1
|
Gu XB, Tian Y, Zhang CY, Xu J, Hao GY, Yang FS, Li YE, Liang YP, Fan J, Wu FY, Yao XY, He ML, He R, Wang H, Xie Y. Application two-dimensional gel electrophoresis coupled with LC-MS/MS to identify candidate serodiagnostic antigens for early detection Psoroptes ovis var. cuniculi infection. Vet Parasitol 2025; 334:110383. [PMID: 39724843 DOI: 10.1016/j.vetpar.2024.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Currently, the 'gold standard' for diagnosis of Psoroptes ovis infections is detecting Psoroptes mites or eggs in skin scrapings under microscopy, but it is prone to be mis-diagnosed for detecting early infection of P. ovis. Hence, seeking a reliable diagnostic technique for detecting early-stage mite infections is extremely desirable. Enzyme linked immunosorbent assay (ELISA) has proven to be useful for the diagnosis of early-stage P. ovis infection. Thus, the purpose of this study was to screen serodiagnostic candidate antigens that can detect early P. ovis infection. Psoroptes ovis var. cuniculi wash proteins (PsoWA), which contained an enriched source of secretory and excretory antigens, were separated by two-dimensional gel electrophoresis (2-DE) and screened by immunoblot using sera from rabbits with early-stage Psoroptes infection (1 week and 3 weeks). Immunogenic proteins were submitted for sequencing by liquid chromatography tandem-mass spectrometry (LC-MS/MS) analyses. Three potential diagnostic antigens were identified (PsoSP3, Pso14-3-3(1) and Pso14-3-3(2)) in this study. These were further expressed in E. coli expression system to evaluate the serodiagnostic potential of these recombinant proteins for detecting early-stage P. ovis infection using an indirect ELISA (iELISA). Western blotting showed that 34 protein spots were recognized by rabbit sera of 1 week post-infection (wpi) and 3 wpi. The 2-DE results showed that a total of 199 proteins were detected with molecular weights varying from 20 to 100 kDa and isoelectric point (pI) from 4.1 to 9.3. Among these, 90 proteins were detected both at 1 wpi sera and 3 wpi sera, and the numbers of the specific identified proteins were 27 for 1 wpi sera and 82 for 3wpi sera. Moreover, rPsoSP3 showed better diagnostic efficacy than rPso14-3-3(1) and rPso14-3-3(2) in detecting early-stage P. ovis infection for its higher values of sensitivity, specificity and area under the receiver operating characteristic curve. Our study describes the first immunoproteomic analysis to identify early diagnostic candidate antigens of P. ovis, and the identified antigens of Psoroptes in our study have significant implications for the development of early-stage diagnostic tests. PsoSP3 is a promising early diagnostic antigen for detecting P. ovis var. cuniculi infection.
Collapse
Affiliation(s)
- X B Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Y Tian
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - C Y Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - J Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - G Y Hao
- School of Animal Science, Xichang College, Xichang 615013, China.
| | - F S Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Y E Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Y P Liang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - J Fan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - F Y Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - X Y Yao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - M L He
- Laboratory Animal Center, Department of Science and Technology, Southwest Medical University, Luzhou 646000, China.
