1
|
Su H, Zheng D, Li Z, Qi X, Chang Y, Ren G, Lu Q, Li J, Li Y, Tian C, Peng R, Wang G, Hu X, Huang Y, Tang C, Cui X, Niu L, Zhao M, Tan X, Dong J, Yang J, Yang F, Yin F, Li Y, Lu G, Zhang Y. The virome investigation of the globally endangered Eld's deer (Rucervus eldii) on Hainan Island, China. Sci Rep 2025; 15:8384. [PMID: 40069308 PMCID: PMC11897153 DOI: 10.1038/s41598-025-92781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Eld's deer (Rucervus eldii) is a rare and globally endangered tropical Southeast Asian deer species. There is no research on pathogens in Eld's deer in Hainan, China. This study aimed to understand the virus diversity and novel viruses in Eld's deer, and provided important epidemiological baseline information for conservation of this endangered species. 33 nasal swabs, 33 anal swabs, and 9 wound (bitten by ticks) swabs were collected from 33 wild Eld's deer in a nature reserve in Hainan, which constituted into 5 pools. Based on next-generation sequencing (NGS) and macrogenomic analysis, there were differences in the 5 pools of viral reads, while the overall viral reads were closely related to mammals. The novel papillomavirus (PsPV-HMU-1) and Circular Rep-encoding (replication-associated protein encoding) single-stranded DNA (CRESS DNA) virus (PsaCV-HMU-1) were identified in Eld's deer, with amino acid homology of the less than 77.20% of the L1 and less than 45.43% of the rep, respectively. PsPV-HMU-1 and PsaCV-HMU-1 are relatively independent on their phylogenetic trees, and with the overall prevalence of 24.24% (8/33) and 3.03% (1/33) in Eld's deer, respectively. Our results expanded the viral genomic information and host range, and implied that it is necessary for continued epidemiological surveillance in order to understand pathogenicity and the potential for cross-species transmission of viruses in wild Eld's deer.
Collapse
Affiliation(s)
- Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zihan Li
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xuming Qi
- Bawangling Branch of Hainan Tropical Rainforest National Park Administration, Changjiang, 572700, China
| | - Yunxing Chang
- Hainan Bangxi Provincial Nature Reserve Administration, Baisha, 572821, China
| | - Guangxu Ren
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Qingqing Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Jiaqi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
- Department of Nuclear Medicine, the 928th Hospital of PLA Joint Logistics Force, Haikou, 570100, China
| | - Yu Li
- Department of Nuclear Medicine, the 928th Hospital of PLA Joint Logistics Force, Haikou, 570100, China
| | - Chuan Tian
- Department of Oncology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550008, China
| | - Ruoyan Peng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Gaoyu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Xiaoyuan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Yi Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Chuanning Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Xiuji Cui
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Mingming Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
- TCM School of Hainan Medical University, Haikou, 571199, China
| | - Xianghui Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
- TCM School of Hainan Medical University, Haikou, 571199, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Youyou Li
- Department of Blood Transfusion, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550008, China.
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| | - Yun Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
2
|
Cacciotto C, Dore GM, Cubeddu T, Burrai GP, Anfossi AG, Antuofermo E, Varoni MV, Demontis MP, Zobba R, Pittau M, Müller M, Alberti A. Ovine papillomavirus type 3 virus-like particle-based tools for diagnosis and detection of infection. Vaccine 2024; 42:126033. [PMID: 38839520 DOI: 10.1016/j.vaccine.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/03/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The design of prophylactic and diagnostic tools specific to animal papillomaviruses is hampered by the difficulties of viral in vitro manipulation and by the scarce availability of dedicated biotechnological tools. This paper reports the production of Ovine Papillomavirus 3 (OaPV3)-based virus-like particles (OaPV3-VLPs) in the baculovirus system and their use to investigate host humoral immune response through the establishment of an indirect ELISA test., Polyclonal sera and monoclonal antibodies were generated against OaPV3-VLPs, and their isotype and reactivity were determined. Additionally, antibodies allowed OaPV3 detection in ovine squamous cell carcinoma (SCC) samples by immunohistochemistry. Results encourage the standardization of OaPV3-specific prophylactic and serological diagnostic tools, and open new perspectives for the study of host-viral interaction and SCC development.
Collapse
Affiliation(s)
- Carla Cacciotto
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | - Gian Mario Dore
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Tiziana Cubeddu
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | - Giovanni Pietro Burrai
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | | | - Elisabetta Antuofermo
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | - Maria Vittoria Varoni
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Maria Piera Demontis
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Rosanna Zobba
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy
| | - Marco Pittau
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy
| | | | - Alberto Alberti
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Sassari, Italy; Mediterranean Center for Disease Control, Sassari, Italy.
| |
Collapse
|
3
|
Pulecio-Santos SL, de Souza AJS, Sá LRMD. Epidemiological characterization of oral focal epithelial hyperplasia in brown howler monkeys (Alouatta guariba clamitans). J Med Primatol 2024; 53:e12728. [PMID: 39148335 DOI: 10.1111/jmp.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Oral focal epithelial hyperplasia (FEH) is an uncommon infection affecting humans, chimpanzees, bonobos, and howler monkeys. This study describes 10 cases of free-ranging brown howler monkeys (Alouatta guariba clamitans) diagnosed with FEH and Alouatta guariba Papillomavirus 1 (AgPV 1). METHODS We analyzed demographic characteristics, rescue conditions, clinical and pathological findings, and species-specific behavior factors in these cases. The study assessed the frequency of occurrence and potential contributing factors of FEH and AgPV 1 infection. RESULTS The frequency of FEH was 8.13%. Most affected howlers were adult or geriatric males with comorbidities or stressful conditions. Clinical and pathological observations were consistent with AgPV 1 infection. Species-specific behaviors and environmental stressors were identified as contributing factors. CONCLUSIONS FEH associated with AgPV 1 affected mainly adult or geriatric males with ongoing comorbidities or stressful conditions. Further research is needed to understand these factors for effective management.
