1
|
Kong CY, Wickramasinghe KP, Xu CH, Mao J, Liu HB, Kumar T, Lin XQ, Li XJ, Tian CY, Zhao PF, Lu X. Recent Advances in Sugarcane Leaf Scald Disease: Pathogenic Insights and Sustainable Management Approaches. PLANTS (BASEL, SWITZERLAND) 2025; 14:508. [PMID: 40006767 PMCID: PMC11859367 DOI: 10.3390/plants14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Sugarcane, a key cash crop in tropical and subtropical regions, is primarily cultivated for sucrose and bioethanol. However, Sugarcane Leaf Scald Disease, caused by the Gram-negative bacterium Xanthomonas albilineans, significantly threatens global sugarcane production. This review examines the disease cycle, epidemics, host-pathogen interactions, integrated management strategies, and future prospects for combating leaf scald. It highlights advancements in understanding pathogenicity, immune responses, and sustainable management of bacterial plant diseases to enhance control and prevention efforts. An analysis of GenBank data revealed 21 strains of X. albilineans, with some featuring complete genome maps and varying guanine-cytosine (GC) content. Advanced genomic tools, including clustered regularly interspaced short palindromic repeats (CRISPR), and molecular techniques, such as polymerase chain reaction (PCR), enable accurate pathogen detection and facilitate the identification of resistance genes, aiding breeding programs. Recent progress in whole-genome sequencing and reduced costs have enabled the assembly of multiple X. albilineans genomes, enhancing bioinformatics analysis. Despite these advancements, research on the global genetic diversity of X. albilineans remains limited. Addressing this gap is crucial for developing more sustainable strategies to manage leaf scald, ensuring stable sugarcane yields and supporting global production. Further studies will strengthen efforts to mitigate this significant agricultural challenge.
Collapse
Affiliation(s)
- Chun-Yan Kong
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Kamal Priyananda Wickramasinghe
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
- Sugarcane Research Institute, Uda Walawe 70190, Sri Lanka
| | - Chao-Hua Xu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Jun Mao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Tanweer Kumar
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
- Sugar Crops Research Institute, Agriculture, Fisheries and Co-Operative Department, Charsadda Road, Mardan 23210, Khyber Pakhtunkhwa, Pakistan
| | - Xiu-Qin Lin
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Xu-Juan Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Chun-Yan Tian
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Pei-Fang Zhao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| | - Xin Lu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (K.P.W.); (C.-H.X.); (J.M.); (H.-B.L.); (T.K.); (X.-Q.L.); (X.-J.L.); (C.-Y.T.); (P.-F.Z.)
| |
Collapse
|
2
|
Dey R, Raghuwanshi R. An insight into pathogenicity and virulence gene content of Xanthomonas spp. and its biocontrol strategies. Heliyon 2024; 10:e34275. [PMID: 39092245 PMCID: PMC11292268 DOI: 10.1016/j.heliyon.2024.e34275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The genus Xanthomonas primarily serves as a plant pathogen, targeting a diverse range of economically significant crops on a global scale. Xanthomonas spp. utilizes a collection of toxins, adhesins, and protein effectors as part of their toolkit to thrive in their surroundings, and establish themselves within plant hosts. The bacterial secretion systems (Type 1 to Type 6) assist in delivering the effector proteins to their intended destinations. These secretion systems are specialized multi-protein complexes responsible for transporting proteins into the extracellular milieu or directly into host cells. The potent virulence and systematic infection system result in rapid dissemination of the bacteria, posing significant challenges in management due to complexities and substantial loss incurred. Consequently, there has been a notable increase in the utilization of chemical pesticides, leading to bioaccumulation and raising concerns about adverse health effects. Biological control mechanisms through beneficial microorganism (Bacillus, Pseudomonas, Trichoderma, Burkholderia, AMF, etc.) have proven to be an appropriate alternative in integrative pest management system. This review details the pathogenicity and virulence factors of Xanthomonas, as well as its control strategies. It also encourages the use of biological control agents, which promotes sustainable and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhao JY, Chen J, Shi Y, Fu HY, Huang MT, Rott PC, Gao SJ. Sugarcane responses to two strains of Xanthomonas albilineans differing in pathogenicity through a differential modulation of salicylic acid and reactive oxygen species. FRONTIERS IN PLANT SCIENCE 2022; 13:1087525. [PMID: 36589125 PMCID: PMC9798216 DOI: 10.3389/fpls.2022.1087525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Leaf scald caused by Xanthomonas albilineans is one of the major bacterial diseases of sugarcane that threaten the sugar industry worldwide. Pathogenic divergence among strains of X. albilineans and interactions with the sugarcane host remain largely unexplored. In this study, 40 strains of X. albilineans from China were distributed into three distinct evolutionary groups based on multilocus sequence analysis and simple sequence repeats loci markers. In pathogenicity assays, the 40 strains of X. albilineans from China were divided into three pathogenicity groups (low, medium, and high). Twenty-four hours post inoculation (hpi) of leaf scald susceptible variety GT58, leaf populations of X. albilineans strain XaCN51 (high pathogenicity group) determined by qPCR were 3-fold higher than those of strain XaCN24 (low pathogenicity group). Inoculated sugarcane plants modulated the reactive oxygen species (ROS) homoeostasis by enhancing respiratory burst oxidase homolog (ScRBOH) expression and superoxide dismutase (SOD) activity and by decreasing catalase (CAT) activity, especially after infection by X. albilineans XaCN51. Furthermore, at 24 hpi, plants infected with XaCN51 maintained a lower content of endogenous salicylic acid (SA) and a lower expression level of SA-mediated genes (ScNPR3, ScTGA4, ScPR1, and ScPR5) as compared to plants infected with XaCN24. Altogether, these data revealed that the ROS production-scavenging system and activation of the SA pathway were involved in the sugarcane defense response to an attack by X. albilineans.