| | - R He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - H Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Y Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Omidian M, Mostafavi-Pour Z, Asadi M, Sharifdini M, Nezafat N, Pouryousef A, Savardashtaki A, Taheri-Anganeh M, Mikaeili F, Sarkari B. Design and expression of a chimeric recombinant antigen (SsIR-Ss1a) for the serodiagnosis of human strongyloidiasis: Evaluation of performance, sensitivity, and specificity. PLoS Negl Trop Dis 2024; 18:e0012320. [PMID: 39008519 PMCID: PMC11271862 DOI: 10.1371/journal.pntd.0012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/25/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The sensitivity of parasitological and molecular methods is unsatisfactory for the diagnosis of strongyloidiasis, and serological techniques are remaining as the most effective diagnostic approach. The present study aimed to design and produce a chimeric recombinant antigen from Strongyloides stercoralis immunoreactive antigen (SsIR) and Ss1a antigens, using immune-informatics approaches, and evaluated its diagnostic performance in an ELISA system for the diagnosis of human strongyloidiasis. METHODOLOGY/PRINCIPAL FINDINGS The coding sequences for SsIR and Ss1a were selected from GenBank and were gene-optimized. Using bioinformatics analysis, the regions with the highest antigenicity that did not overlap with other parasite antigens were selected. The chimeric recombinant antigen SsIR- Ss1a, was constructed. The solubility and physicochemical properties of the designed construct were analyzed and its tertiary structures were built and evaluated. The construct was expressed into the pET-23a (+) expression vector and the optimized DNA sequences of SsIR-Ss1a (873 bp) were cloned into competent E. coli DH5α cells. Diagnostic performances of the produced recombinant antigen, along with a commercial kit were evaluated in an indirect ELISA system, using a panel of sera from strongyloidiasis patients and controls. The physicochemical and bioinformatics evaluations revealed that the designed chimeric construct is soluble, has a molecular with of 35 KDa, and is antigenic. Western blotting confirmed the immunoreactivity of the produced chimeric recombinant antigen with the sera of strongyloidiasis patients. The sensitivity and specificity of the indirect ELISA system, using the produced SsIR-Ss1a chimeric antigen, were found to be 93.94% (95% CI, 0.803 to 0.989) and 97.22% (95% CI, 0.921 to 0.992) respectively. CONCLUSIONS/SIGNIFICANCE The preliminary findings of this study suggest that the produced SsIR-Ss1a chimeric antigen shows promise in the diagnosis of human strongyloidiasis. However, these results are based on a limited panel of samples, and further research with a larger sample size is necessary to confirm its accuracy. The construct has potential as an antigen in the ELISA system for the serological diagnosis of this neglected parasitic infection, but additional validation is required.
Collapse
Affiliation(s)
- Mostafa Omidian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant Proteins Laboratory, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Pouryousef
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Fattaneh Mikaeili
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahador Sarkari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Chan AHE, Thaenkham U. From past to present: opportunities and trends in the molecular detection and diagnosis of Strongyloides stercoralis. Parasit Vectors 2023; 16:123. [PMID: 37041645 PMCID: PMC10088203 DOI: 10.1186/s13071-023-05763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Strongyloides stercoralis is a soil-transmitted helminth that is mainly found in the tropical and subtropical regions and affects approximately 600 million people globally. The medical importance of strongyloidiasis lies in its capacity to remain asymptomatic and chronically unnoticed until the host is immunocompromised. Additionally, in severe strongyloidiasis, hyperinfection syndrome and larva dissemination to various organs can occur. Parasitological techniques such as Baermann-Moraes and agar plate culture to detect larvae in stool samples are the current gold standard. However, the sensitivity might be inadequate, especially with reduced worm burden. Complementing parasitological techniques, immunological techniques including immunoblot and immunosorbent assays are employed, with higher sensitivity. However, cross-reactivity to other parasites may occur, hampering the assay's specificity. Recently, advances in molecular techniques such as polymerase chain reaction and next-generation sequencing technology have provided the opportunity to detect parasite DNA in stool, blood, and environmental samples. Molecular techniques, known for their high sensitivity and specificity, have the potential to circumvent some of the challenges associated with chronicity and intermittent larval output for increased detection. Here, as S. stercoralis was recently included by the World Health Organization as another soil-transmitted helminth targeted for control from 2021 to 2030, we aimed to present a review of the current molecular techniques for detecting and diagnosing S. stercoralis in a bid to consolidate the molecular studies that have been performed. Upcoming molecular trends, especially next-generation sequencing technologies, are also discussed to increase the awareness of its potential for diagnosis and detection. Improved and novel detection methods can aid in making accurate and informed choices, especially in this era where infectious and non-infectious diseases are increasingly commonplace.
