1
|
Bayer A, Child SJ, Malik HS, Geballe AP. A single polymorphic residue in humans underlies species-specific restriction of HSV-1 by the antiviral protein MxB. J Virol 2023; 97:e0083023. [PMID: 37796130 PMCID: PMC10617587 DOI: 10.1128/jvi.00830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Herpesviruses present a major global disease burden. Understanding the host cell mechanisms that block viral infections, as well as how viruses can evolve to counteract these host defenses, is critically important for understanding viral disease pathogenesis. This study reveals that the major human variant of the antiviral protein myxovirus resistance protein B (MxB) inhibits the human pathogen herpes simplex virus (HSV-1), whereas a minor human variant and orthologous MxB genes from even closely related primates do not. Thus, in contrast to the many antagonistic virus-host interactions in which the virus is successful in thwarting the host's defense systems, here the human gene appears to be at least temporarily winning at this interface of the primate-herpesvirus evolutionary arms race. Our findings further show that a polymorphism at amino acid 83 in a small fraction of the human population is sufficient to abrogate MxB's ability to inhibit HSV-1, which could have important implications for human susceptibility to HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Avraham Bayer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephanie J. Child
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Bayer A, Child SJ, Malik HS, Geballe AP. A single polymorphic residue in humans underlies species-specific restriction of HSV-1 by the antiviral protein MxB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542951. [PMID: 37398298 PMCID: PMC10312577 DOI: 10.1101/2023.05.30.542951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myxovirus resistance proteins (MxA and MxB) are interferon-induced proteins that exert antiviral activity against a diverse range of RNA and DNA viruses. In primates, MxA has been shown to inhibit myxoviruses, bunyaviruses, and hepatitis B virus, whereas MxB restricts retroviruses and herpesviruses. As a result of their conflicts with viruses, both genes have been undergoing diversifying selection during primate evolution. Here, we investigate how MxB evolution in primates has affected its restriction of herpesviruses. In contrast to human MxB, we find that most primate orthologs, including the closely related chimpanzee MxB, do not inhibit HSV-1 replication. However, all primate MxB orthologs tested restrict human cytomegalovirus. Through the generation of human and chimpanzee MxB chimeras we show that a single residue, M83, is the key determinant of restriction of HSV-1 replication. Humans are the only primate species known to encode a methionine at this position, whereas most other primate species encode a lysine. Residue 83 is also the most polymorphic residue in MxB in human populations, with M83 being the most common variant. However, ∼2.5% of human MxB alleles encode a threonine at this position, which does not restrict HSV-1. Thus, a single amino acid variant in MxB, which has recently risen to high frequency in humans, has endowed humans with HSV-1 antiviral activity. Importance Herpesviruses present a major global disease burden. Understanding the host cell mechanisms that block viral infections as well as how viruses can evolve to counteract these host defenses is critically important for understanding viral disease pathogenesis, and for developing therapeutic tools aimed at treating or preventing viral infections. Additionally, understanding how these host and viral mechanisms adapt to counter one another can aid in identifying the risks of, and barriers to, cross-species transmission events. As highlighted by the recent SARS-CoV-2 pandemic, episodic transmission events can have severe consequences for human health. This study reveals that the major human variant of the antiviral protein MxB inhibits the human pathogen HSV-1, whereas human minor variants and orthologous