Collapse
Affiliation(s)
- Jian-Ying Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juan Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yang Shi
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Philippe C. Rott
- CIRAD, UMR PHIM, Montpellier, France, and PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Li M, Bao Y, Li Y, Akbar S, Wu G, Du J, Wen R, Chen B, Zhang M. Comparative genome analysis unravels pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald disease. BMC Genomics 2022; 23:671. [PMID: 36162999 PMCID: PMC9513982 DOI: 10.1186/s12864-022-08900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. Result The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. Conclusion These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08900-2.
Collapse
Affiliation(s)
- MeiLin Li
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - YiXue Bao
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - YiSha Li
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Sehrish Akbar
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - GuangYue Wu
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - JinXia Du
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Ronghui Wen
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - Baoshan Chen
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China
| | - MuQing Zhang
- State Key Laboratory of Conservation and Utilization for Subtropical Agri-Biological Resources & Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, Guangxi, China.
| |
Collapse
|
5
|
Sagawa CHD, Assis RDAB, Zaini PA, Saxe H, Wilmarth PA, Salemi M, Phinney BS, Dandekar AM. De Novo Arginine Synthesis Is Required for Full Virulence of Xanthomonas arboricola pv. juglandis During Walnut Bacterial Blight Disease. PHYTOPATHOLOGY 2022; 112:1500-1512. [PMID: 34941365 DOI: 10.1094/phyto-07-21-0302-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Walnut blight (WB) disease caused by Xanthomonas arboricola pv. juglandis (Xaj) threatens orchards worldwide. Nitrogen metabolism in this bacterial pathogen is dependent on arginine, a nitrogen-enriched amino acid that can either be synthesized or provided by the plant host. The arginine biosynthetic pathway uses argininosuccinate synthase (argG), associated with increased bacterial virulence. We examined the effects of bacterial arginine and nitrogen metabolism on the plant response during WB by proteomic analysis of the mutant strain Xaj argG-. Phenotypically, the mutant strain produced 42% fewer symptoms and survived in the plant tissue with 2.5-fold reduced growth compared with wild type, while showing itself to be auxotrophic for arginine in vitro. Proteomic analysis of infected tissue enabled the profiling of 676 Xaj proteins and 3,296 walnut proteins using isobaric labeling in a data-dependent acquisition approach. Comparative analysis of differentially expressed proteins revealed distinct plant responses. Xaj wild type (WT) triggered processes of catabolism and oxidative stress in the host under observed disease symptoms, while most of the host biosynthetic processes triggered by Xaj WT were inhibited during Xaj argG- infection. Overall, the Xaj proteins revealed a drastic shift in carbon and energy management induced by disruption of nitrogen metabolism while the top differentially expressed proteins included a Fis transcriptional regulator and a peptidyl-prolyl isomerase. Our results show the critical role of de novo arginine biosynthesis to sustain virulence and minimal growth during WB. This study is timely and critical as copper-based control methods are losing their effectiveness, and new sustainable methods are urgently needed in orchard environments.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Cíntia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Renata de A B Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Houston Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, U.S.A
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
6
|
Complete Genome Sequence Reveals Evolutionary and Comparative Genomic Features of Xanthomonas albilineans Causing Sugarcane Leaf Scald. Microorganisms 2020; 8:microorganisms8020182. [PMID: 32012870 PMCID: PMC7074728 DOI: 10.3390/microorganisms8020182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/02/2022] Open
Abstract
Leaf scald (caused by Xanthomonas albilineans) is an important bacterial disease affecting sugarcane in most sugarcane growing countries, including China. High genetic diversity exists among strains of X. albilineans from diverse geographic regions. To highlight the genomic features associated with X. albilineans from China, we sequenced the complete genome of a representative strain (Xa-FJ1) of this pathogen using the PacBio and Illumina platforms. The complete genome of strain Xa-FJ1 consists of a circular chromosome of 3,724,581 bp and a plasmid of 31,536 bp. Average nucleotide identity analysis revealed that Xa-FJ1 was closest to five strains from the French West Indies and the USA, particularly to the strain GPE PC73 from Guadeloupe. Comparative genomic analysis between Xa-FJ1 and GPE PC73 revealed prophage integration, homologous recombination, transposable elements, and a clustered regulatory interspaced short palindromic repeats (CRISPR) system that were linked with 16 insertions/deletions (InDels). Ten and 82 specific genes were found in Xa-FJ1 and GPE PC73, respectively, and some of these genes were subjected to phage-related proteins, zona occludens toxin, and DNA methyltransferases. Our findings highlight intra-species genetic variability of the leaf scald pathogen and provide additional genomic resources to investigate its fitness and virulence.