Collapse
Affiliation(s)
- Sandy Lorena Pulecio-Santos
- Diagnostic and Environmental Pathology Laboratory. Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alex Junior Souza de Souza
- Diagnostic and Environmental Pathology Laboratory. Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lilian Rose Marques de Sá
- Diagnostic and Environmental Pathology Laboratory. Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Regney M, Kraberger S, Custer JM, Crane AE, Shero MR, Beltran RS, Kirkham AL, Van Doorslaer K, Stone AC, Goebel ME, Burns JM, Varsani A. Diverse papillomaviruses identified from Antarctic fur seals, leopard seals and Weddell seals from the Antarctic. Virology 2024; 594:110064. [PMID: 38522135 DOI: 10.1016/j.virol.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.
Collapse
Affiliation(s)
- Melanie Regney
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States
| | - Adele E Crane
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA, 02543, United States
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, United States
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E. Tudor Road, Anchorage, AK, 99503, United States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, UA Cancer Center, The BIO5 Institute, University of Arizona, Tucson, AZ, 85724, United States
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, United States
| | - Michael E Goebel
- Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, United States
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, United States; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, United States; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, United States; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
5
|
Olivo D, Kraberger S, Varsani A. New duck papillomavirus type identified in a mallard in Missouri, USA. Arch Virol 2024; 169:77. [PMID: 38517556 DOI: 10.1007/s00705-024-06006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Papillomaviruses are small circular DNA viruses that infect epithelial and mucosal cells and have co-evolved with their hosts. Some papillomaviruses in mammals are well studied (especially those associated with disease). However, there is limited information on papillomaviruses associated with avian hosts. From a cloacal swab sample of a mallard (Anas platyrhynchos) sampled in Missouri, USA (6 Jan 2023), we identified a papillomavirus (7839 nt) that shares ~68% genome-wide nucleotide sequence identity with Anas platyrhynchos papillomavirus 1 (AplaPV1) from a mallard sampled in Newfoundland (Canada) and ~40% with AplaPV2 from a mallard sampled in Minnesota (USA) with mesenchymal dermal tumors. The papillomavirus we identified shares 73.6% nucleotide sequence identity in the L1 gene with that of AplaPV1 and thus represents a new AplaPV type (AplaPV3). The genome sequence of AplaPV3 shares >97% identity with three partial PV genome sequences (1316, 1997, and 4241 nt) identified in a mallard in India, indicating that that virus was also AplaPV3.
Collapse
Affiliation(s)
- Diego Olivo
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
6
|
Li Y, Xiao M, Zhang Y, Li Z, Bai S, Su H, Peng R, Wang G, Hu X, Song X, Li X, Tang C, Lu G, Yin F, Zhang P, Du J. Identification of two novel papillomaviruses in belugas. Front Microbiol 2023; 14:1165839. [PMID: 37564289 PMCID: PMC10411887 DOI: 10.3389/fmicb.2023.1165839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Papillomaviruses (PVs) can cause hyperplasia in the skin and mucous membranes of humans, mammals, and non-mammalian animals, and are a significant risk factor for cervical and genital cancers. Methods Using next-generation sequencing (NGS), we identified two novel strains of papillomavirus, PV-HMU-1 and PV-HMU-2, in swabs taken from belugas (Delphinapterus leucas) at Polar Ocean Parks in Qingdao and Dalian. Results We amplified the complete genomes of both strains and screened ten belugas and one false killer whale (Pseudorca crassidens) for the late gene (L1) to determine the infection rate. In Qingdao, 50% of the two sampled belugas were infected with PV-HMU-1, while the false killer whale was negative. In Dalian, 71% of the eight sampled belugas were infected with PV-HMU-2. In their L1 genes, PV-HMU-1 and PV-HMU-2 showed 64.99 and 68.12% amino acid identity, respectively, with other members of Papillomaviridae. Phylogenetic analysis of combinatorial amino acid sequences revealed that PV-HMU-1 and PV-HMU-2 clustered with other known dolphin PVs but formed distinct branches. PVs carried by belugas were proposed as novel species under Firstpapillomavirinae. Conclusion The discovery of these two novel PVs enhances our understanding of the genetic diversity of papillomaviruses and their impact on the beluga population.
Collapse
Affiliation(s)
- Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zihan Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijie Bai
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haoxiang Su
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., Dalian, China
| | - Xin Li
- Qingdao Polar Haichang Ocean Park, Qingdao, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, Duprex WP, Dutilh BE, Elena SF, García ML, Junglen S, Katzourakis A, Koonin EV, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Lood C, Mahony J, Meier-Kolthoff JP, Mushegian AR, Oksanen HM, Poranen MM, Reyes-Muñoz A, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Siddell S, Skern T, Smith DB, Sullivan MB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A, Vasilakis N. Four principles to establish a universal virus taxonomy. PLoS Biol 2023; 21:e3001922. [PMID: 36780432 PMCID: PMC9925010 DOI: 10.1371/journal.pbio.3001922] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nicola G. A. Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences—BRTA, Derio, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - W. Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, United States of America
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Reyes-Muñoz
- Max Planck Tandem Group in Computational Biology, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tim Skern
- Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Nikos Vasilakis
- Department of Pathology, Center of Vector-Borne and Zoonotic Diseases, Institute for Human Infection and Immunity and World Reference Center for Emerging Viruses and Arboviruses, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
8
|
Kraberger S, Serieys LEK, Riley SPD, Schmidlin K, Newkirk ES, Squires JR, Buck CB, Varsani A. Novel polyomaviruses identified in fecal samples from four carnivore species. Arch Virol 2023; 168:18. [PMID: 36593361 PMCID: PMC10681122 DOI: 10.1007/s00705-022-05675-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
Polyomaviruses are oncogenic viruses that are generally thought to have co-evolved with their hosts. While primate and rodent polyomaviruses are increasingly well-studied, less is known about polyomaviruses that infect other mammals. In an effort to gain insight into polyomaviruses associated with carnivores, we surveyed fecal samples collected in the USA from bobcats (Lynx rufus), pumas (Puma concolor), Canada lynxes (Lynx canadensis), and grizzly bears (Ursus arctos). Using a viral metagenomic approach, we identified six novel polyomavirus genomes. Surprisingly, four of the six genomes showed a phylogenetic relationship to polyomaviruses found in prey animals. These included a putative rabbit polyomavirus from a bobcat fecal sample and two possible deer-trophic polyomaviruses from Canada lynx feces. One polyomavirus found in a grizzly bear sample was found to be phylogenetically distant from previously identified polyomaviruses. Further analysis of the grizzly bear fecal sample showed that it contained anelloviruses that are known to infect pigs, suggesting that the bear might have preyed on a wild or domestic pig. Interestingly, a polyomavirus genome identified in a puma fecal sample was found to be closely related both to raccoon polyomavirus 1 and to Lyon-IARC polyomavirus, the latter of which was originally identified in human saliva and skin swab specimens but has since been found in samples from domestic cats (Felis catus).
