mixedwood forest. Using linear regressions, the anomaly, which results from the difference between the historical mean (1950-1980) and the yearly values in timing of budbreak was predicted by the anomaly in drought index (SPEI) per site, climate model, socioeconomic pathways, and species with early or late budbreak timing. Budbreak is expected to occur earlier in the future, whereas the temporal trends in SPEI remained weak during April and May. When paired with the anomalies in both timing of budbreak and drought index, analyses showed that budbreak could be expected to occur under drier conditions in the future. However, due to differences between climate models, it remains uncertain whether drought stress will begin earlier in the future.
Collapse
Affiliation(s)
- Benjamin Marquis
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen Street East Sault Ste. Marie, P6A 2E5, ON, Canada
| |
Collapse
|
4
|
Arend M, Hoch G, Kahmen A. Stem growth phenology, not canopy greening, constrains deciduous tree growth. TREE PHYSIOLOGY 2024; 44:tpad160. [PMID: 38159107 DOI: 10.1093/treephys/tpad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Canopy phenology is a widely used proxy for deciduous forest growth with various applications in terrestrial ecosystem modeling. Its use relies on common assumptions that canopy greening and stem growth are tightly coordinated processes, enabling predictions on the timing and the quantity of annual tree growth. Here, we present parallel observations of canopy and stem growth phenology and annual stem increment in around 90 deciduous forest trees with diffuse-porous (Fagus sylvatica, Acer pseudoplatanus, Carpinus betulus) or ring-porous (Quercus robur × petraea) wood anatomy. These data were collected in a mixed temperate forest at the Swiss-Canopy-Crane II site, in 4 years with strongly contrasting weather conditions. We found that stem growth resumption lagged several weeks behind spring canopy greening in diffuse-porous but not in ring-porous trees. Canopy greening and stem growth resumption showed no or only weak signs of temporal coordination across the observation years. Within the assessed species, the seasonal timing of stem growth varied strongly among individuals, as trees with high annual increments resumed growth earlier and also completed their main growth earlier. The length of main growth activity had no influence on annual increments. Our findings not only challenge tight temporal coordination of canopy and stem growth phenology but also demonstrate that longer main growth activity does not translate into higher annual increments. This may compromise approaches modeling tree growth and forest productivity with canopy phenology and growth length.
Collapse
Affiliation(s)
- Matthias Arend
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
- Department of Environmental Sciences, Plant Ecology, University of Trier, Behringstraße 21, Trier 54296, Germany
| | - Günter Hoch
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| |
Collapse
|
5
|
Lin S, Wang H, Dai J, Ge Q. Spring wood phenology responds more strongly to chilling temperatures than bud phenology in European conifers. TREE PHYSIOLOGY 2024; 44:tpad146. [PMID: 38079514 DOI: 10.1093/treephys/tpad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
A comparative assessment of bud and wood phenology could aid a better understanding of tree growth dynamics. However, the reason for asynchronism or synchronism in leaf and cambial phenology remains unclear. To test the assumption that the temporal relationship between the budburst date and the onset date of wood formation is due to their common or different responses to environmental factors, we constructed a wood phenology dataset from previous literature, and compared it with an existing bud phenology dataset in Europe. We selected three common conifers (Larix decidua Mill., Picea abies (L.) H. Karst. and Pinus sylvestris L.) in both datasets and analyzed 909 records of the onset of wood formation at 47 sites and 238,720 records of budburst date at 3051 sites. We quantified chilling accumulation (CA) and forcing requirement (FR) of budburst and onset of wood formation based on common measures of CA and FR. We then constructed negative exponential CA-FR curves for bud and wood phenology separately. The results showed that the median, variance and probability distribution of CA-FR curves varied significantly between bud and wood phenology for three conifers. The different FR under the same chilling condition caused asynchronous bud and wood phenology. Furthermore, the CA-FR curves manifested that wood phenology was more sensitive to chilling than bud phenology. Thus, the FR of the onset of wood formation increases more than that of budburst under the same warming scenarios, explaining the stronger earlier trends in the budburst date than the onset date of woody formation simulated by the process-based model. Our work not only provides a possible explanation for asynchronous bud and wood phenology from the perspective of organ-specific responses to chilling and forcing, but also develops a phenological model for predicting both bud and wood phenology with acceptable uncertainties.