Collapse
|
7
|
Athinuwat D, Brooks S. The OmpA Gene of Xanthomonas axonopodis pv. glycines is Involved in Pathogenesis of Pustule Disease on Soybean. Curr Microbiol 2019; 76:879-887. [PMID: 31089795 DOI: 10.1007/s00284-019-01702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
The goal of this study was to elucidate the role of the outer membrane protein A (ompA) gene of Xanthomonas axonopodis pv. glycines in bacterial pustule pathogenesis of soybean. An ompA mutant of X. axonopodis pv. glycines KU-P-SW005 was shown to significantly decrease cellulase, pectate lyase, and polysaccharide production. The production of these proteins in the ompA mutant was approximately five times lower than that of the wildtype. The ompA mutant also exhibited modified biofilm development. More importantly, the mutant reduced disease severity to the soybean. Ten days after inoculation, the virulence rating of the susceptible soybean cv. SJ4 inoculated with the ompA mutant was 11.23%, compared with 87.98% for the complemented ompA mutant. Production of cellulase, pectate lyase, polysaccharide was restored, biofilm, and pustule numbers were restored in the complemented ompA mutant that did not differ from the wild type. Taken together, these data suggest that OmpA-mediated invasion plays an important role in protein secretion during pathogenesis to soybean.
Collapse
Affiliation(s)
- Dusit Athinuwat
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand.
| | - Siraprapa Brooks
- School of Science, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| |
Collapse
|
8
|
Wang B, Wu G, Zhang Y, Qian G, Liu F. Dissecting the virulence-related functionality and cellular transcription mechanism of a conserved hypothetical protein in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:1859-1872. [PMID: 29392817 PMCID: PMC6638143 DOI: 10.1111/mpp.12664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 05/09/2023]
Abstract
Hypothetical proteins without defined functions are largely distributed in all sequenced bacterial genomes. Understanding their potent functionalities is a basic demand for bacteriologists. Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight of rice, is one of the model systems for the study of molecular plant pathology. One-quarter of proteins in the genome of this bacterium are defined as hypothetical proteins, but their roles in Xoo pathogenicity are unknown. Here, we generated in-frame deletions for six hypothetical proteins selected from strain PXO99A and found that one of them (PXO_03177) is required for the full virulence of this strain. PXO_03177 is conserved in Xanthomonas, and is predicted to contain two domains relating to polysaccharide synthesis. However, we found that mutation of this gene did not affect the production or modification of extracellular polysaccharides (EPSs) and lipopolysaccharides (LPSs), two major polysaccharides produced by Xoo relating to its infection. Interestingly, we found that inactivation of PXO_03177 significantly impaired biofilm formation and tolerance to sodium dodecyl sulfate (SDS), both of which are considered to play key roles during Xoo infection in rice leaves. These findings thus enable us to define a function for PXO_03177 in the virulence of Xoo. Furthermore, we also found that the global regulator Clp controls the transcription of PXO_03177 by direct binding to its promoter region, presenting the first cellular regulatory pathway for the modulation of expression of this hypothetical protein gene. Our results provide reference information for PXO_03177 homologues in Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guichun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Yuqiang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing 210014China
| |
Collapse
|
9
|
Jain M, Munoz-Bodnar A, Gabriel DW. Concomitant Loss of the Glyoxalase System and Glycolysis Makes the Uncultured Pathogen "Candidatus Liberibacter asiaticus" an Energy Scavenger. Appl Environ Microbiol 2017; 83:e01670-17. [PMID: 28939611 PMCID: PMC5691416 DOI: 10.1128/aem.01670-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/09/2017] [Indexed: 01/28/2023] Open
Abstract
Methylglyoxal (MG) is a cytotoxic, nonenzymatic by-product of glycolysis that readily glycates proteins and DNA, resulting in carbonyl stress. Glyoxalase I and II (GloA and GloB) sequentially convert MG into d-lactic acid using glutathione (GSH) as a cofactor. The glyoxalase system is essential for the mitigation of MG-induced carbonyl stress, preventing subsequent cell death, and recycling GSH for maintenance of cellular redox poise. All pathogenic liberibacters identified to date are uncultured, including "Candidatus Liberibacter asiaticus," a psyllid endosymbiont and causal agent of the severely damaging citrus disease "huanglongbing." In silico analysis revealed the absence of gloA in "Ca Liberibacter asiaticus" and all other pathogenic liberibacters. Both gloA and gloB are present in Liberibacter crescens, the only liberibacter that has been cultured. L. crescens GloA was functional in a heterologous host. Marker interruption of gloA in L. crescens appeared to be lethal. Key glycolytic enzymes were either missing or significantly downregulated in "Ca Liberibacter asiaticus" compared to (cultured) L. crescens Marker interruption of sut, a sucrose transporter gene in L. crescens, decreased its ability to take