MxB genes from even closely related primates do not. Thus, in contrast to the many antagonistic virus-host interactions in which the virus is successful in thwarting the defense systems of their native hosts, in this case the human gene appears to be at least temporarily winning at this interface of the primate-herpesviral evolutionary arms race. Our findings further show that a polymorphism at amino acid 83 in a small fraction of the human population is sufficient to abrogate MxB's ability to inhibit HSV-1, which could have important implications for human susceptibility to HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Avraham Bayer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephanie J. Child
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Departments of Medicine and Microbiology, University of Washington, Seattle WA, USA
| |
Collapse
|
3
|
Birkmann A, Bonsmann S, Kropeit D, Pfaff T, Rangaraju M, Sumner M, Timmler B, Zimmermann H, Buschmann H, Ruebsamen-Schaeff H. Discovery, Chemistry, and Preclinical Development of Pritelivir, a Novel Treatment Option for Acyclovir-Resistant Herpes Simplex Virus Infections. J Med Chem 2022; 65:13614-13628. [PMID: 36202389 PMCID: PMC9620171 DOI: 10.1021/acs.jmedchem.2c00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
When the nucleoside analogue acyclovir was introduced
in the early
1980s, it presented a game-changing treatment modality for herpes
simplex virus infections. Since then, work has been ongoing to improve
the weaknesses that have now been identified: a narrow time window
for therapeutic success, resistance in immunocompromised patients,
little influence on frequency of recurrences, relatively fast elimination,
and poor bioavailability. The present Drug Annotation focuses on the
helicase–primase inhibitor pritelivir currently in development
for the treatment of acyclovir-resistant HSV infections and describes
how a change of the molecular target (from viral DNA polymerase to
the HSV helicase–primase complex) afforded improvement of the
shortcomings of nucleoside analogs. Details are presented for the
discovery process leading to the final drug candidate, the pivotal
preclinical studies on mechanism of action and efficacy, and on how
ongoing clinical research has been able to translate preclinical promises
into clinical use.
Collapse
Affiliation(s)
| | | | - Dirk Kropeit
- AiCuris Anti-Infective Cures AG, 42117 Wuppertal, Germany
| | - Tamara Pfaff
- AiCuris Anti-Infective Cures AG, 42117 Wuppertal, Germany
| | | | - Melanie Sumner
- AiCuris Anti-Infective Cures AG, 42117 Wuppertal, Germany
| | | | | | | | | |
Collapse
|
4
|
Havens JL, Calvignac-Spencer S, Merkel K, Burrel S, Boutolleau D, Wertheim JO. Phylogeographic analysis reveals an ancient East African origin of human herpes simplex virus 2 dispersal out-of-Africa. Nat Commun 2022; 13:5477. [PMID: 36115862 PMCID: PMC9482657 DOI: 10.1038/s41467-022-33214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Human herpes simplex virus 2 (HSV-2) is a ubiquitous, slowly evolving DNA virus. HSV-2 has two primary lineages, one found in West and Central Africa and the other found worldwide. Competing hypotheses have been proposed to explain how HSV-2 migrated out-of-Africa (i)HSV-2 followed human migration out-of-Africa 50-100 thousand years ago, or (ii)HSV-2 migrated via the trans-Atlantic slave trade 150-500 years ago. Limited geographic sampling and lack of molecular clock signal has precluded robust comparison. Here, we analyze newly sequenced HSV-2 genomes from Africa to resolve geography and timing of divergence events within HSV-2. Phylogeographic analysis consistently places the ancestor of worldwide dispersal in East Africa, though molecular clock is too slow to be detected using available data. Rates 4.2 × 10-8-5.6 × 10-8 substitutions/site/year, consistent with previous age estimates, suggest a worldwide dispersal 22-29 thousand years ago. Thus, HSV-2 likely migrated with humans from East Africa and dispersed after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA.