Collapse
Affiliation(s)
- Shaozhi Lin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
- China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences - Higher Education Commission of Pakistan, Sector H-9, East Service Road, Islamabad 45320, Pakistan
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
6
|
Li X, Liang E, Camarero JJ, Rossi S, Zhang J, Zhu H, Fu YH, Sun J, Wang T, Piao S, Peñuelas J. Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. Natl Sci Rev 2023; 10:nwad182. [PMID: 37671321 PMCID: PMC10476895 DOI: 10.1093/nsr/nwad182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - J Julio Camarero
- InstitutoPirenaico de Ecología (IPE-CSIC), Zaragoza 50059, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
7
|
Huang JG, Zhang Y, Wang M, Yu X, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Zhang JL, Antonucci S, Bergeron Y, Camarero JJ, Campelo F, Čufar K, Cuny HE, De Luis M, Fajstavr M, Giovannelli A, Gričar J, Gruber A, Gryc V, Güney A, Jyske T, Kašpar J, King G, Krause C, Lemay A, Liu F, Lombardi F, Del Castillo EM, Morin H, Nabais C, Nöjd P, Peters RL, Prislan P, Saracino A, Shishov VV, Swidrak I, Vavrčík H, Vieira J, Zeng Q, Liu Y, Rossi S. A critical thermal transition driving spring phenology of Northern Hemisphere conifers. GLOBAL CHANGE BIOLOGY 2023; 29:1606-1617. [PMID: 36451586 DOI: 10.1111/gcb.16543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/25/2022] [Indexed: 05/28/2023]
Abstract
Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.
Collapse
Affiliation(s)
- Jian-Guo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yaling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Minhuang Wang
- Department of Ecology, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Xiaohan Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - Annie Deslauriers
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Harri Mäkinen
- Department of Forests, Natural Resources Institute Finland, Espoo, Finland
| | - Walter Oberhuber
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | | | - Roberto Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Václav Treml
- Department of Physical Geography and Geoecology, Charles University, Prague, Czech Republic
| | - Bao Yang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Lihong Zhai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Serena Antonucci
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Yves Bergeron
- Forest Research Institute, Université du Quebec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
| | | | - Filipe Campelo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Henri E Cuny
- IGN, Direction Interrégionale NordEst, Champigneulles, France
| | - Martin De Luis
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, Zaragoza, Spain
| | - Marek Fajstavr
- Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Alessio Giovannelli
- CNR - Istituto di Ricerca sugli Ecosistemi Terrestri, IRET, Sesto Fiorentino, Italy
| | | | - Andreas Gruber
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Vladimír Gryc
- Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Aylin Güney
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Izmir Katip Çelebi University, Faculty of Forestry, Izmir, Turkey
| | - Tuula Jyske
- Department of Forests, Natural Resources Institute Finland, Espoo, Finland
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Charles University, Prague, Czech Republic
- Department of Forest Ecology, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Průhonice, Czech Republic
| | - Gregory King
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Sciences, University of Alberta, Camrose, Alberta, Canada
| | - Cornelia Krause
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Audrey Lemay
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Feng Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Fabio Lombardi
- AGRARIA Department, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Edurne Martinez Del Castillo
- Department of Geography and Regional Planning, Environmental Science Institute, University of Zaragoza, Zaragoza, Spain
| | - Hubert Morin
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Cristina Nabais
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Pekka Nöjd
- Department of Forests, Natural Resources Institute Finland, Espoo, Finland
| | - Richard L Peters
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Prislan
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Antonio Saracino
- Department of Agricultural Sciences, University of Naples Federico II, Portici-Napoli, Italy
| | - Vladimir V Shishov
- Institute of Economics and Trade, Siberian Federal University, Krasnoyarsk, Russia
| | - Irene Swidrak
- Department of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Hanuš Vavrčík
- Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Joana Vieira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Qiao Zeng
- Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou, China
| | - Yu Liu
- The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| |
Collapse
|
8
|
New Insight into Genetic Structure and Diversity of Scots Pine (Pinus sylvestris L.) Populations in Lithuania Based on Nuclear, Chloroplast and Mitochondrial DNA Markers. FORESTS 2022. [DOI: 10.3390/f13081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We studied the genetic differentiation, structure, and diversity of Scots pine populations in Lithuania based on nuclear, chloroplast microsatellite, and mitochondrial DNA markers. We focused on revealing evolutionary history, country-wide geneflow patterns, and structuring among the Scots pine populations. We genotyped 439 Scots pine individuals of mature age from 23 natural Scots pine stands in Lithuania and used the AMOVA and a set of genetic-clustering methods. The among-population differentiation was weak for nuclear microsatellite loci (nSSRs) (FST = 0.005) but much stronger for cpSSRs (PhiST = 0.240). The populations were structured into highland and lowland populations based on cpSSRs and eastern highland versus the rest for nSSRs. We detected two mtDNA mitotypes—the universal type A and northeastern type B, and the latter occurred at a markedly higher frequency in eastern Lithuania. Within-population genetic diversity was higher in large pine-dominated forest tracts in the eastern highlands than in fragmented forests in the western highlands. We concluded that phenology-based genetic networks following the temperature climate gradients have a strong effect on shaping the genetic structure of otherwise rather homogeneous gene pools of Scots pine populations in Lithuania. The possible effects of human interference with forests on genetic diversity of Scots pine populations in Lithuania are discussed.
