1
|
Li Y, Lv Y, Wei X. The MYB transcription factor TaMYB30 enhances wheat resistance to sharp eyespot disease by scavenging ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109648. [PMID: 39961251 DOI: 10.1016/j.plaphy.2025.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 03/11/2025]
Abstract
Sharp eyespot disease, caused primarily by the necrotrophic fungal pathogen Rhizoctonia cerealis, poses a significant threat to global wheat production. This study reports the functional characterization of an R2R3-MYB transcription factor, TaMYB30, which plays a crucial role in wheat's resistance to R. cerealis. The overexpression of TaMYB30 in transgenic wheat led to enhanced resistance against sharp eyespot disease, whereas its knockdown in wheat notably compromised resistance, indicating that TaMYB30 acts as a positive regulator in wheat's defense against R. cerealis infection. Comparative transcriptomic analysis between transgenic and wild-type wheat following R. cerealis infection revealed that differentially expressed genes were primarily involved in oxidative stress response, peroxidase activity, and glutathione metabolism. Further functional analysis demonstrated that TaMYB30 directly activates the expression of PRX and GST genes. Transgenic wheat with elevated TaMYB30 expression also exhibited significantly enhanced tolerance to oxidative stress compared to wild-type plants. Notably, overexpression of TaMYB30 mitigated hydrogen peroxide (H2O2) accumulation post-infection, suggesting that the resistance conferred by TaMYB30 is likely due to its role in scavenging reactive oxygen species (ROS) accumulation. This research uncovers a novel regulatory function for MYB transcription factors in wheat defense mechanisms and proposes TaMYB30 as a promising candidate for genetic improvement to enhance wheat's resistance to sharp eyespot and oxidative stress.
Collapse
Affiliation(s)
- Yuyan Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yubao Lv
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuening Wei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
3
|
Dai J, Xu Z, Zhang X, Fang Z, Zhu J, Kang T, Xu Y, Hu Y, Cao L, Zhao C. PpNAP4 and ethylene act in a regulatory loop to modulate peach fruit ripening and softening. Int J Biol Macromol 2025; 291:138791. [PMID: 39706437 DOI: 10.1016/j.ijbiomac.2024.138791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening. Here, we revealed that one NAP member PpNAP4, along with ethylene, positively regulated peach ripening and softening. Positive regulation of fruit ripening by PpNAP4 was demonstrated by overexpressing PpNAP4 in both peaches and tomatoes, resulting in enhanced fruit ripening through targeted modulation of specific ethylene biosynthesis and cell wall degradation-related genes. Further investigation revealed that PpNAP4 targets and upregulates key ethylene biosynthesis genes PpACS1, PpACO1 and PpEIN2, which is the core component of ethylene signaling. PpNAP4 positively modulates fruit softening by binding to and activating the promoters of cell wall degradation-related genes PpPL1 and PpPL15. Additionally, expression of PpPL1 and PpPL15 was directly affected by ethylene, with further investigation revealing that their promoters were clearly induced by ethylene. Our findings demonstrated a synergistic role played by the interaction between PpNAP4 and PpNAP6, enhancing the expression of PpACS1, PpACO1, PpPL1, PpPL15 and PpEIN2, thereby contributing to fruit ripening and softening. Overall, our study revealed the intricate mechanisms responsible for PpNAP4, PpNAP6, and ethylene roles during peach fruit ripening, highlighting a regulatory loop in which PpNAP4 and ethylene mutually enhance each other during the ripening process. These enhancements further contribute to peach fruit softening by upregulating specific cell wall degradation-related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Jingwen Zhu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
4
|
Kuwada E, Takeshita K, Kawakatsu T, Uchida S, Akagi T. Identification of lineage-specific cis-trans regulatory networks related to kiwifruit ripening initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1987-1999. [PMID: 39462454 PMCID: PMC11629749 DOI: 10.1111/tpj.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Previous research on the ripening process of many fruit crop varieties typically involved analyses of the conserved genetic factors among species. However, even for seemingly identical ripening processes, the associated gene expression networks often evolved independently, as reflected by the diversity in the interactions between transcription factors (TFs) and the targeted cis-regulatory elements (CREs). In this study, explainable deep learning (DL) frameworks were used to predict expression patterns on the basis of CREs in promoter sequences. We initially screened potential lineage-specific CRE-TF interactions influencing the kiwifruit ripening process, which is triggered by ethylene, similar to the corresponding processes in other climacteric fruit crops. Some novel regulatory relationships affecting ethylene-induced fruit ripening were identified. Specifically, ABI5-like bZIP, G2-like, and MYB81-like TFs were revealed as trans-factors modulating the expression of representative ethylene signaling/biosynthesis-related genes (e.g., ACS1, ERT2, and ERF143). Transient reporter assays and DNA affinity purification sequencing (DAP-Seq) analyses validated these CRE-TF interactions and their regulatory relationships. A comparative analysis with co-expression networking suggested that this DL-based screening can identify regulatory networks independently of co-expression patterns. Our results highlight the utility of an explainable DL approach for identifying novel CRE-TF interactions. These imply that fruit crop species may have evolved lineage-specific fruit ripening-related cis-trans regulatory networks.