| | | | - Kevin Merkel
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Sonia Burrel
- Virology Department, National Reference Center for Herperviruses (Associated Laboratory), AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - David Boutolleau
- Virology Department, National Reference Center for Herperviruses (Associated Laboratory), AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Mozzi A, Cagliani R, Pontremoli C, Forni D, Saulle I, Saresella M, Pozzoli U, Cappelletti G, Vantaggiato C, Clerici M, Biasin M, Sironi M. Simplexviruses successfully adapt to their host by fine-tuning immune responses. Mol Biol Evol 2022; 39:6613336. [PMID: 35731846 PMCID: PMC9250107 DOI: 10.1093/molbev/msac142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Primate herpes simplex viruses are species-specific and relatively harmless to their natural hosts. However, cross-species transmission is often associated with severe disease, as exemplified by the virulence of macacine herpesvirus 1 (B virus) in humans. We performed a genome-wide scan for signals of adaptation of simplexviruses to their hominin hosts. Among core genes, we found evidence of episodic positive selection in three glycoproteins, with several selected sites located in antigenic determinants. Positively selected noncore genes were found to be involved in different immune-escape mechanisms. The herpes simplex virus (HSV)-1/HSV-2 encoded product (ICP47) of one of these genes is known to down-modulate major histocompatibility complex class I expression. This feature is not shared with B virus, which instead up-regulates Human Leukocyte Antigen (HLA)-G, an immunomodulatory molecule. By in vitro expression of different ICP47 mutants, we functionally characterized the selection signals. Results indicated that the selected sites do not represent the sole determinants of binding to the transporter associated with antigen processing (TAP). Conversely, the amino acid status at these sites was sufficient to determine HLA-G up-regulation. In fact, both HSV-1 and HSV-2 ICP47 induced HLA-G when mutated to recapitulate residues in B virus, whereas the mutated version of B virus ICP47 failed to determine HLA-G expression. These differences might contribute to the severity of B virus infection in humans. Importantly, they indicate that the evolution of ICP47 in HSV-1/HSV-2 led to the loss of an immunosuppressive effect. Thus, related simplexviruses finely tune the balance between immunosuppressive and immunostimulatory pathways to promote successful co-existence with their primate hosts.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy.,Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
| | - Marina Saresella
- Don C. Gnocchi Foundation ONLUS, IRCCS, Laboratory of Molecular Medicine and Biotechnology, 20148, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
| | - Chiara Vantaggiato
- Scientific Institute, IRCCS E. MEDEA, Laboratory of Molecular Biology, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Laboratory of Molecular Medicine and Biotechnology, 20148, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
6
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
7
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Forni D, Pontremoli C, Clerici M, Pozzoli U, Cagliani R, Sironi M. Recent Out-of-Africa Migration of Human Herpes Simplex Viruses. Mol Biol Evol 2021; 37:1259-1271. [PMID: 31917410 DOI: 10.1093/molbev/msaa001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are ubiquitous human pathogens. Both viruses evolved from simplex viruses infecting African primates and they are thus thought to have left Africa during early human migrations. We analyzed the population structure of HSV-1 and HSV-2 circulating strains. Results indicated that HSV-1 populations have limited geographic structure and the most evident clustering by geography is likely due to recent bottlenecks. For HSV-2, the only level of population structure is accounted for by the so-called "worldwide" and "African" lineages. Analysis of ancestry components and nucleotide diversity, however, did not support the view that the worldwide lineage followed early humans during out-of-Africa dispersal. Although phylogeographic analysis confirmed an African origin for both viruses, molecular dating with a method that corrects for the time-dependent rate phenomenon indicated that HSV-1 and HSV-2 migrated from Africa in relatively recent times. In particular, we estimated that the HSV-2 worldwide lineage left the continent in the 18th century, which corresponds to the height of the transatlantic slave trade, possibly explaining the high prevalence of HSV-2 in the Americas (second highest after Africa). The limited geographic clustering of HSV-1 makes it difficult to date its exit from Africa. The split between the basal clade, containing mostly African sequences, and all other strains was dated at ∼5,000 years ago. Our data do not imply that herpes simplex viruses did not infect early humans but show that the worldwide distribution of circulating strains is the result of relatively recent events.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| | | | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Lecco, Italy
| |
Collapse
|
9
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
10
|