Collapse
|
9
|
Giovannelli A, Mattana S, Emiliani G, Anichini M, Traversi ML, Pavone FS, Cicchi R. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. TREE PHYSIOLOGY 2022; 42:1149-1163. [PMID: 34918169 DOI: 10.1093/treephys/tpab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.
Collapse
Affiliation(s)
- Alessio Giovannelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Sara Mattana
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
| | - Giovanni Emiliani
- Istituto Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Monica Anichini
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Maria Laura Traversi
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Francesco Saverio Pavone
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino 50019, Italy
| | - Riccardo Cicchi
- Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy
- Laboratorio Europeo di Spettroscopie Non-lineari (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
10
|
Rahman MH, Kudo K, Yamagishi Y, Nakamura Y, Nakaba S, Begum S, Nugroho WD, Arakawa I, Kitin P, Funada R. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci Rep 2020; 10:14341. [PMID: 32868796 PMCID: PMC7458908 DOI: 10.1038/s41598-020-70356-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
Temperature is an important factor for the cambial growth in temperate trees. We investigated the way daily temperatures patterns (maximum, average and minimum) from late winter to early spring affected the timing of cambial reactivation and xylem differentiation in stems of the conifer Chamaecyparis pisifera. When the daily temperatures started to increase earlier from late winter to early spring, cambial reactivation occurred earlier. Cambium became active when it achieves the desired accumulated temperature above the threshold (cambial reactivation index; CRI) of 13 °C in 11 days in 2013 whereas 18 days in 2014. This difference in duration required for achieving accumulated temperature can be explained with the variations in the daily temperature patterns in 2013 and 2014. Our formula for calculation of CRI predicted the cambial reactivation in 2015. A hypothetical increase of 1-4 °C to the actual daily maximum temperatures of 2013 and 2014 shifted the timing of cambial reactivation and had different effects on cambial reactivation in the two consecutive years because of variations in the actual daily temperatures patterns. Thus, the specific annual pattern of accumulation of temperature from late winter to early spring is a critical factor in determining the timing of cambial reactivation in trees.
Collapse
Affiliation(s)
- Md Hasnat Rahman
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Kayo Kudo
- Institute of Wood Technology, Akita Prefectural University, Noshiro, Akita, 016-0876, Japan
| | - Yusuke Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yusuke Nakamura
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Satoshi Nakaba
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Shahanara Begum
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Widyanto Dwi Nugroho
- Faculty of Forestry, Universitas Gadjah Mada, Jalan Agro No. 1 Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Izumi Arakawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Peter Kitin
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ryo Funada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan.