Collapse
Affiliation(s)
| | - Urusa Thaenkham
- Department of Helminthology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Roldán Gonzáles WH, Coelho GR, Pimenta DC, de Paula FM, Gryschek RCB. Proteomic analysis of the excretory-secretory products from Strongyloides venezuelensis infective larvae: new insights for the immunodiagnosis of human strongyloidiasis. Parasitol Res 2022; 121:3155-3170. [PMID: 36044090 DOI: 10.1007/s00436-022-07636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Serodiagnosis of human strongyloidiasis is a practical alternative to parasitological methods due to its high sensitivity. However, cross-reactivity with other helminth infections limits its utility, and this problem is due to the use of homologous or heterologous somatic extracts of the parasite as an antigen source. Excretory-secretory (E/S) products from Strongyloides infective larvae can be used to improve the serodiagnosis. The combined use of western blot and proteomics became an interesting strategy to identify immunological markers for the serodiagnosis of strongyloidiasis. The present study describes the proteomic analysis of the antigenic components from E/S products of S. venezuelensis infective larvae that were recognized by IgG antibodies from patients with strongyloidiasis. Our results showed that IgG antibodies from patients with strongyloidiasis recognized between 15 and 16 antigenic bands in the E/S products from S. venezuelensis that were incubated in PBS or in RPMI culture medium, respectively. Overall, antigenic bands of low and high molecular weight were more specific than those of intermediate molecular weight, which were cross-reactive. A 36-kDa antigenic band was 93% sensitive and 100% specific (a probably arginine kinase of 37 kDa), while other antigenic bands were highly sensitive but low specific. Proteomic analysis revealed differences between the protein profiles from E/S-RPMI and E/S-PBS since only one-third of all proteins identified were common in both types of E/S products. Bioinformatic analysis showed that more than 50% of the proteins from E/S products are secreted within extracellular vesicles and only a small percentage of them are actually released by the classical secretory pathway. Several components from the E/S products were identified as plasminogen-binding proteins, probably used as an immune evasion mechanism. The data provided here provide valuable information to increase understanding of E/S products from S. venezuelensis infective larvae. This may help us to find new targets for the immunodiagnosis of human strongyloidiasis.
Collapse
Affiliation(s)
- William Henry Roldán Gonzáles
- Laboratório de Investigação Médica (LIM/06), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Fabiana Martins de Paula
- Laboratório de Investigação Médica (LIM/06), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
| | - Ronaldo Cesar Borges Gryschek
- Laboratório de Investigação Médica (LIM/06), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Evaluation of the Immunomodulatory Effect of the Recombinant 14-3-3 and Major Antigen Proteins of Strongyloides stercoralis against an Infection by S. venezuelensis. Vaccines (Basel) 2022; 10:vaccines10081292. [PMID: 36016178 PMCID: PMC9415175 DOI: 10.3390/vaccines10081292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Strongyloidiasis, caused by Strongyloides stercoralis, is a neglected parasitic disease that represents a serious public health problem. In immunocompromised patients, this parasitosis can result in hyperinfection or disseminated disease with high levels of mortality. In previous studies, the mRNAs encoding for the 14-3-3 and major antigen proteins were found to be expressed at high levels in S. stercoralis L3 larvae, suggesting potential key roles in parasite-host interactions. We have produced them as recombinant proteins (rSs14-3-3 and rSsMA) in a bacterial protein expression system. The serum levels of anti-rSs14-3-3 and anti-rSsMA IgGs are increased upon infection with S. venezuelensis, validating the use of the mouse model since the native 14-3-3 and MA proteins induce an immune response. Each recombinant protein was formulated in the adjuvant adaptation (ADAD) vaccination system and injected twice, subcutaneously, in CD1 mice that were experimentally infected with 3000 S. venezuelensis L3 to evaluate their protective and immunomodulatory activity. Our results, including the number of parthenogenetic females, number of eggs in stool samples and the analysis of the splenic and intestinal indexes, show that the vaccines did not protect against infection. The immunization with rSs14-3-3 induced changes in the cytokine profile in mice, producing higher expression of IL-10, TGF-β, IL-13 and TNF-α in the spleen, suggesting a Th2/Treg-type response with an increase in TNF-α levels, confirming its role as an immunomodulator.