up exogenously supplied sucrose in culture. "Ca Liberibacter asiaticus" lacks a homologous sugar transporter but has a functional ATP/ADP translocase, enabling it to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding MG generation via glycolysis, and (iii) directly importing ATP from the host cell. MG detoxification enzymes appear to be predictive of "Candidatus" status for many uncultured pathogenic and environmental bacteria.IMPORTANCE Discovered more than 100 years ago, the glyoxalase system is thought to be present across all domains of life and fundamental to cellular growth and viability. The glyoxalase system protects against carbonyl stress caused by methylglyoxal (MG), a highly reactive, mutagenic and cytotoxic compound that is nonenzymatically formed as a by-product of glycolysis. The uncultured alphaproteobacterium "Ca Liberibacter asiaticus" is a well-adapted endosymbiont of the Asian citrus psyllid, which transmits the severely damaging citrus disease "huanglongbing." "Ca Liberibacter asiaticus" lacks a functional glyoxalase pathway. We report here that the bacterium is able to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding (significant) MG generation via glycolysis, and (iii) directly importing ATP from the host cell. We hypothesize that failure to culture "Ca Liberibacter asiaticus" is at least partly due to its dependence on host cells for both ATP and MG detoxification.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen R, Shrestha BK, Ham JH. Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae. MICROBIOLOGY-SGM 2017; 163:266-279. [PMID: 28036242 DOI: 10.1099/mic.0.000419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia glumae is an emerging plant-pathogenic bacterium that causes disease in rice in several of the major rice-producing areas throughout the world. In the southern United States, B. glumae is the major causal agent of bacterial panicle blight of rice and has caused severe yield losses in recent decades. Despite its importance, few management options are available for diseases caused by B. glumae, and knowledge of how this pathogen causes disease is limited. In an effort to identify novel factors that contribute to the pathogenicity of B. glumae, random mutagenesis using the miniTn5gus transposon was performed on two strains of B. glumae. Resultant mutants were screened in the laboratory for altered phenotypes in various known or putative virulence factors, including toxoflavin, lipase and extracellular polysaccharides. Mutants that exhibited altered phenotypes compared to their parent strain were selected and subsequently characterized using a PCR-based method to identify the approximate location of the transposon insertion. Altogether, approximately 20 000 random mutants were screened and 51 different genes were identified as having potential involvement in the production of toxoflavin, lipase and/or extracellular polysaccharide. Especially, two regulatory genes, ntpR and tepR, encoding a LysR-type transcriptional regulator and a σ54-dependent response regulator, respectively, were discovered in this study as new negative regulatory factors for the production of toxoflavin, the major phytotoxin synthesized by B. glumae and involved in bacterial pathogenesis.
Collapse
Affiliation(s)
- Rebecca A Melanson
- Present address: Mississippi State University, Central Mississippi Research and Extension Center, 1320 Seven Springs Road, Raymond, MS 39154, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Surendra Osti
- Present address: Department of Agricultural Economics, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Tiago P Lelis
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Hari S Karki
- Present address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Ruoxi Chen
- Present address: Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Bishnu K Shrestha
- Present address: Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
11
|
Mensi I, Daugrois JH, Rott P. Bioassay to Study the Attachment of Xanthomonas albilineans on Sugarcane Leaves. Bio Protoc 2017; 7:e2111. [PMID: 34458438 DOI: 10.21769/bioprotoc.2111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/22/2016] [Accepted: 12/21/2016] [Indexed: 11/02/2022] Open
Abstract
Sugarcane (interspecific hybrids of Saccharum species) is an economically important crop that provides 70% of raw table sugar production worldwide and contributes, in some countries, to bioethanol and electricity production. Leaf scald, caused by the bacterial plant pathogen Xanthomonas albilineans, is one of the major diseases of sugarcane. Dissemination of X. albilineans is mainly ensured by contaminated harvesting tools and infected stalk cuttings. However, some strains of this pathogen are transmitted by aerial means and are able to survive as epiphytes on the sugarcane phyllosphere before entering the leaves and causing disease. Here we present a protocol to estimate the capacity of attachment of X. albilineans to sugarcane leaves. Tissue-cultured sugarcane plantlets were immersed in a bacterial suspension of X. albilineans and leaf attachment of X. albilineans was determined by two methods: leaf imprinting (semi-quantitative method) and leaf washing/homogenization (quantitative method). These methods are important tools for evaluating pathogenicity of strains/mutants of the sugarcane leaf scald pathogen.