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Laurel E K Serieys
- Panthera, 8 W 40th St, 18th Floor, New York, NY, 10018, USA
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, 91360, USA
| | - Seth P D Riley
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, CA, 91360, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - John R Squires
- U.S. Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, MT, 59801, USA
| | - Christopher B Buck
- Lab of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
9
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
10
|
Development of immunodiagnostic tools for in situ investigation of Ovis aries papillomavirus 3 (OaPV3). Vet Res Commun 2022; 47:641-649. [DOI: 10.1007/s11259-022-10018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
AbstractCutaneous squamous cell carcinoma (cSCC) is a malignant lesion characterized by proliferation and transformation of keratinocytes in the epidermis and infiltrating derma. cSCC is reported in domestic and wild animal species, worldwide. The occurrence and development of cSCC rely on synergic multifactorial conditions, most importantly sunlight exposure and Papillomavirus (PV) infection. In sheep, the development of such lesions represents a threat both to animal welfare and milk production. Ovis aries papillomavirus 3 (OaPV3) is the main cSCC viral determinant and oncogenic properties of viral E6 and E7 proteins were preliminarily investigated. However, E6 and E7 role and mechanisms resulting in cSCC have not been fully clarified, mainly due to the lack specific immunological tools, such as antibodies for in situ detection of ovine papillomavirus. This paper reports the development of specific serological tools for the investigation of OaPV3 pathogenicity, and their preliminary use to screen 4 ovine cSSC formalin-fixed paraffin embedded tissues. Relevance of immunological tools to investigation of viral biological properties and diagnosis are also discussed.
Collapse
|
11
|
Revisiting Papillomavirus Taxonomy: A Proposal for Updating the Current Classification in Line with Evolutionary Evidence. Viruses 2022; 14:v14102308. [PMID: 36298863 PMCID: PMC9612317 DOI: 10.3390/v14102308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses infect a wide array of animal hosts and are responsible for roughly 5% of all human cancers. Comparative genomics between different virus types belonging to specific taxonomic groupings (e.g., species, and genera) has the potential to illuminate physiological differences between viruses with different biological outcomes. Likewise, extrapolation of features between related viruses can be very powerful but requires a solid foundation supporting the evolutionary relationships between viruses. The current papillomavirus classification system is based on pairwise sequence identity. However, with the advent of metagenomics as facilitated by high-throughput sequencing and molecular tools of enriching circular DNA molecules using rolling circle amplification, there has been a dramatic increase in the described diversity of this viral family. Not surprisingly, this resulted in a dramatic increase in absolute number of viral types (i.e., sequences sharing <90% L1 gene pairwise identity). Many of these novel viruses are the sole member of a novel species within a novel genus (i.e., singletons), highlighting that we have only scratched the surface of papillomavirus diversity. I will discuss how this increase in observed sequence diversity complicates papillomavirus classification. I will propose a potential solution to these issues by explicitly basing the species and genera classification on the evolutionary history of these viruses based on the core viral proteins (E1, E2, and L1) of papillomaviruses. This strategy means that it is possible that a virus identified as the closest neighbor based on the E1, E2, L1 phylogenetic tree, is not the closest neighbor based on L1 nucleotide identity. In this case, I propose that a virus would be considered a novel type if it shares less than 90% identity with its closest neighbors in the E1, E2, L1 phylogenetic tree.
Collapse
|
12
|
Rosenbaum CS, Wünschmann A, Armién AG, Schott R, Singh VK, Mor SK. Novel papillomavirus in a mallard duck with mesenchymal chondroid dermal tumors. J Vet Diagn Invest 2022; 34:231-236. [PMID: 35090373 PMCID: PMC8921809 DOI: 10.1177/10406387221075607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Papillomaviruses, which are epitheliotropic and may induce epithelial tumors, have been identified in several avian species, including ducks. An adult female mallard duck (Anas platyrhynchos) was admitted to a wildlife rehabilitation center with 2 beige, well-demarcated, firm masses: one in the subcutis under a wing, and the other on a digit of the right foot. After euthanasia, the masses were fixed in formalin for histologic examination. Both tumors had a lobular organization with cartilage cores surrounded by densely cellular interlacing bundles of spindle cells. Neoplastic chondroblasts in both masses, particularly the digital mass, contained basophilic intranuclear inclusion bodies, which consisted of assembly complexes of icosahedral virions of 44-nm diameter. Next-generation sequencing allowed whole genome assembly of a novel papillomavirus (Anas platyrhynchos papillomavirus 2) related most closely to Fulmarus glacialis papillomavirus 1 (59.49% nucleotide identity). Our case supports the observation that certain papillomaviruses can productively infect mesenchymal cells and induce neoplasia.
Collapse
Affiliation(s)
- Claire S. Rosenbaum
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Arno Wünschmann
- Arno Wünschmann, Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St. Paul, MN 55108, USA.