| |
Collapse
|
11
|
Marquis B, Bergeron Y, Simard M, Tremblay F. Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone. FRONTIERS IN PLANT SCIENCE 2020; 11:1031. [PMID: 32849673 PMCID: PMC7396537 DOI: 10.3389/fpls.2020.01031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Climate warming-driven early leaf-out is expected to increase forest productivity but concurrently increases leaf exposure to spring frosts, which could reduce forests' net productivity. We hypothesized that due to their damaging effect on buds, spring frosts exert a stronger control on bud phenology than do growing degree-days. We monitored bud flush phenology of three white spruce seed sources (one local seed source from the boreal mixedwood forest and two seed sources from the temperate forest), one black spruce seed source originating from the boreal mixedwood forest and four nonlocal Norway spruce seed sources in 2016 and 2017 in two plantations located on both sides of the temperate-boreal mixedwood forest ecotone in eastern Canada (Quebec). We aimed to determine inter- and intraspecies variations in bud break timing and sensitivity to air temperature and photoperiod. We expected that bud break timing for boreal species and seed sources would be better synchronized with the decrease in frost probability than for nonlocal species and seed sources. We used mixed binomial regressions and AICc model selection to determine the best environmental variables predicting each transition from one stage of bud phenology to the next. At both plantation sites, white spruce bud flush began and ended earlier compared to black and Norway spruce. Buds of all spruce species were sensitive to frost probability for early phenological stages, whereas growing degree-days controlled the remaining stages. Photoperiod sensitivity was higher for white spruce compared to black and Norway spruce and reached its maximum in the temperate forest. At intraspecies level, the two southern white spruce seed sources opened their buds earlier than the local source and were more sensitive to photoperiod, which increased their exposure to spring frosts. Onset of spruce bud flush is driven by spring frosts and photoperiod, but once started, bud phenology responds to temperature. The high photoperiod sensitivity in white spruces could counterbalance climate warming and limit future premature leaf-out, whereas the low photoperiod sensitivity in black spruce should not restrain leaf-out advancement with climate warming. Our results call for adapting the temperature-driven hypotheses of ecophysiological models predicting leaf-out to include spring frost probability.
Collapse
Affiliation(s)
- Benjamin Marquis
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Yves Bergeron
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi Témiscamingue, Rouyn-Noranda, QC, Canada
- Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Martin Simard
- Department of Geography, Centre for Forest Research, and Centre for Northern Studies, Laval University, Québec, QC, Canada
| | - Francine Tremblay
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi Témiscamingue, Rouyn-Noranda, QC, Canada
| |
Collapse
|
12
|
Ren P, Néron V, Rossi S, Liang E, Bouchard M, Deslauriers A. Warming counteracts defoliation-induced mismatch by increasing herbivore-plant phenological synchrony. GLOBAL CHANGE BIOLOGY 2020; 26:2072-2080. [PMID: 31925858 DOI: 10.1111/gcb.14991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation-induced mismatch by increasing herbivore-plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6-24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3-7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation-induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future.
Collapse
Affiliation(s)
- Ping Ren
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Département des Sciences Fondamentales, Université du Quebec à Chicoutimi, Chicoutimi, QC, Canada
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Valérie Néron
- Département des Sciences Fondamentales, Université du Quebec à Chicoutimi, Chicoutimi, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Quebec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Mathieu Bouchard
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Quebec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
13
|
Zhang S, Isabel N, Huang JG, Ren H, Rossi S. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1631-1640. [PMID: 31385094 DOI: 10.1007/s00484-019-01776-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
There is evidence that the ongoing climate change is happening through nighttime rather than daytime warming. How such a daily-asymmetric warming modifies plant phenology is still unclear. We investigated the effects of asymmetric warming on bud break by daily monitoring seedlings belonging to 26 black spruce [Picea mariana (Mill.) BSP.] and 15 balsam fir [Abies balsamea (L.) Mill.] provenances from the native range in Canada. Seedlings were subjected to either daytime or nighttime warming in three growth chambers at temperatures ranging between 10 and 24 °C. On average, a warming of 4 °C advanced the timings of bud break in both species by 2.4 days, with the later phases being more sensitive to the treatment. Bud break of both species responded more strongly to daytime warming, with the bud break occurred 1.2 and 3.2 days earlier under daytime than nighttime warming in black spruce and balsam fir, respectively. A marked ecotypic differentiation was only observed in black spruce that originated from provenances distributed broadly across Canada, with seedlings from the warmest provenance completing bud break 8.3 days later than those from the coldest one. However, no significant effect of provenance was observed for balsam fir, the narrowly distributed species. Overall, the above results suggest that a higher temporal resolution such as temperatures during daytime and nighttime, and higher spatial resolution should be taken into account to improve the accuracy of phenological model predictions under global change scenarios. Phenological models based on daily average temperature should take into account the diverging impacts of asymmetric warming on plant phenology. Our findings may indicate that the influence of warming on plant phenology may be less dramatic than expected.