Collapse
Affiliation(s)
- Imène Mensi
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse, Tunisia
| | | | - Philippe Rott
- Department of Plant Pathology, University of Florida, Everglades Research and Education Center, Belle Glade, USA
| |
Collapse
|
12
|
Hersemann L, Wibberg D, Blom J, Goesmann A, Widmer F, Vorhölter FJ, Kölliker R. Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC Genomics 2017; 18:35. [PMID: 28056815 PMCID: PMC5217246 DOI: 10.1186/s12864-016-3422-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/14/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Xanthomonas translucens pathovars differ in their individual host ranges among Poaceae. As the causal agent of bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.), X. translucens pv. graminis (Xtg) is one of the most important bacterial pathogens in temperate grassland regions. The genomes of six Xtg strains from Switzerland, Norway, and New Zealand were sequenced in order to gain insight into conserved genomic traits from organisms covering a wide geographical range. Subsequent comparative analysis with previously published genome data of seven non-graminis X. translucens strains including the pathovars arrhenatheri, poae, phlei, cerealis, undulosa, and translucens was conducted to identify candidate genes linked to the host adaptation of Xtg to Italian ryegrass. RESULTS Phylogenetic analysis revealed a tight clustering of Xtg strains, which were found to share a large core genome. Conserved genomic traits included a non-canonical type III secretion system (T3SS) and a type IV pilus (T4P), which both revealed distinct primary structures of the pilins when compared to the non-graminis X. translucens strains. Xtg-specific traits that had no homologues in the other X. translucens strains were further found to comprise several hypothetical proteins, a TonB-dependent receptor, transporters, and effector proteins as well as toxin-antitoxin systems and DNA methyltransferases. While a nearly complete flagellar gene cluster was identified in one of the sequenced Xtg strains, phenotypic analysis pointed to swimming-deficiency as a common trait of the pathovar graminis. CONCLUSION Our study suggests that host adaptation of X. translucens pv. graminis may be conferred by a combination of pathovar-specific effector proteins, regulatory mechanisms, and adapted nutrient acquisition. Sequence deviations of pathogen-associated molecular patterns (PAMPs), as observed for the pilins of the T4P and T3SS, are moreover likely to impede perception by the plant defense machinery and thus facilitate successful host colonization of Italian ryegrass.
Collapse
Affiliation(s)
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Franco Widmer
- Molecular Ecology, Agroscope, 8046, Zurich, Switzerland
| | - Frank-Jörg Vorhölter
- Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
- MVZ Dr. Eberhard & Partner Dortmund, 44137, Dortmund, Germany
| | | |
Collapse
|
13
|
Petras D, Kerwat D, Pesic A, Hempel BF, von Eckardstein L, Semsary S, Arasté J, Marguerettaz M, Royer M, Cociancich S, Süssmuth RD. The O-Carbamoyl-Transferase Alb15 Is Responsible for the Modification of Albicidin. ACS Chem Biol 2016; 11:1198-204. [PMID: 26886160 DOI: 10.1021/acschembio.5b01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X. albilineans. Expression of alb15 in Escherichia coli and in vitro reconstitution of the carbamoyltransferase activity confirmed albicidin as the substrate. The chemical synthesis of carbamoyl-albicidin finally enabled us to assess its bioactivity by means of in vitro gyrase inhibition and antibacterial assays. Compared to albicidin, carbamoyl-albicidin showed a significantly higher inhibitory efficiency against bacterial gyrase (∼8 vs 49 nM), which identifies the carbamoyl group as an important structural feature of albicidin maturation.
Collapse
Affiliation(s)
- Daniel Petras
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Dennis Kerwat
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Alexander Pesic
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Benjamin-F Hempel
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Leonard von Eckardstein
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Siamak Semsary
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Julie Arasté
- Cirad, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | | | - Monique Royer
- Cirad, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | | | - Roderich D. Süssmuth
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
14
|
Mensi I, Daugrois JH, Pieretti I, Gargani D, Fleites LA, Noell J, Bonnot F, Gabriel DW, Rott P. Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves. MOLECULAR PLANT PATHOLOGY 2016; 17:236-246. [PMID: 25962850 PMCID: PMC6638434 DOI: 10.1111/mpp.12276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-β-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.
Collapse
Affiliation(s)
- Imene Mensi
- UMR BGPI, CIRAD, F-34398, Montpellier, France
| | | | | | | | - Laura A Fleites
- Plant Pathology Department, University of Florida, Gainesville, 32611, USA
| | - Julie Noell
- UMR BGPI, CIRAD, F-34398, Montpellier, France
| | | | - Dean W Gabriel
- Plant Pathology Department, University of Florida, Gainesville, 32611, USA
| | - Philippe Rott
- UMR BGPI, CIRAD, F-34398, Montpellier, France
- Plant Pathology Department, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
15
|
Pieretti I, Cociancich S, Bolot S, Carrère S, Morisset A, Rott P, Royer M. Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans. Genes (Basel) 2015; 6:714-33. [PMID: 26213974 PMCID: PMC4584326 DOI: 10.3390/genes6030714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/03/2015] [Accepted: 07/14/2015] [Indexed: 12/28/2022] Open
Abstract
Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI) and multi-locus sequence analysis (MLSA) showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named "Xanthomonas pseudalbilineans". X. albilineans and "X. pseudalbilineans" share many genomic features including (i) the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS), and (ii) genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the "X. pseudalbilineans" genome may contribute to its fitness and specific ecological niche.