| | - Aníbal G. Armién
- California Animal Health & Food Safety Laboratory System (CAHFS), University of California–Davis, Davis, CA, USA
| | - Renee Schott
- Wildlife Rehabilitation Center of Minnesota, Roseville, MN, USA
| | - Vikash K. Singh
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sunil K. Mor
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
13
|
Kraberger S, Austin C, Farkas K, Desvignes T, Postlethwait JH, Fontenele RS, Schmidlin K, Bradley RW, Warzybok P, Van Doorslaer K, Davison W, Buck CB, Varsani A. Discovery of novel fish papillomaviruses: From the Antarctic to the commercial fish market. Virology 2022; 565:65-72. [PMID: 34739918 PMCID: PMC8713439 DOI: 10.1016/j.virol.2021.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Fish papillomaviruses form a newly discovered group broadly recognized as the Secondpapillomavirinae subfamily. This study expands the documented genomes of the fish papillomaviruses from six to 16, including one from the Antarctic emerald notothen, seven from commercial market fishes, one from data mining of sea bream sequence data, and one from a western gull cloacal swab that is likely diet derived. The genomes of secondpapillomaviruses are ∼6 kilobasepairs (kb), which is substantially smaller than the ∼8 kb of terrestrial vertebrate papillomaviruses. Each genome encodes a clear homolog of the four canonical papillomavirus genes, E1, E2, L1, and L2. In addition, we identified open reading frames (ORFs) with short linear peptide motifs reminiscent of E6/E7 oncoproteins. Fish papillomaviruses are extremely diverse and phylogenetically distant from other papillomaviruses suggesting a model in which terrestrial vertebrate-infecting papillomaviruses arose after an evolutionary bottleneck event, possibly during the water-to-land transition.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA
| | | | - Rafaela S. Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Russell W. Bradley
- Santa Rosa Island Research Station, California State University Channel Islands, Camarillo CA 93012, USA
| | - Pete Warzybok
- Point Blue Conservation Science, Petaluma, California, CA 94954, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute; Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; UA Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - William Davison
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Christopher B. Buck
- Lab of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,corresponding authors Christopher B. Buck, Arvind Varsani
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925, Cape Town, South Africa,corresponding authors Christopher B. Buck, Arvind Varsani
| |
Collapse
|
14
|
First Report of Phodopus sungorus Papillomavirus Type 1 Infection in Roborovski Hamsters ( Phodopus roborovskii). Viruses 2021; 13:v13050739. [PMID: 33922632 PMCID: PMC8145573 DOI: 10.3390/v13050739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Papillomaviruses (PVs) are considered highly species-specific with cospeciation as the main driving force in their evolution. However, a recent increase in the available PV genome sequences has revealed inconsistencies in virus–host phylogenies, which could be explained by adaptive radiation, recombination, host-switching events and a broad PV host range. Unfortunately, with a relatively low number of animal PVs characterized, understanding these incongruities remains elusive. To improve knowledge of biology and the spread of animal PV, we collected 60 swabs of the anogenital and head and neck regions from a healthy colony of 30 Roborovski hamsters (Phodopus roborovskii) and detected PVs in 44/60 (73.3%) hamster samples. This is the first report of PV infection in Roborovski hamsters. Moreover, Phodopus sungorus papillomavirus type 1 (PsuPV1), previously characterized in Siberian hamsters (Phodopus sungorus), was the only PV detected in Roborovski hamsters. In addition, after a detailed literature search, review and summary of published evidence and construction of a tanglegram linking the cladograms of PVs and their hosts, our findings were discussed in the context of available knowledge on PVs described in at least two different host species.
Collapse
|
15
|
Müller-Schiffmann A, Trossbach SV, Lingappa VR, Korth C. Viruses as 'Truffle Hounds': Molecular Tools for Untangling Brain Cellular Pathology. Trends Neurosci 2020; 44:352-365. [PMID: 33317827 DOI: 10.1016/j.tins.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
The ability of viruses to evolve several orders of magnitude faster than their host cells has enabled them to exploit host cellular machinery by selectively recruiting multiprotein complexes (MPCs) for their catalyzed assembly and replication. This hijacking may depend on alternative, 'moonlighting' functions of host proteins that deviate from their canonical functions thereby inducing cellular pathology. Here, we posit that if virus-induced cellular pathology is similar to that of other, unknown (non-viral) causes, the identification and molecular characterization of the host proteins involved in virus-mediated cellular pathology can be leveraged to decipher the non-viral disease-relevant mechanisms. We focus on how virus-induced aberrant proteostasis and protein aggregation resemble the cellular pathology of sporadic neurodegenerative diseases (NDs) and how this can be exploited for drug discovery.
Collapse
Affiliation(s)
- Andreas Müller-Schiffmann
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Cibulski SP, de Sales Lima FE, Teixeira TF, Varela APM, Scheffer CM, Mayer FQ, Witt AA, Roehe PM. Detection of multiple viruses in oropharyngeal samples from Brazilian free-tailed bats (Tadarida brasiliensis) using viral metagenomics. Arch Virol 2020; 166:207-212. [PMID: 33047159 PMCID: PMC7549734 DOI: 10.1007/s00705-020-04825-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
In this study, we analyzed the viral population in oropharyngeal samples from T. brasiliensis using a viral metagenomic approach. Genomes corresponding to members of the families Circoviridae, Genomoviridae, Herpesviridae, Paramyxoviridae, Coronaviridae, and Astroviridae were detected. This study provides the first preliminary understanding of the oropharyngeal virome of T. brasiliensis, which may guide the discovery and isolation of novel viruses in the future and highlights the need for continuing investigations in this regard.
Collapse
Affiliation(s)
- Samuel Paulo Cibulski
- Centro de Biotecnologia-CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba-UFPB, João Pessoa, Paraíba, Brazil.
| | | | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS-Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS-Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Mengue Scheffer
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS-Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - André Alberto Witt
- Secretaria da Agricultura, Pecuária e Irrigação/RS, Divisão de Defesa Sanitária Animal, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS-Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
18
|
Bolatti EM, Zorec TM, Montani ME, Hošnjak L, Chouhy D, Viarengo G, Casal PE, Barquez RM, Poljak M, Giri AA. A Preliminary Study of the Virome of the South American Free-Tailed Bats ( Tadarida brasiliensis) and Identification of Two Novel Mammalian Viruses. Viruses 2020; 12:v12040422. [PMID: 32283670 PMCID: PMC7232368 DOI: 10.3390/v12040422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Bats provide important ecosystem services as pollinators, seed dispersers, and/or insect controllers, but they have also been found harboring different viruses with zoonotic potential. Virome studies in bats distributed in Asia, Africa, Europe, and North America have increased dramatically over the past decade, whereas information on viruses infecting South American species is scarce. We explored the virome of Tadarida brasiliensis, an insectivorous New World bat species inhabiting a maternity colony in Rosario (Argentina), by a metagenomic approach. The analysis of five pooled oral/anal swab samples indicated the presence of 43 different taxonomic viral families infecting a wide range of hosts. By conventional nucleic acid detection techniques and/or bioinformatics approaches, the genomes of two novel viruses were completely covered clustering into the Papillomaviridae (Tadarida brasiliensis papillomavirus type 1, TbraPV1) and Genomoviridae (Tadarida brasiliensis gemykibivirus 1, TbGkyV1) families. TbraPV1 is the first papillomavirus type identified in this host and the prototype of a novel genus. TbGkyV1 is the first genomovirus reported in New World bats and constitutes a new species within the genus Gemykibivirus. Our findings extend the knowledge about oral/anal viromes of a South American bat species and contribute to understand the evolution and genetic diversity of the novel characterized viruses.