Collapse
Affiliation(s)
- Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V4C7, Canada
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Hai Ren
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Sergio Rossi
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, G7H 2B1, Canada
| |
Collapse
|
14
|
Li X, Rossi S, Liang E. The onset of xylogenesis in Smith fir is not related to outer bark thickness. AMERICAN JOURNAL OF BOTANY 2019; 106:1386-1391. [PMID: 31529807 DOI: 10.1002/ajb2.1360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The resumption of stem growth varies across the ontogenetic development of trees. Compared with younger trees, older ones have thicker outer bark with a temperature-insulating effect that could potentially prevent the stem from warming in the spring. However, the question of whether xylogenesis in old trees is influenced by the thick bark still remains unresolved. METHODS We investigated the onset of xylogenesis across the ontogenetic development of Smith fir (Abies georgei var. smithii) trees in the Sygera Mountains, southeastern Tibetan Plateau. The outer bark of older trees was also removed. Xylogenesis was monitored in microcores we collected every 3 days during May and June in 2017. RESULTS Xylogenesis began in late May in young (<50 yr) and mature (50-100 yr) trees, 1 week earlier than in adult (>100-150 yr) and old (>150-200 yr) trees. Older (>200 yr) trees had the latest onset of xylogenesis, 2 weeks after young trees. The resumption of xylogenesis was similar between the control and bark-removed trees. CONCLUSIONS Growth resumption was delayed in older and bigger trees. Outer bark did not affect the onset of xylogenesis, which indicated that the delayed resumption of growth during the lifespan of trees could be more related to endogenous factors than to an insulating effect of the thick bark of older individuals.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Laboratoire d'Écologie Végétale, University of Quebec in Chicoutimi, 555, Boulevard de l'Université, Chicoutimi, (QC), G7H2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
15
|
Wang Y, Case B, Rossi S, Dawadi B, Liang E, Ellison AM. Frost controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:963-972. [PMID: 30903292 DOI: 10.1007/s00484-019-01710-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 05/21/2023]
Abstract
Impacts of climatic means on spring phenology are well documented, whereas the role of climatic variance, such as occurrence of spring frosts, has long been neglected. A large elevational gradient of forests on the southeastern Tibetan Plateau provides an ideal platform to explore correlates of spring phenology and environmental factors. We tested the hypothesis that spring frost was a major factor regulating the timing of bud-leaf phenology by combining 5 years of in situ phenological observations of Abies georgei var. smithii with concurrent air temperature data along two altitudinal gradients. Mean lapse rate for the onset of bud swelling and leaf unfolding was 3.1 ± 0.5 days/100 m and 3.0 ± 0.6 days/100 m, respectively. Random forest analysis and conditional inference trees revealed that the frequency of freezing events was a critical factor in determining the timing of bud swelling, independent of topographic differences, varying accumulation of chilling days, and degree-days. In contrast, the onset of leaf unfolding was primarily controlled by the bud swelling onset. Thus, the timing of bud swelling and leaf unfolding appear to be controlled directly and indirectly, respectively, by spring frost. Using space-for-time substitution, the frequency of spring freezing events decreased by 7.1 days with 1 °C of warming. This study provides evidence for impacts of late spring frosts on spring phenology, which have been underappreciated in research on phenological sensitivity to climate but should be included in phenology models. Fewer spring freezing events with warming have important implications for the upward migration of alpine forests and treelines.
Collapse
Affiliation(s)
- Yafeng Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bradley Case
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, Boulevard de I'Université, Chicoutimi, QC, G7H2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Binod Dawadi
- Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, Nepal
| | - Eryuan Liang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China.
| | - Aaron M Ellison
- Harvard Forest, Harvard University, 324 North Main St, Petersham, MA, 01366, USA
| |
Collapse
|
16
|
Leslie AB, Losada JM. Reproductive Ontogeny and the Evolution of Morphological Diversity in Conifers and Other Plants. Integr Comp Biol 2019; 59:548-558. [DOI: 10.1093/icb/icz062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Biologists often study morphological evolution through form and function relationships. But biological structures can perform multiple functional roles, complicating efforts to understand the evolutionary significance of any one relationship. Plant reproductive organs perform multiple roles in a sequence, however, which provides a unique opportunity to understand how structures evolve to meet multiple functional demands. Using conifers as a study group, we discuss how a shared developmental trajectory links the performance of sequential functional roles. Variation in development among lineages can underlie morphological diversity; pollination-stage seed cones in Pinaceae conifers function similarly but show diverse forms reflecting differences in developmental rate. As cones develop further, the morphologies that they use to perform later functional roles are influenced by the specific developmental patterns used to meet earlier demands, which may ultimately limit morphological diversity. However, we also show how selective pressures relating to the final functional stage (seed dispersal) may influence cone anatomy and morphology over all previous stages, highlighting the complex linkages among form, function, and development. We end by discussing the potential relationships between functional ontogeny and morphological disparity in plant reproductive structures more broadly, suggesting that the complex functional roles associated with seed plant reproduction probably underlie the high disparity in this group.