Collapse
|
6
|
Lu Y, Sun JH, Lu LL, Chen JX, Song P, Ai L, Cai YC, Li LH, Chen SH. Proteomic and Immunological Identification of Diagnostic Antigens from Spirometra erinaceieuropaei Plerocercoid. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:615-623. [PMID: 34974668 PMCID: PMC8721309 DOI: 10.3347/kjp.2021.59.6.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/27/2021] [Indexed: 11/23/2022]
Abstract
Human sparganosis is a food-borne parasitic disease caused by the plerocercoids of Spirometra species. Clinical diagnosis of sparganosis is crucial for effective treatment, thus it is important to identify sensitive and specific antigens of plerocercoids. The aim of the current study was to identify and characterize the immunogenic proteins of Spirometra erinaceieuropaei plerocercoids that were recognized by patient sera. Crude soluble extract of the plerocercoids were separated using 2-dimensional gel electrophoresis coupled with immunoblot and mass spectrometry analysis. Based on immunoblotting patterns and mass spectrometry results, 8 antigenic proteins were identified from the plerocercoid. Among the proteins, cysteine protease protein might be developed as an antigen for diagnosis of sparganosis.
Collapse
Affiliation(s)
- Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Jia-Hui Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Li-Li Lu
- The Third Hospital of Shijiazhuang City, Shijiazhuang,
P. R. China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
| | - Lan-Hua Li
- School of Public Health, Weifang Medical University, Weifang,
P. R. China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); WHO Collaborating Center for Tropical Diseases; NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention); National Center for International Research on Tropical Diseases; Shanghai,
P. R. China
- Corresponding author ()
| |
Collapse
|
7
|
Costa IN, Bosqui LR, Corral MA, Costa-Cruz JM, Gryschek RCB, de Paula FM. Diagnosis of human strongyloidiasis: Application in clinical practice. Acta Trop 2021; 223:106081. [PMID: 34364894 DOI: 10.1016/j.actatropica.2021.106081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
This review considers the advantages and disadvantages of parasitological techniques, methods of detecting antibodies and antigens, as well as molecular biology techniques in the diagnosis of human strongyloidiasis. In addition, it elucidates the potential of different techniques for rapid and effective detection of clinical cases, thus enabling early treatment and preventing fatal consequences of this helminthiasis.
Collapse
|
8
|
Balachandra D, Rahumatullah A, Lim TS, Mustafa FH, Ahmad H, Anuar NS, Noordin R. A new antigen detection ELISA for the diagnosis of Strongyloides infection. Acta Trop 2021; 221:105986. [PMID: 34058161 DOI: 10.1016/j.actatropica.2021.105986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 05/24/2021] [Indexed: 01/29/2023]
Abstract
Serodiagnosis is an essential component of the laboratory diagnosis of Strongyloides infection and is usually performed using an indirect IgG antibody test. A direct antigen detection method can complement the IgG assay, particularly for detecting early infection and post-treatment follow-up. In the present study, a recombinant scFv monoclonal antibody against NIE recombinant protein (rMAb23) that we had previously produced was used to develop a Strongyloides antigen detection ELISA (SsAg-ELISA). The assay is based on detecting immune complexes of circulating NIE antigens bound to Strongyloides-specific IgG antibodies. The optimized ELISA parameters were 10 µg/mL of rMAb23 coated on microtitre plate wells, 2% skim milk as blocking reagent, 1:100 serum dilution, and 1:1000 goat anti-human IgG F(ab')2 conjugated to horseradish peroxidase. Four groups of serum samples were used, i.e., Strongyloides-positive serum samples categorized into Groups IA and IB; the former were from probable chronic infections and the latter from probable early/acute infections. Strongyloides-negative samples comprising Groups II (healthy samples) and III (other infections); the latter were from eleven different types of other parasitic infections. The receiver operating characteristic (ROC) curve showed an area under the curve (AUC) of 1.00, cut-off optical density (OD405) of 0.5002, and 100% diagnostic sensitivity and specificity. The results of the commercial IgG-ELISA and SsAg-ELISA from Group IA were found to be moderately correlated (r = 0.416; p < 0.05). Notably, ANOVA showed that the average ODs405 of Group 1B were significantly higher (p < 0.05) than Group 1A, indicating that the assay may be useful to differentiate early and chronic infection. In conclusion, the developed SsAg-ELISA showed good diagnostic potential, and it merits further evaluation.