Collapse
Affiliation(s)
- Elisa M. Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Tomaž M. Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - María E. Montani
- Museo Provincial de Ciencias Naturales “Dr. Ángel Gallardo”, San Lorenzo 1949, Rosario 2000, Argentina;
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina;
- Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Gastón Viarengo
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
| | - Pablo E. Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Rubén M. Barquez
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina;
- Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| | - Adriana A. Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| |
Collapse
|
19
|
Lo Cigno I, Calati F, Borgogna C, Zevini A, Albertini S, Martuscelli L, De Andrea M, Hiscott J, Landolfo S, Gariglio M. Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes. J Virol 2020; 94:e01812-19. [PMID: 31776268 PMCID: PMC6997746 DOI: 10.1128/jvi.01812-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Subversion of innate immunity by oncoviruses, such as human papillomavirus (HPV), favors carcinogenesis because the mechanism(s) of viral immune evasion can also hamper cancer immunosurveillance. Previously, we demonstrated that high-risk (hr) HPVs trigger simultaneous epigenetic silencing of multiple effectors of innate immunity to promote viral persistence. Here, we expand on those observations and show that the HPV E7 oncoprotein upregulates the H3K9-specific methyltransferase, whose action shuts down the host innate immune response. Specifically, we demonstrate that SUV39H1 contributes to chromatin repression at the promoter regions of the viral nucleic acid sensors RIG-I and cGAS and the adaptor molecule STING in HPV-transformed cells. Inhibition of SUV39H1 leads to transcriptional activation of these genes, especially RIG-I, followed by increased beta interferon (IFN-β) and IFN-λ1 production after poly(dA·dT) or RIG-I agonist M8 transfection. Collectively, our findings provide new evidence that the E7 oncoprotein plays a central role in dampening host innate immunity and raise the possibility that targeting the downstream effector SUV39H1 or the RIG-I pathway is a viable strategy to treat viral and neoplastic disease.IMPORTANCE High-risk HPVs are major viral human carcinogens responsible for approximately 5% of all human cancers. The growth of HPV-transformed cells depends on the ability of viral oncoproteins to manipulate a variety of cellular circuits, including those involved in innate immunity. Here, we show that one of these strategies relies on E7-mediated transcriptional activation of the chromatin repressor SUV39H1, which then promotes epigenetic silencing of RIG-I, cGAS, and STING genes, thereby shutting down interferon secretion in HPV-transformed cells. Pharmacological or genetic inhibition of SUV39H1 restored the innate response in HPV-transformed cells, mostly through activation of RIG-I signaling. We also show that IFN production upon transfection of poly(dA·dT) or the RIG-I agonist M8 predominantly occurs through RIG-I signaling. Altogether, the reversible nature of the modifications associated with E7-mediated SUV39H1 upregulation provides a rationale for the design of novel anticancer and antiviral therapies targeting these molecules.
Collapse
Affiliation(s)
- Irene Lo Cigno
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Federica Calati
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Cinzia Borgogna
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | | | - Silvia Albertini
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Licia Martuscelli
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Novara, Italy
- University of Turin Medical School, Department of Public Health and Pediatric Sciences, Viral Pathogenesis Unit, Turin, Italy
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Santo Landolfo
- University of Turin Medical School, Department of Public Health and Pediatric Sciences, Viral Pathogenesis Unit, Turin, Italy
| | - Marisa Gariglio
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Novara, Italy
| |
Collapse
|
20
|
Abstract
Recent discoveries of contemporary genotypes of hepatitis B virus and parvovirus B19 in ancient human remains demonstrate that little genetic change has occurred in these viruses over 4,500-6,000 years. Endogenous viral elements in host genomes provide separate evidence that viruses similar to many major contemporary groups circulated 100 million years ago or earlier. In this Opinion article, we argue that the extraordinary conservation of virus genome sequences is best explained by a niche-filling model in which fitness optimization is rapidly achieved in their specific hosts. Whereas short-term substitution rates reflect the accumulation of tolerated sequence changes within adapted genomes, longer-term rates increasingly resemble those of their hosts as the evolving niche moulds and effectively imprisons the virus in co-adapted virus-host relationships. Contrastingly, viruses that jump hosts undergo strong and stringent adaptive selection as they maximize their fit to their new niche. This adaptive capability may paradoxically create evolutionary stasis in long-term host relationships. While viruses can evolve and adapt rapidly, their hosts may ultimately shape their longer-term evolution.