Collapse
Affiliation(s)
- Eriko Kuwada
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayama700‐8530Japan
| | - Kouki Takeshita
- Department of Advanced Information TechnologyKyushu UniversityFukuoka819‐0395Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukuba305‐8602IbarakiJapan
| | - Seiichi Uchida
- Department of Advanced Information TechnologyKyushu UniversityFukuoka819‐0395Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayama700‐8530Japan
- Japan Science and Technology AgencyPRESTOKawaguchi332‐0012SaitamaJapan
| |
Collapse
|
5
|
Ye S, Huang Y, Ma T, Ma X, Li R, Shen J, Wen J. BnaABF3 and BnaMYB44 regulate the transcription of zeaxanthin epoxidase genes in carotenoid and abscisic acid biosynthesis. PLANT PHYSIOLOGY 2024; 195:2372-2388. [PMID: 38620011 DOI: 10.1093/plphys/kiae184] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
Zeaxanthin epoxidase (ZEP) is a key enzyme that catalyzes the conversion of zeaxanthin to violaxanthin in the carotenoid and abscisic acid (ABA) biosynthesis pathways. The rapeseed (Brassica napus) genome has 4 ZEP (BnaZEP) copies that are suspected to have undergone subfunctionalization, yet the 4 genes' underlying regulatory mechanisms remain unknown. Here, we genetically confirmed the functional divergence of the gene pairs BnaA09.ZEP/BnaC09.ZEP and BnaA07.ZEP/BnaC07.ZEP, which encode enzymes with tissue-specific roles in carotenoid and ABA biosynthesis in flowers and leaves, respectively. Molecular and transgenic experiments demonstrated that each BnaZEP pair is transcriptionally regulated via ABA-responsive element-binding factor 3 s (BnaABF3s) and BnaMYB44s as common and specific regulators, respectively. BnaABF3s directly bound to the promoters of all 4 BnaZEPs and activated their transcription, with overexpression of individual BnaABF3s inducing BnaZEP expression and ABA accumulation under drought stress. Conversely, loss of BnaABF3s function resulted in lower expression of several genes functioning in carotenoid and ABA metabolism and compromised drought tolerance. BnaMYB44s specifically targeted and repressed the expression of BnaA09.ZEP/BnaC09.ZEP but not BnaA07.ZEP/BnaC07.ZEP. Overexpression of BnaA07.MYB44 resulted in increased carotenoid content and an altered carotenoid profile in petals. Additionally, RNA-seq analysis indicated that BnaMYB44s functions as a repressor in phenylpropanoid and flavonoid biosynthesis. These findings provide clear evidence for the subfunctionalization of duplicated genes and contribute to our understanding of the complex regulatory network involved in carotenoid and ABA biosynthesis in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Rihui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Wang Z, Li X, Yao X, Ma J, Lu K, An Y, Sun Z, Wang Q, Zhou M, Qin L, Zhang L, Zou S, Chen L, Song C, Dong H, Zhang M, Chen X. MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100628. [PMID: 37221824 PMCID: PMC10721452 DOI: 10.1016/j.xplc.2023.100628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
The plant signaling pathway that regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) involves mitogen-activated protein kinase (MAPK) cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs, which activate transcription factors (TFs) to promote downstream defense responses. To identify plant TFs that regulate MAPKs, we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway. MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6. Under PAMP treatment, MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression, leading to phosphorylation of MPK3 and MPK6 proteins. In turn, phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner, thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses. Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44, which has previously been shown to affect PAMP recognition and PTI development. AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade.
Collapse
Affiliation(s)
- Zuodong Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Jinbiao Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Miao Zhou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Congfeng Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hansong Dong
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China.