Collapse
Affiliation(s)
- Isabelle Pieretti
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Stéphane Cociancich
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Stéphanie Bolot
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
| | - Sébastien Carrère
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
| | - Alexandre Morisset
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Philippe Rott
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Monique Royer
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| |
Collapse
|
16
|
Pieretti I, Pesic A, Petras D, Royer M, Süssmuth RD, Cociancich S. What makes Xanthomonas albilineans unique amongst xanthomonads? FRONTIERS IN PLANT SCIENCE 2015; 6:289. [PMID: 25964795 PMCID: PMC4408752 DOI: 10.3389/fpls.2015.00289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. Compared to other species of Xanthomonas, X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy. Its genome, which has experienced significant erosion, has unique genomic features. It lacks two loci required for pathogenicity in other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis and the Hrp-T3SS (hypersensitive response and pathogenicity-type three secretion system) gene clusters. Instead, X. albilineans harbors in its genome an SPI-1 (Salmonella pathogenicity island-1) T3SS gene cluster usually found in animal pathogens. X. albilineans produces a potent DNA gyrase inhibitor called albicidin, which blocks chloroplast differentiation, resulting in the characteristic white foliar stripe symptoms. The antibacterial activity of albicidin also confers on X. albilineans a competitive advantage against rival bacteria during sugarcane colonization. Recent chemical studies have uncovered the unique structure of albicidin and allowed us to partially elucidate its fascinating biosynthesis apparatus, which involves an enigmatic hybrid PKS/NRPS (polyketide synthase/non-ribosomal peptide synthetase) machinery.
Collapse
Affiliation(s)
| | - Alexander Pesic
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Parker JK, Cruz LF, Evans MR, De La Fuente L. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria. FEMS Microbiol Lett 2014; 362:fnu063. [PMID: 25688068 DOI: 10.1093/femsle/fnu063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Michael R Evans
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Mensi I, Vernerey MS, Gargani D, Nicole M, Rott P. Breaking dogmas: the plant vascular pathogen Xanthomonas albilineans is able to invade non-vascular tissues despite its reduced genome. Open Biol 2014; 4:130116. [PMID: 24522883 PMCID: PMC3938051 DOI: 10.1098/rsob.130116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022] Open
Abstract
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is missing the Hrp type III secretion system that is used by many Gram-negative bacteria to colonize their host. Until now, this pathogen was considered as strictly limited to the xylem of sugarcane. We used confocal laser scanning microscopy, immunocytochemistry and transmission electron microscopy (TEM) to investigate the localization of X. albilineans in diseased sugarcane. Sugarcane plants were inoculated with strains of the pathogen labelled with a green fluorescent protein. Confocal microscopy observations of symptomatic leaves confirmed the presence of the pathogen in the protoxylem and metaxylem; however, X. albilineans was also observed in phloem, parenchyma and bulliform cells of the infected leaves. Similarly, vascular bundles of infected sugarcane stalks were invaded by X. albilineans. Surprisingly, the pathogen was also observed in apparently intact storage cells of the stalk and in intercellular spaces between these cells. Most of these observations made by confocal microscopy were confirmed by TEM. The pathogen exits the xylem following cell wall and middle lamellae degradation, thus creating openings to reach parenchyma cells. This is the first description of a plant pathogenic vascular bacterium invading apparently intact non-vascular plant tissues and multiplying in parenchyma cells.
Collapse
Affiliation(s)
- Imène Mensi
- CIRAD, UMR BGPI, TA A-54/K, Montpellier Cedex 5 34398, France
| | | | - Daniel Gargani
- CIRAD, UMR BGPI, TA A-54/K, Montpellier Cedex 5 34398, France
| | - Michel Nicole
- IRD, UMR RPB, BP 64501, Montpellier Cedex 5 34394, France
| | - Philippe Rott
- CIRAD, UMR BGPI, TA A-54/K, Montpellier Cedex 5 34398, France
| |
Collapse
|
19
|
Daugrois JH, Boisne-Noc R, Rott P. Leaf Surface Colonization of Sugarcane by Xanthomonas albilineans and Subsequent Disease Progress Vary According to the Host Cultivar. PLANT DISEASE 2014; 98:191-196. [PMID: 30708741 DOI: 10.1094/pdis-02-13-0195-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spread of leaf scald in modern sugarcane cultivars in Guadeloupe occurs through aerial dissemination of Xanthomonas albilineans. However, the importance of host genotype on the foliar spread of leaf scald has never been investigated. To explore this, we followed two trials used to screen sugarcane cultivars for resistance to leaf scald under natural inoculum pressure. Leaf scald epidemic characteristics were studied by measuring epiphytic populations of X. albilineans, leaf symptom incidence and severity, and the number of infected stalks. In both trials, epiphytic X. albilineans populations and incidence of foliar symptoms varied between sugarcane cultivars (P < 0.001 in each trial for both traits) and differences in stalk infection between cultivars was also observed (P < 0.002 and P < 0.07 for trials A and B, respectively). Part of the cultivar resistance that minimizes epiphytic bacterial populations is correlated to resistance to internal leaf tissue infection as expressed by leaf symptoms. No correlation was found between epiphytic X. albilineans populations of cultivar and the incidence of stalk infection. However, foliar symptom incidence was inconsistently correlated with stalk infection. Resistance of sugarcane to leaf scald appears to involve several traits, including limiting size of epiphytic X. albilineans populations and limiting the capacity of the pathogen to produce leaf necrotic symptoms by invading the leaf vascular system or to move from the leaf into the stalk.