Collapse
|
21
|
Agius JE, Phalen DN, Rose K, Eden JS. New insights into Sauropsid Papillomaviridae evolution and epizootiology: discovery of two novel papillomaviruses in native and invasive Island geckos. Virus Evol 2019; 5:vez051. [PMID: 31798966 PMCID: PMC6874027 DOI: 10.1093/ve/vez051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Papillomaviruses cause persistent infections in skin and mucosal membranes and, in at least one species, are also be able to infect a tissue of mesenchymal origin. Infections may either be subclinical or induce proliferative lesions. Of the known papillomaviruses, the majority that have been characterized are from humans and other mammals. Currently, only fifteen complete bird and reptile papillomavirus genomes have been described, and they have been found in birds (n = 11), turtles (n = 2), and snakes (n = 2). Using next-generation sequencing technologies and virus-specific PCR, we have identified two novel papillomavirus genomes, Hemidactylus frenatus Papillomavirus 1 and 2 (HfrePV1, HfrePV2), in the widely distributed and highly invasive Asian house gecko (H.frenatus) and mute gecko (Gehyra mutilata) on Christmas Island and Cocos (Keeling) Islands. HfrePV1 was also detected in critically endangered Lister’s geckos (Lepidodactylus listeri) in their captive breeding colony on Christmas Island. Tissue-containing virus included epidermis, oral mucosa, and liver (HfrePV1) and epidermis, liver, and colon (HfrePV2). Concurrent infections were found in both H.frenatus and G.mutilata. Invasive mourning geckos (Lepidodactylus lugubris) (n = 4), Sri Lankan house geckos (Hemidactylus parvimaculatus) (n = 3), flat-tailed house geckos (Hemidactylus platyurus) (n = 4) from the Cocos Islands, and blue-tailed skinks (Cryptoblepharus egeriae) (n = 10) from Christmas Island were also screened but were not found to be infected. The novel HfrePV1 and HfrePV2 genomes were 7,378 bp and 7,380 bp in length, respectively, and each contained the early (E1, E2, and E7), and late (L1 and L2) open-reading frames. Phylogenetic analysis of the concatenated E1, E2, and L1 proteins from both papillomaviruses revealed that they clustered with, but were basal to, the Sauropsida clade containing bird and reptile viruses. This study sheds light on the evolution of papillomaviruses and the distribution of pathogens in a highly invasive species impacting endangered populations of geckos.
Collapse
Affiliation(s)
- Jessica E Agius
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Werombi Road, Camden, New South Wales 2570, Australia
| | - David N Phalen
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Werombi Road, Camden, New South Wales 2570, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Road, Mosman, New South Wales 2088, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, Queensland 4814, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Faculty of Medicine and Health, Sydney School of Medicine, University of Sydney, Missenden Road, Camperdown, New South Wales 2006, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Hawkesbury Rd, Westmead, New South Wales 2145, Australia
| |
Collapse
|
22
|
|
23
|
Chen Z, Long T, Wong PY, Ho WCS, Burk RD, Chan PKS. Non-human Primate Papillomaviruses Share Similar Evolutionary Histories and Niche Adaptation as the Human Counterparts. Front Microbiol 2019; 10:2093. [PMID: 31552003 PMCID: PMC6747053 DOI: 10.3389/fmicb.2019.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Given high genetic diversity of papillomaviruses (PV) and complex scenario of virus-host interaction, the genetic basis underlying the mechanisms of HPV carcinogenicity is not well understood. In an effort to evaluate the origin and evolution of PV pathogenicity, we collected paired oral, perianal, and genital swabs from a wild macaque population. Of the 117 surveyed macaques, 88 (75.2%) were positive for PV DNA in one or more sites, mostly common from genital swabs, followed by oral and perianal sites. All putative macaque PV types phylogenetically clustered into the genera Alpha-, Beta-, and Gammapapillomavirus, with a strong phylogeny-tropism association as observed in HPVs. Using a Bayesian Markov Chain Monte Carlo framework, we demonstrated ancient intra-host divergence of primate PVs in which multiple ancestors had split and adapted to specific host ecosystems at least 41 million years ago, prior to the speciation events of primate host species. Following subsequent divergence and niche adaptation, distinct but phylogenetically related PV types were transmitted to similar host ecosystems by closely related host animals when host speciation occurred, which may explain in part the origin of carcinogenicity of HPV type 16 (HPV16) and Macaca fascicularis PV type 3 (MfPV3) that evolved from a most recent common ancestor containing the determinants for cervicovaginal colonization and cervical cancer. The findings identifying evolutionary and biological relatedness between human and non-human primate PVs lay a genetic foundation for research on parasite-host interactions and carcinogenic outcomes, which will prove useful in further study of viral pathogenesis and host specificity.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.,Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Teng Long
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Yee Wong
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wendy C S Ho
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Robert D Burk
- Department of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman's Health, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.,Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Willemsen A, Bravo IG. Origin and evolution of papillomavirus (onco)genes and genomes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180303. [PMID: 30955499 PMCID: PMC6501903 DOI: 10.1098/rstb.2018.0303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses (PVs) are ancient viruses infecting vertebrates, from fishes to mammals. Although the genomes of PVs are small and show conserved synteny, PVs display large genotypic diversity and ample variation in the phenotypic presentation of the infection. Most PV genomes contain two small early genes E6 and E7. In a bunch of closely related human papillomaviruses (HPVs), the E6 and E7 proteins provide the viruses with oncogenic potential. The recent discoveries of PVs without E6 and E7 in different fish species place a new root on the PV tree, and suggest that ancestral PVs consisted of the minimal PV backbone E1-E2-L2-L1. Bayesian phylogenetic analyses date the most recent common ancestor of the PV backbone to 424 million years ago (Ma). Common ancestry tests on extant E6 and E7 genes indicate that they share a common ancestor dating back to at least 184 Ma. In AlphaPVs infecting Old World monkeys and apes, the appearance of the E5 oncogene 53-58 Ma concurred with (i) a significant increase in substitution rate, (ii) a basal radiation and (iii) key gain of functions in E6 and E7. This series of events was instrumental to construct the extant phenotype of oncogenic HPVs. Our results assemble the current knowledge on PV diversity and present an ancient evolutionary timeline punctuated by evolutionary innovations in the history of this successful viral family. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Uni Montpellier), 34090 Montpellier, France