Collapse
Affiliation(s)
- Dinesh Balachandra
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | | | - Hussain Ahmad
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia; Department of Microbiology, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia.
| |
Collapse
|
9
|
Culma MF. Strongyloides stercoralis proteome: A reverse approach to the identification of potential immunogenic candidates. Microb Pathog 2020; 152:104545. [PMID: 33091578 DOI: 10.1016/j.micpath.2020.104545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/15/2022]
Abstract
Strongyloides stercoralis is a parasite widely distributed in the tropical and subtropical areas in the world. Its treatment and diagnosis have a limitation as many other parasitic diseases. Nowadays, there is a great interest in designing an efficient epitope for vaccines or diagnostic. In this study, a bioinformatics-based screening approach has been incorporated in order to explore potential immunogens in the S. stercoralis proteome. Bioinformatic tools were used to predict diagnostic and vaccinology approaches. 12.851 cell immunology proteins from Uniprot were analyzed. Thirty-four immunogenic candidates were identified, they had higher antigenic activity, less than 2 α-helices, non-allergen activity and they do not have homology with host proteins, all of them have ortholog protein with Strongyloides ratti. Some of them presented a good binding with immunological cell (T and B cell). These proteins could be a good alternative as a candidate for the design of the novel vaccines or diagnostic tests of strongyloides stercoralis.
Collapse
|
10
|
Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102319. [PMID: 33068745 DOI: 10.1016/j.nano.2020.102319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
The goal of this study was to develop a new method based on Oncothermia with concomitant use of the temozolomide (TMZ)-loaded magnetic nanoparticles conjugated with folic acid (TMZ/MNPs-FA) and alternative magnetic field (AMF) and evaluate its efficacy in the treatment of C6 glioma in rats. TMZ/MNPs-FA were prepared and evaluated for their size, surface charge, magnetic saturation, hemolysis and in vitro AMF-triggered release. The glioma rat models were treated with free TMZ, MNPs-FA and TMZ/MNPs-FA in the presence or absence of AMF (43 °C). The results confirmed that a combinatorial therapy consisting of AFM hyperthermia and thermosensitive TMZ/MNPs-FA could significantly suppress tumor growth, increase survival rate and promote apoptosis (P < 0.0001). Therefore, this treatment strategy may be a powerful modality for treatment of cancer, as the thermal and mechanical effects of magnetic nanoparticles exposed to AMF can increase the therapeutic efficacy of conventional chemotherapy.
Collapse
|
11
|
Balachandra D, Ahmad H, Arifin N, Noordin R. Direct detection of Strongyloides infection via molecular and antigen detection methods. Eur J Clin Microbiol Infect Dis 2020; 40:27-37. [DOI: 10.1007/s10096-020-03949-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
|
12
|
Ahmad F, Kumar R, Gupta S, Rathaur S. Identification of a HSP14-3-3 in Setaria cervi and its cross-reactivity with W bancrofti-infected human sera. Parasite Immunol 2020; 42:e12777. [PMID: 32681576 DOI: 10.1111/pim.12777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022]
Abstract
AIM Identification of a 29 kDa heat stress protein in filarial parasite Setaria cervi and evaluation of its diagnostic potential against lymphatic filariasis. METHODS AND RESULTS The Heat shock proteins (HSPs) were induced in filarial parasite S cervi by incubated at 42°C for 2 hours. The 10% SDS-PAGE of cytosolic extract showed several over-expressed bands. The MALDI-LC/MS analysis of 29 kDa band showed 100% similarity with Bm14-3-3 like protein 2. Multiple sequence alignment of Bm14-3-3 like protein 2 sequence with W bancrofti, Caenorhabditis elegans; Loa loa and Homo sapiens showed 100%, 86%, 83% and 78%, sequence similarity respectively. The antigenic efficacy of Sc14-3-3 protein was evaluated with different filarial sera using ELISA which showed cross-reactivity in order to Endemic Normal (EN) < Microfilaraemic (MF) < Chronic(CH) with IgG1 and EN < CH < MF in IgG4 ELISA. IgG1- and IgG4-specific immunoblotting with CH and MF sera further explicated its specific antigenic cross-reactivity. CONCLUSION A 29 kDa heat shock protein of S cervi was identified as 14-3-3 protein having 100% homology to human filarial parasite B malayi. It showed strong reactivity with IgG1 and IgG4 subclass antibodies of W bancrofti-infected human sera suggesting that 14-3-3 protein could be used as a vaccine/ diagnostic marker.