Collapse
Affiliation(s)
- A B Leslie
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - J M Losada
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC). Avda. Dr. Wienberg s/n, Algarrobo-Costa, Málaga 29750, Spain
| |
Collapse
|
17
|
Deslauriers A, Fournier MP, Cartenì F, Mackay J. Phenological shifts in conifer species stressed by spruce budworm defoliation. TREE PHYSIOLOGY 2019; 39:590-605. [PMID: 30597102 DOI: 10.1093/treephys/tpy135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Synchrony between host budburst and insect emergence greatly influences the time window for insect development and survival. A few alterations of bud phenology have been reported under defoliation without clear consensus regarding the direction of effects, i.e., advance or delay. Here, we compared budburst phenology between conifers in defoliation and control treatments, and measured carbon allocation as a potential mechanistic explanation of changes in phenology. In a 2-year greenhouse experiment, saplings of balsam fir, black spruce and white spruce of two different provenances (north and south) were subjected to either control (no larvae) or natural defoliation treatment (larvae added) by spruce budworm. Bud and instar phenology, primary and secondary growth, defoliation and non-structural carbohydrates were studied during the growing season. No differences were observed in bud phenology during the first year of defoliation. After 1 year of defoliation, bud phenology advanced by 6-7 days in black spruce and balsam fir and by 3.5 days in white spruce compared with the control. Because of this earlier bud break, apical and shoot growth exceeded 50% of its final length before mature instar defoliation occurred, which decreased the overall level of damage. A sugar-mediated response, via earlier starch breakdown, and higher sugar availability to buds explains the advanced budburst in defoliated saplings. The advanced phenological response to defoliation was consistent across the conifer species and provenances except for one species × provenance combination. Allocation of carbon to buds and shoots growth at the expense of wood growth in the stem and reserve accumulation represents a shift in the physiological resources priorities to ensure tree survival. This advancement in bud phenology could be considered as a physiological response to defoliation based on carbohydrate needs for primary growth, rather than a resistance trait to spruce budworm.
Collapse
Affiliation(s)
- Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Marie-Pier Fournier
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (NA), Italy
| | - John Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Delpierre N, Lireux S, Hartig F, Camarero JJ, Cheaib A, Čufar K, Cuny H, Deslauriers A, Fonti P, Gričar J, Huang JG, Krause C, Liu G, de Luis M, Mäkinen H, Del Castillo EM, Morin H, Nöjd P, Oberhuber W, Prislan P, Rossi S, Saderi SM, Treml V, Vavrick H, Rathgeber CBK. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. GLOBAL CHANGE BIOLOGY 2019; 25:1089-1105. [PMID: 30536724 DOI: 10.1111/gcb.14539] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/04/2018] [Indexed: 05/17/2023]
Abstract
The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.