| | | |
Collapse
|
25
|
Jackson R, Eade S, Zehbe I. An epithelial organoid model with Langerhans cells for assessing virus-host interactions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180288. [PMID: 30955491 PMCID: PMC6501905 DOI: 10.1098/rstb.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) may lead to cancer in mucosal and skin tissue. Consequently, HPV must have developed strategies to escape host immune surveillance. Nevertheless, most HPV infections are cleared by the infected host. Our laboratory investigates Langerhans cells (LCs), acting at the interface between innate and adaptive immunity. We hypothesize that this first line of defence is vital for potential HPV elimination. As an alternative to animal models, we use smaller-scale epithelial organoids grown from human primary keratinocytes derived from various anatomical sites. This approach is amenable to large sample sizes-an essential aspect for scientific rigour and statistical power. To evaluate LCs phenotypically and molecularly during the viral life cycle and onset of carcinogenesis, we have included an engineered myeloid cell line with the ability to acquire an LC phenotype. This model is accurately tailored for the crucial time-window of early virus elimination in a complex organism and will shed more light on our long-standing research question of how naturally occurring HPV variants influence disease development. It may also be applied to other microorganism-host interaction research or enquiries of epithelium immunobiology. Finally, our continuously updated pathogen-host analysis tool enables state-of-the-art bioinformatics analyses of next-generation sequencing data. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Biotechnology Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| | - Statton Eade
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| |
Collapse
|
26
|
Canuti M, Munro HJ, Robertson GJ, Kroyer ANK, Roul S, Ojkic D, Whitney HG, Lang AS. New Insight Into Avian Papillomavirus Ecology and Evolution From Characterization of Novel Wild Bird Papillomaviruses. Front Microbiol 2019; 10:701. [PMID: 31031718 PMCID: PMC6473165 DOI: 10.3389/fmicb.2019.00701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
Viruses in the family Papillomaviridae have circular dsDNA genomes of approximately 5.7–8.6 kb that are packaged within non-enveloped, icosahedral capsids. The known papillomavirus (PV) representatives infect vertebrates, and there are currently more than 130 recognized PV species in more than 50 genera. We identified 12 novel avian papillomavirus (APV) types in wild birds that could represent five distinct species and two genera. Viruses were detected in paired oropharyngeal/cloacal swabs collected from six bird species, increasing the number of avian species known to harbor PVs by 40%. A new duck PV (DuPV-3) was found in mallard and American black duck (27.6% estimated prevalence) that was monophyletic with other known DuPVs. A single viral type was identified in Atlantic puffin (PuPV-1, 9.8% estimated prevalence), while a higher genetic diversity was found in other Charadriiformes. Specifically, three types [gull PV-1 (GuPV-1), -2, and -3] were identified in two gull species (estimated prevalence of 17% and 2.6% in American herring and great black-backed gull, respectively), and seven types [kittiwake PV-1 (KiPV-1) through -7] were found in black-legged kittiwake (81.3% estimated prevalence). Significantly higher DuPV-3 circulation was observed in spring compared to fall and in adults compared to juveniles. The studied host species’ tendencies to be in crowded environments likely affect infection rates and their migratory behaviors could explain the high viral diversity, illustrating how host behavior can influence viral ecology and distribution. For DuPV-3, GuPV-1, PuPV-1, and KiPV-2, we obtained the complete genomic sequences, which showed the same organization as other known APVs. Phylogenetic analyses showed evidence for virus–host co-divergence at the host taxonomic levels of family, order, and inter-order, but we also observed that host-specificity constraints are relaxed among highly related hosts as we found cross-species transmission within ducks and within gulls. Furthermore, the phylogeny of viruses infecting the Charadriiformes did not match the host phylogeny and gull viruses formed distinct monophyletic clades with kittiwake viruses, possibly reflecting past host-switching events. Considering the vast PV genotype diversity in other hosts and the large number of bird species, many more APVs likely remain to be discovered.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hannah J Munro
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Ashley N K Kroyer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sheena Roul
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
Complete Genome Sequence of a Boa ( Boa constrictor)-Specific Papillomavirus Type 1 Isolate. Microbiol Resour Announc 2018; 7:MRA01159-18. [PMID: 30533742 PMCID: PMC6256578 DOI: 10.1128/mra.01159-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/02/2018] [Indexed: 12/04/2022] Open
Abstract
We present the full-length genome sequence of a new papillomavirus detected in skin lesions collected from a boa (Boa constrictor). Based on the nucleotide sequence analysis, we propose to designate the newly identified virus as Boa constrictorpapillomavirus type 1 (BcPV1), a new species in the genus Dyomupapillomavirus. We present the full-length genome sequence of a new papillomavirus detected in skin lesions collected from a boa (Boa constrictor). Based on the nucleotide sequence analysis, we propose to designate the newly identified virus as Boa constrictorpapillomavirus type 1 (BcPV1), a new species in the genus Dyomupapillomavirus.
Collapse
|
28
|
Ramsauer AS, Kubacki J, Welle M, Bachofen C, Fraefel C, Hoby S, Tobler K, Wenker C. Detection and Characterization of Okapi (Okapia johnstoni)-specific Papillomavirus type 1 (OjPV1). Vet Microbiol 2018; 223:113-118. [PMID: 30173736 DOI: 10.1016/j.vetmic.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 11/27/2022]
Abstract
Papillomavirus-specific DNA was detected in skin lesions collected from an okapi (Okapia johnstoni) in the Zoo Basel. According to the nucleotide sequence analysis, the virus belongs to the genus Deltapapillomavirus. Based on bioinformatics analysis, we propose to designate the newly identified virus as Okapia johnstoni Papillomavirus type 1 (OjPV1). OjPV1 is genetically most closely related to a recently described giraffe (Giraffa camelopardalis) -specific papillomavirus (GcPV1). Of note, the putative oncogenic E5 proteins from OjPV1 and GcPV1 are more conserved than the L1 proteins. This indicates, that the selection pressure on E5 may be more pronounced than that on the otherwise most conserved major capsid protein L1.
Collapse
Affiliation(s)
- Anna Sophie Ramsauer
- Virologisches Institut, Vetsuisse Fakultät, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland.