Collapse
Affiliation(s)
| | - Rosiane Boisne-Noc
- CIRAD, UMR AGAP, Station de Roujol, 97170 Petit-Bourg, Guadeloupe, France
| | | |
Collapse
|
20
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
21
|
Fleites LA, Mensi I, Gargani D, Zhang S, Rott P, Gabriel DW. Xanthomonas albilineans OmpA1 appears to be functionally modular and both the OMC and C-like domains are necessary for leaf scald disease of sugarcane. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1200-1210. [PMID: 23758144 DOI: 10.1094/mpmi-01-13-0002-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several EZ-Tn5 insertions in gene locus XALc_0557 (OmpA1) of the sugarcane leaf scald pathogen Xanthomonas albilineans XaFL07-1 were previously found to strongly affect pathogenicity and endophytic stalk colonization. XALc_0557 has a predicted OmpA N-terminal outer membrane channel (OMC) domain and an OmpA C-like domain. Further analysis of mutant M468, with an EZ-Tn5 insertion in the upstream OMC domain coding region, revealed impaired epiphytic and endophytic leaf survival, impaired resistance to sodium dodecyl sulfate (SDS), structural defects in the outer membrane (OM), and hyperproduction of OM vesicles. Cloned full-length XALc_0557 complemented M468 for all phenotypes tested, including pathogenicity, resistance to SDS, and ability to survive both endophytically and epiphytically. Another construct, pCT47.3, which expressed only the C-like domain of XALc_0557, restored resistance to SDS in M468 but failed to complement any other mutant phenotype, indicating that the C-like domain functioned independently of the OMC domain to help maintain OM integrity. pCT47.3 also complemented pathogenicity, resistance to SDS, and stalk colonization in mutant M1152, which carries an EZ-Tn5 insert in the C-like coding region, indicating that both predicted domains are modular and necessary but neither is sufficient for X. albilineans pathogenicity, endophytic survival in, and epiphytic survival on sugarcane.
Collapse
|
22
|
Rott P, Fleites LA, Mensi I, Sheppard L, Daugrois JH, Dow JM, Gabriel DW. The RpfCG two-component system negatively regulates the colonization of sugar cane stalks by Xanthomonas albilineans. MICROBIOLOGY-SGM 2013; 159:1149-1159. [PMID: 23538716 DOI: 10.1099/mic.0.065748-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.
Collapse
Affiliation(s)
- Philippe Rott
- University of Florida, Department of Plant Pathology, Gainesville 32611, Florida, USA
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - Laura A Fleites
- University of Florida, Department of Plant Pathology, Gainesville 32611, Florida, USA
| | - Imène Mensi
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | | | | | - J Maxwell Dow
- Department of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Dean W Gabriel
- University of Florida, Department of Plant Pathology, Gainesville 32611, Florida, USA
| |
Collapse
|
23
|
Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Gabriel DW, Rott P, Cociancich S. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels. BMC Genomics 2012; 13:658. [PMID: 23171051 PMCID: PMC3542200 DOI: 10.1186/1471-2164-13-658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 11/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.
Collapse
Affiliation(s)
| | - Monique Royer
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | - Valérie Barbe
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | | | - Ralf Koebnik
- IRD, UMR RPB, F-34394 Montpellier Cedex 5, France
| | - Arnaud Couloux
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | | | - Jérôme Gouzy
- INRA, UMR LIPM, F-31326 Castanet-Tolosan Cedex France
| | | | | | | | - Sophie Mangenot
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | - Stéphane Poussier
- Université de la Réunion, UMR PVBMT, F-97715 Saint-Denis La Réunion, France
| | - Béatrice Segurens
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | - Boris Szurek
- IRD, UMR RPB, F-34394 Montpellier Cedex 5, France
| | | | - Matthieu Arlat
- Université Paul Sabatier, UMR LIPM, F-31326 Castanet-Tolosan Cedex France
| | - Dean W Gabriel
- University of Florida, Plant Pathology Department, Gainesville FL 32605 USA
| | - Philippe Rott
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | - Stéphane Cociancich
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
- UMR BGPI, Campus International de Baillarguet, TA A-54/K, F-34398 Montpellier Cedex 5, France
| |
Collapse
|
24
|
Qian G, Zhang Y, Zhou Y, Liu C, Zhao Y, Song Z, Fan J, Hu B, Liu F. epv, Encoding a hypothetical protein, is regulated by DSF-mediating quorum sensing as well as global regulator Clp and is required for optimal virulence in Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2012; 102:841-7. [PMID: 22881870 DOI: 10.1094/phyto-02-12-0020-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak in rice, a destructive disease worldwide. In this study, six putative hypothetical secreted proteins, which were absent in X. oryzae pv. oryzae, were detected from X. oryzae pv. oryzicola strain BLS256. Disruption-based mutagenesis study revealed that one of them, Xoc_15235, named as extracellular polysaccharide and virulence-related gene (epv), was required for the optimal virulence in host rice but not for the induction of a hypersensitive reaction in nonhost tobacco. Sequence analysis revealed that epv was highly conserved in Xanthomonas spp. (except X. oryzae