Collapse
Affiliation(s)
- Nicolas Delpierre
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Ségolène Lireux
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | | | - Alissar Cheaib
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
- Département des Sciences de la Vie et de la Terre, Faculté des Sciences - Section IV, Université libanaise Hoch Al Oumara, Zahlé, Liban
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Henri Cuny
- Institut National de l'Information Géographique et Forestière (IGN), Champigneulles, France
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Patrick Fonti
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden of the Chinese Academy of Sciences, Guangzhou, China
| | - Cornelia Krause
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Guohua Liu
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Martin de Luis
- Department of Geography and Regional Planning, University of Zaragoza, Zaragoza, Spain
| | | | | | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Pekka Nöjd
- Natural Resources Institute Finland, Espoo, Finland
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems of the Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden of the Chinese Academy of Sciences, Guangzhou, China
| | | | - Vaclav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hanus Vavrick
- Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | | |
Collapse
|
19
|
Cartenì F, Deslauriers A, Rossi S, Morin H, De Micco V, Mazzoleni S, Giannino F. The Physiological Mechanisms Behind the Earlywood-To-Latewood Transition: A Process-Based Modeling Approach. FRONTIERS IN PLANT SCIENCE 2018; 9:1053. [PMID: 30079078 PMCID: PMC6063077 DOI: 10.3389/fpls.2018.01053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/28/2018] [Indexed: 05/24/2023]
Abstract
In extratropical ecosystems, the growth of trees is cyclic, producing tree rings composed of large-lumen and thin-walled cells (earlywood) alternating with narrow-lumen and thick-walled cells (latewood). So far, the physiology behind wood formation processes and the associated kinetics has rarely been considered to explain this pattern. We developed a process-based mechanistic model that simulates the development of conifer tracheids, explicitly considering the processes of cell enlargement and the deposition and lignification of cell walls. The model assumes that (1) wall deposition gradually slows down cell enlargement and (2) the deposition of cellulose and lignin is regulated by the availability of soluble sugars. The model reliably reproduces the anatomical traits and kinetics of the tracheids of four conifer species. At the beginning of the growing season, low sugar availability in the cambium results in slow wall deposition that allows for a longer enlargement time; thus, large cells with thin walls (i.e., earlywood) are produced. In late summer and early autumn, high sugar availability produces narrower cells having thick cell walls (i.e., latewood). This modeling framework provides a mechanistic link between plant ecophysiology and wood phenology and significantly contributes to understanding the role of sugar availability during xylogenesis.
Collapse
Affiliation(s)
- Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
20
|
Zhang J, Gou X, Pederson N, Zhang F, Niu H, Zhao S, Wang F. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. TREE PHYSIOLOGY 2018; 38:840-852. [PMID: 29401316 DOI: 10.1093/treephys/tpx160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/16/2018] [Indexed: 05/12/2023]
Abstract
Knowing more precisely the cambial phenology and wood formation dynamics of trees can lead to a better understanding on how trees react to short-term changes in environmental conditions. Such an understanding could also shed light on the physiological foundation of climate-growth interactions at a regional scale. Although it has been documented that temperature is an important factor determining the cambial phenology in cold and humid climates, there is less agreement on the driver(s) that trigger the onset and end of wood formation in cold and arid climates. Here, the phenological traits of cambial activity and xylem formation were analyzed biweekly along an altitudinal transect ranging from 3580 to 3980 m above sea level, a transect that covers the distribution of Qilian juniper (Juniperus przewalskii Kom.) along a slope of the Tibetan Plateau. Cambial phenology and the duration and rate of wood formation were assessed from anatomical observations during the growing season of the developing xylem obtained from microcores collected from the stem of 10 trees total in 2012 (five at two altitudes each) and 25 trees (five at five altitudes each) in 2013. We found that the onset of wood formation was significantly correlated with altitude in 2013, with onset beginning 8.2 days earlier with every 100 m decrease in elevation. The change in onset with elevation corresponds to a change of 14.1 days °C-1 when adjusted for the monitored altitudinal lapse rate of -0.58 °C per 100 m. The duration of wood formation lasted from mid-May to mid-August, with the length of the 2013 growing season decreasing from 97 to 65 days from low to high elevation. Although the end of growing season appeared minimally related to altitude during both growing seasons, differences in end of wood production and wood formation between the two growing seasons were significant. It appears that summer drought conditions constricted the end of growing season across all elevations along our transect in 2013. Sensitivity analysis found xylem growth was positively correlated with rate and duration of wood production, with the former explaining most variability in growth. Our findings provide new data on the timing and duration of wood formation and help quantify the potential impacts of global warming on tree growth and productivity in cold and arid regions.