Collapse
Affiliation(s)
- Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ranjeet Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarika Gupta
- National institute of Immunology, New Delhi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Noordin R, Arifin N, Balachandra D, Ahmad H. Serodiagnosis of Strongyloides stercoralis infection. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Shotgun proteomics of Strongyloides venezuelensis infective third stage larvae: Insights into host-parasite interaction and novel targets for diagnostics. Mol Biochem Parasitol 2019; 235:111249. [PMID: 31881239 DOI: 10.1016/j.molbiopara.2019.111249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Strongyloides venezuelensis is an important alternative source of antigen for the serologic diagnosis of human strongyloidiasis. Proteomics techniques applied to the analysis of the protein content of infective third stage larvae (iL3) of S. venezuelensis provide a powerful tool for the discovery of new candidates for immunodiagnosis. This study presents an overview of the protein iL3 S. venezuelensis focusing on the diagnosis of strongyloidiasis. A total of 877 proteins were identified by shotgun proteomics. Many of these proteins are involved in different cellular processes, metabolic as well as structural maintenance. Our results point to a catalog of possible diagnostic targets for human strongyloidiasis and highlight the need for evaluation of uncharacterized proteins, especially the proteins within the CAP domain, transthyretin, and BTPI inhibitor domains, as a repertoire as yet unexplored in the context of strongyloidiasis diagnostic markers. We believe that the protein profile presented in this shotgun analysis extends our understanding of the protein composition within the Strongyloides genus, opening up new perspectives for research on biomarkers that may help with the diagnosis of human strongyloidiasis. Data are available via ProteomeXchange with identifier PXD013703.
Collapse
|
15
|
Masoori L, Meamar AR, Bandehpour M, Hemphill A, Razmjou E, Mokhtarian K, Roozbehani M, Badirzadeh A, Jalallou N, Akhlaghi L, Falak R. Fatty acid and retinol-binding protein: A novel antigen for immunodiagnosis of human strongyloidiasis. PLoS One 2019; 14:e0218895. [PMID: 31329601 PMCID: PMC6645452 DOI: 10.1371/journal.pone.0218895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
The tenacious human parasitic helminth Strongyloides stercoralis is a significant health problem worldwide. The current lack of a definitive diagnostic laboratory test to rule out this infection necessitates designing more specific diagnostic methods. Fatty acid and retinol-binding protein (FAR) plays a crucial role in the development and reproduction of nematodes. We generated a recombinant form of this protein and determined its applicability for immunodiagnosis of S. stercoralis. The L3 form of S. stercoralis was harvested and used for RNA extraction and cDNA synthesis. The coding sequence of S. stercoralis FAR (SsFAR) was cloned into pET28a(+) vector, expressed in E. coli BL21 and purified. ELISA and immunoblotting were employed to determine the specificity and sensitivity of rSsFAR using a set of defined sera. In addition, we analyzed the phylogenetic relationship of SsFAR with different FAR sequences from other nematodes. The cloned SsFAR had an open reading frame of 447 bp encoding 147 amino acids, with a deduced molecular mass of 19 kD. The SsFAR amino acid sequence was 93% identical to FAR of S. ratti. For differential immunodiagnosis of strongyloidiasis, rSsFAR exhibited 100% sensitivity and 97% specificity. However, cross-reactivity with FAR proteins of other parasites, namely Toxocara canis and Echinococcus granulosus, was noted. Our results provide a novel approach for immunodiagnosis of S. stercoralis infections using rSsFAR with reliable sensitivity and specificity.
Collapse
Affiliation(s)
- Leila Masoori
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Meamar
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: (ARM); (RF)
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Mokhtarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mona Roozbehani
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Jalallou
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Lame Akhlaghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research center, Iran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: (ARM); (RF)
| |
Collapse
|