Mody PH, Pathak S, Hanson LK, Spencer JV. Herpes Simplex Virus: A Versatile Tool for Insights Into Evolution, Gene Delivery, and Tumor Immunotherapy. Virology (Auckl) 2020; 11:1178122X20913274. [PMID: 34093008 PMCID: PMC8142529 DOI: 10.1177/1178122x20913274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses are prevalent throughout the animal kingdom, and they have coexisted and coevolved along with their host species for millions of years. Herpesviruses carry a large (120-230 kb) double-stranded DNA genome surrounded by a protein capsid, a tegument layer consisting of viral and host proteins, and a lipid bilayer envelope with surface glycoproteins. A key characteristic of these viruses is their ability to enter a latent state following primary infection, allowing them to evade the host's immune system and persist permanently. Herpesviruses can reactivate from their dormant state, usually during times of stress or when the host's immune responses are impaired. While herpesviruses can cause complications with severe disease in immune-compromised people, most of the population experiences few ill effects from herpesvirus infections. Indeed, herpes simplex virus 1 (HSV-1) in particular has several features that make it an attractive tool for therapeutic gene delivery. Herpes simplex virus 1 targets and infects specific cell types, such as epithelial cells and neurons. The HSV-1 genome can also accommodate large insertions of up to 14 kb. The HSV-1-based vectors have already achieved success for the oncolytic treatment of melanoma. In addition to serving as a vehicle for therapeutic gene delivery and targeted cell lysis, comparative genomics of herpesviruses HSV-1 and 2 has revealed valuable information about the evolutionary history of both viruses and their hosts. This review focuses on the adaptability of HSV-1 as an instrument for gene delivery and an evolutionary marker. Overall, HSV-1 shows great promise as a tool for treating human disease and studying human migration patterns, disease outbreaks, and evolution.
Collapse
Affiliation(s)
- Prapti H Mody
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Sushila Pathak
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Laura K Hanson
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| | - Juliet V Spencer
- Department of Biology, Texas Woman’s University, Denton, TX, USA
| |
Collapse
|
11
|
Mozzi A, Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. Intrinsically disordered regions are abundant in simplexvirus proteomes and display signatures of positive selection. Virus Evol 2020; 6:veaa028. [PMID: 32411391 PMCID: PMC7211401 DOI: 10.1093/ve/veaa028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whereas the majority of herpesviruses co-speciated with their mammalian hosts, human herpes simplex virus 2 (HSV-2, genus Simplexvirus) most likely originated from the cross-species transmission of chimpanzee herpesvirus 1 to an ancestor of modern humans. We exploited the peculiar evolutionary history of HSV-2 to investigate the selective events that drove herpesvirus adaptation to a new host. We show that HSV-2 intrinsically disordered regions (IDRs)-that is, protein domains that do not adopt compact three-dimensional structures-are strongly enriched in positive selection signals. Analysis of viral proteomes indicated that a significantly higher portion of simplexvirus proteins is disordered compared with the proteins of other human herpesviruses. IDR abundance in simplexvirus proteomes was not a consequence of the base composition of their genomes (high G + C content). Conversely, protein function determines the IDR fraction, which is significantly higher in viral proteins that interact with human factors. We also found that the average extent of disorder in herpesvirus proteins tends to parallel that of their human interactors. These data suggest that viruses that interact with fast-evolving, disordered human proteins, in turn, evolve disordered viral interactors poised for innovation. We propose that the high IDR fraction present in simplexvirus proteomes contributes to their wider host range compared with other herpesviruses.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan 20090, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20148, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| |
Collapse
|
12
|
Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nat Commun 2019; 10:5003. [PMID: 31676766 PMCID: PMC6825168 DOI: 10.1038/s41467-019-12862-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Neanderthals and modern humans both occupied the Levant for tens of thousands of years prior to the spread of modern humans into the rest of Eurasia and their replacement of the Neanderthals. That the inter-species boundary remained geographically localized for so long is a puzzle, particularly in light of the rapidity of its subsequent movement. Here, we propose that infectious-disease dynamics can explain the localization and persistence of the inter-species boundary. We further propose, and support with dynamical-systems models, that introgression-based transmission of alleles related to the immune system would have gradually diminished this barrier to pervasive inter-species interaction, leading to the eventual release of the inter-species boundary from its geographic localization. Asymmetries between the species in the characteristics of their associated ‘pathogen packages’ could have generated feedback that allowed modern humans to overcome disease burden earlier than Neanderthals, giving them an advantage in their subsequent spread into Eurasia. Modern humans and Neanderthals coexisted in the Levant for tens of thousands of years before modern humans spread and replaced Neanderthals. Here, Greenbaum et al. develop a model showing that transmission of disease and genes can explain the maintenance and then collapse of this contact zone.