Collapse
Affiliation(s)
- Junzhou Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
| | - Xiaohua Gou
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Neil Pederson
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
| | - Fen Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoge Niu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shoudong Zhao
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Fang Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Lemay A, Krause C, Rossi S, Achim A. Xylogenesis in stems and roots after thinning in the boreal forest of Quebec, Canada. TREE PHYSIOLOGY 2017; 37:1554-1563. [PMID: 28985379 DOI: 10.1093/treephys/tpx082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/06/2017] [Indexed: 05/28/2023]
Abstract
The reduction of competition through thinning increases radial growth in the stem and roots of many conifer species. However, not much is known about the effect of thinning on the dynamics of wood formation and intra-annual development of the growth ring, especially in the roots, which are an essential part of the tree for stability and resource acquisition. The aim of this study was to evaluate the effect of an experimental thinning on the dynamics and phenology of xylogenesis in the stem and roots of black spruce and balsam fir. Experimental and control trees were selected in two mature even-aged stands, one black spruce (Picea mariana (Mill.) BSP) and one balsam fir (Abies balsamea (L.) Mill.). Wood microcores were collected weekly in the stem and roots from May to October for a period of 4 years. The onset and ending of each cell differentiation phase were computed, as well as growth rate and total cell production. Results show that thinning increased the cell production rate of stem and roots of black spruce and balsam fir. This higher daily growth rate caused an increase in the total number of cells produced by the cambium. The intensity of the treatment was sufficient to significantly increase light availability for residual trees, but insufficient to modify soil temperature and water content to a point at which a significant change in the timing or duration of xylogenesis would be induced. Thus, thinning increased cell production rate and total number of cells produced in both stem and roots, but did not result in a change in the phenology of wood formation that could lead to increased risks of frost damage in the spring or autumn.
Collapse
Affiliation(s)
- Audrey Lemay
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Cornelia Krause
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
| | - Sergio Rossi
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi (Québec) G7H 2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Alexis Achim
- Département des sciences du bois et de la forêt, Université Laval, 2405 rue de la Terrasse, Québec (Québec) G1V 0A6, Canada
| |
Collapse
|
22
|
Perrin M, Rossi S, Isabel N. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation. TREE PHYSIOLOGY 2017; 37:593-603. [PMID: 28338976 DOI: 10.1093/treephys/tpx019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
Bud and cambial phenology represent the adaptation of species to the local environment that allows the growing season to be maximized while minimizing the risk of frost for the developing tissues. The temporal relationship between the apical and radial meristems can help in the understanding of tree growth as a whole process. The aim of this study was to compare cambial phenology in black spruce (Picea mariana (Mill.) B.S.P.) provenances classified as early and late bud flushing. The different phases of cambial phenology were assessed on wood microcores sampled weekly from April to October in 2014 and 2015 from 61 trees growing in a provenance trial in Quebec, Canada. Trees showing an early bud flush also exhibited early reactivation of xylem differentiation, although an average difference of 12 days for buds corresponded to small although significant differences of 4 days for xylem. Provenances with early bud flush had an early bud set and completed xylem formation earlier than late bud flush provenances. No significant difference in the period of xylem formation and total growth was observed between the flushing classes. Our results demonstrate that the ecotype differentiation of black spruce provenances represented by the phenological adaptation of buds to the local climate corresponds to specific growth dynamics of the xylem.
Collapse
Affiliation(s)
- Magali Perrin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada
| |
Collapse
|
23
|
Tree Height-Diameter Relationships in the Alpine Treeline Ecotone Compared with Those in Closed Forests on Changbai Mountain, Northeastern China. FORESTS 2017. [DOI: 10.3390/f8040132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Rossi S, Isabel N. Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming. GLOBAL CHANGE BIOLOGY 2017; 23:446-454. [PMID: 27196979 DOI: 10.1111/gcb.13360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night-time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night-time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night-time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night-time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night-time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions.
Collapse
Affiliation(s)
- Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., Québec, QC, G1V4C7, Canada
| |
Collapse
|
25
|
Johnsson C, Fischer U. Cambial stem cells and their niche. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:239-245. [PMID: 27717460 DOI: 10.1016/j.plantsci.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/28/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Unlike animals, plants often have an indefinite genetic potency to form new organs throughout their entire lifespan. Growth and organogenesis are driven by cell divisions in meristems at distinct sites within the plant. Since the meristems contributing to axial thickening in dicots (cambia) are separated from places where axes elongate (apical meristems); there is a need of communication to coordinate growth. In their behavior, some meristematic cells resemble animal stem cells whose daughter cells either maintain the capacity to divide over a long period of time or undergo differentiation. The behavior of stem cells is regulated by their microenvironment, the so called niche. The stem- and niche-cell concept is now also widely accepted for apical meristems. An integral part of the cambial niche has recently been localized to the phloem. It steers cell division activity in the cambium via the release of a peptide signal and may be a hub to integrate signals from other stem cell populations to coordinate growth. Although these signals have yet to be determined, the discovery of the cambial niche cells will pave the way for a better understanding of inter-meristematic communication and cambial stem cell behavior.
Collapse
Affiliation(s)
- Christoffer Johnsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|