| | - Jakub Kubacki
- Virologisches Institut, Vetsuisse Fakultät, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
| | - Monika Welle
- Institut für Tierpathologie, Dermfocus, Vetsuisse Fakultät, Universität Bern, Postfach, CH-3001, Bern, Switzerland
| | - Claudia Bachofen
- Virologisches Institut, Vetsuisse Fakultät, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
| | - Cornel Fraefel
- Virologisches Institut, Vetsuisse Fakultät, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
| | - Stefan Hoby
- Zoo Basel, Binningerstrasse 40, CH-4054, Basel, Switzerland
| | - Kurt Tobler
- Virologisches Institut, Vetsuisse Fakultät, Universität Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
| | | |
Collapse
|
29
|
Crane A, Goebel ME, Kraberger S, Stone AC, Varsani A. Novel anelloviruses identified in buccal swabs of Antarctic fur seals. Virus Genes 2018; 54:719-723. [DOI: 10.1007/s11262-018-1585-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 11/27/2022]
|
30
|
Truchado DA, Williams RA, Benítez L. Natural history of avian papillomaviruses. Virus Res 2018; 252:58-67. [DOI: 10.1016/j.virusres.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 11/27/2022]
|
31
|
The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes (Basel) 2018; 9:genes9070317. [PMID: 29941858 PMCID: PMC6070984 DOI: 10.3390/genes9070317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of pathogen genome data sequenced from clinical and historical samples has made it possible to perform phylogenetic analyses of sexually transmitted infections on a global scale, and to estimate the diversity, distribution, and coevolutionary host relationships of these pathogens, providing insights into pathogen emergence and disease prevention. Deep-sequenced pathogen genomes from clinical studies and ancient samples yield estimates of within-host and between-host evolutionary rates and provide data on changes in pathogen genomic stability and evolutionary responses. Here we examine three groups of pathogens transmitted mainly through sexual contact between modern humans to provide insight into ancient human behavior and history with their pathogens. Exploring ancient pathogen genomic divergence and the ancient viral-host parallel evolutionary histories will help us to reconstruct the origin of present-day geographical distribution and diversity of clinical pathogen infections, and will hopefully allow us to foresee possible environmentally induced pathogen evolutionary responses. Lastly, we emphasize that ancient pathogen DNA research should be combined with modern clinical pathogen data, and be equitable and provide advantages for all researchers worldwide, e.g., through shared data.
Collapse
|
32
|
Williams RAJ, Tolf C, Waldenström J. Molecular identification of papillomavirus in ducks. Sci Rep 2018; 8:9096. [PMID: 29904122 PMCID: PMC6002369 DOI: 10.1038/s41598-018-27373-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Papillomaviruses infect many vertebrates, including birds. Persistent infections by some strains can cause malignant proliferation of cells (i.e. cancer), though more typically infections cause benign tumours, or may be completely subclinical. Sometimes extensive, persistent tumours are recorded-notably in chaffinches and humans. In 2016, a novel papillomavirus genotype was characterized from a duck faecal microbiome, in Bhopal, India; the sixth papillomavirus genotype from birds. Prompted by this finding, we screened 160 cloacal swabs and 968 faecal samples collected from 299 ducks sampled at Ottenby Bird Observatory, Sweden in 2015, using a newly designed real-time PCR. Twenty one samples (1.9%) from six individuals (2%) were positive. Eighteen sequences were identical to the published genotype, duck papillomavirus 1. One additional novel genotype was recovered from three samples. Both genotypes were recovered from a wild strain domestic mallard that was infected for more than 60 days with each genotype. All positive individuals were adult (P = 0.004). Significantly more positive samples were detected from swabs than faecal samples (P < 0.0001). Sample type data suggests transmission may be via direct contact, and only infrequently, via the oral-faecal route. Infection in only adult birds supports the hypothesis that this virus is sexually transmitted, though more work is required to verify this.
Collapse
Affiliation(s)
- Richard A J Williams
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
33
|
Smeele ZE, Burns JM, Van Doorsaler K, Fontenele RS, Waits K, Stainton D, Shero MR, Beltran RS, Kirkham AL, Berngartt R, Kraberger S, Varsani A. Diverse papillomaviruses identified in Weddell seals. J Gen Virol 2018; 99:549-557. [PMID: 29469687 DOI: 10.1099/jgv.0.001028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.
Collapse
Affiliation(s)
- Zoe E Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Koenraad Van Doorsaler
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and Bio5, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Waits
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne S Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd Juneau, Alaska 99801, USA
| | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
34
|
Truchado DA, Moens MAJ, Callejas S, Pérez-Tris J, Benítez L. Genomic characterization of the first oral avian papillomavirus in a colony of breeding canaries (Serinus canaria). Vet Res Commun 2018; 42:111-120. [PMID: 29446002 DOI: 10.1007/s11259-018-9713-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
Papillomaviruses are non-enveloped, DNA viruses that infect skin and mucosa of a wide variety of vertebrates, causing neoplasias or simply persisting asymptomatically. Avian papillomaviruses, with six fully sequenced genomes, are the second most studied group after mammalian papillomaviruses. In this study, we describe the first oral avian papillomavirus, detected in the tongue of a dead Yorkshire canary (Serinus canaria) and in oral swabs of the same bird and other two live canaries from an aviary in Madrid, Spain. Its genome is 8,071 bp and presents the canonical papillomavirus architecture with six early (E6, E7, E1, E9, E2, E4) and two late open reading frames (L1 and L2) and a long control region between L1 and E6. This new avian papillomavirus L1 gene shares a 64% pairwise identity with FcPV1 L1, so it has been classified as a new species (ScPV1) within the Ethapapillomavirus genus. Although the canary died after showing breathing problems, there is no evidence that the papillomavirus caused those symptoms so it could be part of the oral microbiota of the birds. Hence, future investigations are needed to evaluate the clinical relevance of the virus.
Collapse
Affiliation(s)
- Daniel A Truchado
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais 12, 28040, Madrid, Spain. .,Departamento de Fisiología, Genética y Microbiología, Facultad de Biología, Calle José Antonio Novais 12, 28040, Madrid, Spain.
| | - Michaël A J Moens
- Fundación de Conservación Jocotoco, Lizardo García E9-104 y Andrés Xaura, 170143, Quito, Ecuador
| | - Sergio Callejas
- Unidad de Genómica, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Javier Pérez-Tris
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais 12, 28040, Madrid, Spain
| | - Laura Benítez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Biología, Calle José Antonio Novais 12, 28040, Madrid, Spain
| |
Collapse
|
35
|
Structural Insights in Multifunctional Papillomavirus Oncoproteins. Viruses 2018; 10:v10010037. [PMID: 29342959 PMCID: PMC5795450 DOI: 10.3390/v10010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.
Collapse
|
36
|
Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2017; 243:91-105. [PMID: 29111456 PMCID: PMC7114543 DOI: 10.1016/j.virusres.2017.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Abstract
Summary of identified viruses associated with Antarctic animals. Genomes of Antarctic animals viruses have only been determine in the last five years. Limited knowledge of animal virology relative to environmental virology in Antarctica.
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology.
Collapse
|