pv. oryzae). In-frame deletion of epv in X. oryzae pv. oryzicola dramatically impaired pathogen virulence and extracellular polysaccharide (EPS) production, one of the important known virulence-associated functions in Xanthomonas spp. Quantitative real-time reverse-transcription polymerase chain reaction showed that expression of both gumB (a gene encoding exopolysaccharide xanthan biosynthesis export protein) and a known virulence-related gene, pgk (encoding phosphoglycerate kinase), were obviously reduced in the epv-deletion mutant compared with the wild-type strain Rs105. In addition, we observed that epv was positively regulated by both diffusible signal factor and global regulator Clp in X. oryzae pv. oryzicola. Taken together, the novel roles and genetics of epv of X. oryzae pv. oryzicola in the EPS production and virulence were investigated for the first time.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection and Key Laboratory of Integrated Management of Corp Diseases and Pests, Ministry of Education, Nanjing Agricultural University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yan Q, Wang N. High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:69-84. [PMID: 21899385 DOI: 10.1094/mpmi-05-11-0121] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Citrus canker is caused by Xanthomonas citri subsp. citri and is one of the most devastating diseases on citrus plants. To investigate the virulence mechanism of this pathogen, a mutant library of strain 306 containing approximately 22,000 mutants was screened for virulence-deficient mutants in grapefruit (Citrus paradise). Eighty-two genes were identified that contribute to citrus canker symptom development caused by X. citri subsp. citri. Among the 82 identified genes, 23 genes were classified as essential genes, as mutation of these genes caused severe reduction of bacterial growth in M9 medium. The remaining 59 genes were classified as putative virulence-related genes that include 32 previously reported virulence-related genes and 27 novel genes. The 32 known virulence-related genes include genes that are involved in the type III secretion system (T3SS) and T3SS effectors, the quorum-sensing system, extracellular polysaccharide and lipopolysaccharide synthesis, and general metabolic pathways. The contribution to pathogenesis by nine genes (pthA4, trpG, trpC, purD, hrpM, peh-1, XAC1230, XAC1548, and XAC3049) was confirmed by complementation assays. We further validated the mutated genes and their phenotypes by analyzing the EZ-Tn5 insertion copy number using Southern blot analysis. In conclusion, we have significantly advanced our understanding of the putative genetic determinants of the virulence mechanism of X. citri subsp. citri by identifying 59 putative virulence-related genes, including 27 novel genes.
Collapse
Affiliation(s)
- Qing Yan
- Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | | |
Collapse
|
26
|
Studholme DJ, Wasukira A, Paszkiewicz K, Aritua V, Thwaites R, Smith J, Grant M. Draft Genome Sequences of Xanthomonas sacchari and Two Banana-Associated Xanthomonads Reveal Insights into the Xanthomonas Group 1 Clade. Genes (Basel) 2011; 2:1050-65. [PMID: 24710305 PMCID: PMC3927605 DOI: 10.3390/genes2041050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/04/2011] [Accepted: 11/21/2011] [Indexed: 12/25/2022] Open
Abstract
We present draft genome sequences for three strains of Xanthomonas species, each of which was associated with banana plants (Musa species) but is not closely related to the previously sequenced banana-pathogen Xanthomonas campestris pathovar musacearum. Strain NCPPB4393 had been deposited as Xanthomonas campestris pathovar musacearum but in fact falls within the species Xanthomonas sacchari. Strain NCPPB1132 is more distantly related to Xanthomonas sacchari whilst strain NCPPB 1131 grouped in a distinct species-level clade related to X. sacchari, along with strains from ginger, rice, cotton and sugarcane. These three newly sequenced strains share many genomic features with the previously sequenced Xanthomonas albilineans, for example possessing an unsual metE allele and lacking the Hrp type III secretion system. However, they are distinct from Xanthomonas albilineans in many respects, for example showing little evidence of genome reduction. They also lack the SPI-1 type III secretion system found in Xanthomonas albilineans. Unlike X. albilineans, all three strains possess a gum gene cluster. The data reported here provide the first genome-wide survey of non-Hrp Xanthomonas species other than Xanthomonas albilineans, which is an atypical member of this group. We hope that the availability of complete sequence data for this group of organisms is the first step towards understanding their interactions with plants and identifying potential virulence factors.
Collapse
Affiliation(s)
- David J Studholme
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Arthur Wasukira
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Konrad Paszkiewicz
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Valente Aritua
- National Crops Resources Research Institute (NaCRRI), P.O. Box 7084, Kampala, Uganda.
| | - Richard Thwaites
- The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK.
| | - Julian Smith
- The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK.
| | - Murray Grant
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|