Collapse
|
13
|
Houldcroft CJ. Human Herpesvirus Sequencing in the Genomic Era: The Growing Ranks of the Herpetic Legion. Pathogens 2019; 8:E186. [PMID: 31614759 PMCID: PMC6963362 DOI: 10.3390/pathogens8040186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
The nine human herpesviruses are some of the most ubiquitous pathogens worldwide, causing life-long latent infection in a variety of different tissues. Human herpesviruses range from mild childhood infections to known tumour viruses and 'trolls of transplantation'. Epstein-Barr virus was the first human herpesvirus to have its whole genome sequenced; GenBank now includes thousands of herpesvirus genomes. This review will cover some of the recent advances in our understanding of herpesvirus diversity and disease that have come about as a result of new sequencing technologies, such as target enrichment and long-read sequencing. It will also look at the problem of resolving mixed-genotype infections, whether with short or long-read sequencing methods; and conclude with some thoughts on the future of the field as herpesvirus population genomics becomes a reality.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambs CB2 0QQ UK.
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, UK.
| |
Collapse
|
14
|
Houldcroft CJ, Rifkin RF, Underdown SJ. Human biology and ancient DNA: exploring disease, domestication and movement. Ann Hum Biol 2019; 46:95-98. [DOI: 10.1080/03014460.2019.1629536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Charlotte J. Houldcroft
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Riaan F. Rifkin
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Human Origins and Palaeo-Environments Research Group, Department of Anthropology and Geography, Oxford Brookes University, Oxford, UK
| | - Simon J. Underdown
- Human Origins and Palaeo-Environments Research Group, Department of Anthropology and Geography, Oxford Brookes University, Oxford, UK
| |
Collapse
|
15
|
The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes (Basel) 2018; 9:genes9070317. [PMID: 29941858 PMCID: PMC6070984 DOI: 10.3390/genes9070317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of pathogen genome data sequenced from clinical and historical samples has made it possible to perform phylogenetic analyses of sexually transmitted infections on a global scale, and to estimate the diversity, distribution, and coevolutionary host relationships of these pathogens, providing insights into pathogen emergence and disease prevention. Deep-sequenced pathogen genomes from clinical studies and ancient samples yield estimates of within-host and between-host evolutionary rates and provide data on changes in pathogen genomic stability and evolutionary responses. Here we examine three groups of pathogens transmitted mainly through sexual contact between modern humans to provide insight into ancient human behavior and history with their pathogens. Exploring ancient pathogen genomic divergence and the ancient viral-host parallel evolutionary histories will help us to reconstruct the origin of present-day geographical distribution and diversity of clinical pathogen infections, and will hopefully allow us to foresee possible environmentally induced pathogen evolutionary responses. Lastly, we emphasize that ancient pathogen DNA research should be combined with modern clinical pathogen data, and be equitable and provide advantages for all researchers worldwide, e.g., through shared data.
Collapse
|
16
|
Sehrawat S, Kumar D, Rouse BT. Herpesviruses: Harmonious Pathogens but Relevant Cofactors in Other Diseases? Front Cell Infect Microbiol 2018; 8:177. [PMID: 29888215 PMCID: PMC5981231 DOI: 10.3389/fcimb.2018.00177] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 11/24/2022] Open
Abstract
Most vertebrates are infected with one or more herpesviruses and remain so for the rest of their lives. The relationship of immunocompetent healthy host with herpesviruses may sometime be considered as harmonious. However, clinically severe diseases can occur when host immunity is compromised due to aging, during some stress response, co-infections or during neoplastic disease conditions. Discord can also occur during iatrogenic immunosuppression used for controlling graft rejection, in some primary genetic immunodeficiencies as well as when the virus infects a non-native host. In this review, we discuss such issues and their influence on host-herpesvirus interaction.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Dhaneshwar Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|