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaochen Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
7
|
Yu Y, Zhang S, Yu Y, Cui N, Yu G, Zhao H, Meng X, Fan H. The pivotal role of MYB transcription factors in plant disease resistance. PLANTA 2023; 258:16. [PMID: 37311886 DOI: 10.1007/s00425-023-04180-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION MYB transcription factors are essential for diverse biology processes in plants. This review has focused on the potential molecular actions of MYB transcription factors in plant immunity. Plants possess a variety of molecules to defend against disease. Transcription factors (TFs) serve as gene connections in the regulatory networks controlling plant growth and defense against various stressors. As one of the largest TF families in plants, MYB TFs coordinate molecular players that modulate plant defense resistance. However, the molecular action of MYB TFs in plant disease resistance lacks a systematic analysis and summary. Here, we describe the structure and function of the MYB family in the plant immune response. Functional characterization revealed that MYB TFs often function either as positive or negative modulators towards different biotic stressors. Moreover, the MYB TF resistance mechanisms are diverse. The potential molecular actions of MYB TFs are being analyzed to uncover functions by controlling the expression of resistance genes, lignin/flavonoids/cuticular wax biosynthesis, polysaccharide signaling, hormone defense signaling, and the hypersensitivity response. MYB TFs have a variety of regulatory modes that fulfill pivotal roles in plant immunity. MYB TFs regulate the expression of multiple defense genes and are, therefore, important for increasing plant disease resistance and promoting agricultural production.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
8
|
Lu K, Zhang L, Qin L, Chen X, Wang X, Zhang M, Dong H. Importin β1 Mediates Nuclear Entry of EIN2C to Confer the Phloem-Based Defense against Aphids. Int J Mol Sci 2023; 24:ijms24108545. [PMID: 37239892 DOI: 10.3390/ijms24108545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ethylene Insensitive 2 (EIN2) is an integral membrane protein that regulates ethylene signaling towards plant development and immunity by release of its carboxy-terminal functional portion (EIN2C) into the nucleus. The present study elucidates that the nuclear trafficking of EIN2C is induced by importin β1, which triggers the phloem-based defense (PBD) against aphid infestations in Arabidopsis. In plants, IMPβ1 interacts with EIN2C to facilitate EIN2C trafficking into the nucleus, either by ethylene treatment or by green peach aphid infestation, to confer EIN2-dependent PBD responses, which, in turn, impede the phloem-feeding activity and massive infestation by the aphid. In Arabidopsis, moreover, constitutively expressed EIN2C can complement the impβ1 mutant regarding EIN2C localization to the plant nucleus and the subsequent PBD development in the concomitant presence of IMPβ1 and ethylene. As a result, the phloem-feeding activity and massive infestation by green peach aphid were highly inhibited, indicating the potential value of EIN2C in protecting plants from insect attacks.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
9
|
Luan Y, Chen Z, Tang Y, Sun J, Meng J, Tao J, Zhao D. Tree peony PsMYB44 negatively regulates petal blotch distribution by inhibiting dihydroflavonol-4-reductase gene expression. ANNALS OF BOTANY 2023; 131:323-334. [PMID: 36534917 PMCID: PMC9992934 DOI: 10.1093/aob/mcac155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The tree peony (Paeonia suffruticosa Andr.) has been widely cultivated as a field plant, and petal blotch is one of its important traits, which not only promotes proliferation but also confers high ornamental value. However, the regulatory network controlling blotch formation remains elusive owing to the functional differences and limited conservation of transcriptional regulators in dicots. METHODS We performed phylogenetic analysis to identify MYB44-like transcription factors in P. suffruticosa blotched cultivar 'High noon' petals. A candidate MYB44-like transcription factor, PsMYB44, was analysed via expression pattern analysis, subcellular localization, target gene identification, gene silencing in P. suffruticosa petals and heterologous overexpression in tobacco. KEY RESULTS A blotch formation-related MYB44-like transcription factor, PsMYB44, was cloned. The C-terminal of the PsMYB44 amino acid sequence had a complete C2 motif that affects anthocyanin biosynthesis, and PsMYB44 was clustered in the MYB44-like transcriptional repressor branch. PsMYB44 was located in the nucleus, and its spatial and temporal expression patterns were negatively correlated with blotch formation. Furthermore, a yeast one-hybrid assay showed that PsMYB44 could target the promoter of the late anthocyanin biosynthesis-related dihydroflavonol-4-reductase (DFR) gene, and a dual-luciferase assay demonstrated that PsMYB44 could repress PsDFR promoter activity. On the one hand, overexpression of PsMYB44 significantly faded the red colour of tobacco flowers and decreased the anthocyanin content by 42.3 % by downregulating the expression level of the tobacco NtDFR gene. On the other hand, PsMYB44-silenced P. suffruticosa petals had a redder blotch colour, which was attributed to the fact that silencing PsMYB44 redirected metabolic flux to the anthocyanin biosynthesis branch, thereby promoting more anthocyanin accumulation in the petal base. CONCLUSION These results demonstrated that PsMYB44 negatively regulated the biosynthesis of anthocyanin by directly binding to the PsDFR promoter and subsequently inhibiting blotch formation, which helped to elucidate the molecular regulatory network of anthocyanin-mediated blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zijie Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jing Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. PLANT CELL REPORTS 2022; 41:1673-1691. [PMID: 35666271 DOI: 10.1007/s00299-022-02883-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
Collapse
Affiliation(s)
- Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Sands LB, Cheek T, Reynolds J, Ma Y, Berkowitz GA. Effects of Harpin and Flg22 on Growth Enhancement and Pathogen Defense in Cannabis sativa Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:1178. [PMID: 35567178 PMCID: PMC9101757 DOI: 10.3390/plants11091178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022]
Abstract
Pathogen-associated molecular patterns, PAMPs, are a diverse group of molecules associated with pathogenic microbes and are known to activate immune response and in some cases enhance growth in plants. Two PAMPs, harpin and flg22, have shown these affects in various plant species. PAMPs are known to activate basal immunity, the ethylene signaling pathway, alter gene expression and change plant composition. Pretreatment with harpin enhanced hemp seedling resistance to Pythium aphanidermatum, while flg22 failed to induce the defense mechanism towards P. aphanidermatum. In the absence of the pathogen, both harpin and flg22 enhanced seedling growth when compared to the water control. Ethylene is a hormone involved in both plant defense signaling and growth. Both harpin and flg22 pretreatment induced certain ethylene responsive genes but not all the genes examined, indicating that harpin and flg22 act differently in ethylene and potentially defense signaling. In addition, both harpin and flg22 induced CsFRK1 and CsPR1, two marker genes for plant innate immunity. Both PAMPs can enhance growth but likely induce different defense signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Yi Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA; (L.B.S.); (T.C.); (J.R.)
| | - Gerald A. Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA; (L.B.S.); (T.C.); (J.R.)
| |
Collapse
|
12
|
Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS One 2022; 17:e0265357. [PMID: 35286339 PMCID: PMC8920291 DOI: 10.1371/journal.pone.0265357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.
Collapse
|
13
|
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The Aquaporin TaPIP2;10 Confers Resistance to Two Fungal Diseases in Wheat. PHYTOPATHOLOGY 2021; 111:2317-2331. [PMID: 34058861 DOI: 10.1094/phyto-02-21-0048-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants employ aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family to import environmental substrates, thereby affecting various processes, such as the cellular responses regulated by the signaling molecule hydrogen peroxide (H2O2). Common wheat (Triticum aestivum) contains 24 candidate members of the PIP family, designated as TaPIP1;1 to TaPIP1;12 and TaPIP2;1 to TaPIP2;12. None of these TaPIP candidates have been characterized for substrate selectivity or defense responses in their source plant. Here, we report that T. aestivum AQP TaPIP2;10 facilitates the cellular uptake of H2O2 to confer resistance against powdery mildew and Fusarium head blight, two devastating fungal diseases in wheat throughout the world. In wheat, the apoplastic H2O2 signal is induced by fungal attack, while TaPIP2;10 is stimulated to translocate this H2O2 into the cytoplasm, where it activates defense responses to restrict further attack. TaPIP2;10-mediated transport of H2O2 is essential for pathogen-associated molecular pattern-triggered plant immunity (PTI). Typical PTI responses are induced by the fungal infection and intensified by overexpression of the TaPIP2;10 gene. TaPIP2;10 overexpression causes a 70% enhancement in wheat resistance to powdery mildew and an 86% enhancement in resistance to Fusarium head blight. By reducing the disease severities, TaPIP2;10 overexpression brings about >37% increase in wheat grain yield. These results verify the feasibility of using an immunity-relevant AQP to concomitantly improve crop productivity and immunity.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fubin Wang
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jinfeng Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaochen Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jiankun Wei
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Jingyu Ma
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| |
Collapse
|
14
|
Yuan Y, Qin L, Su H, Yang S, Wei X, Wang Z, Zhao Y, Li L, Liu H, Tian B, Zhang X. Transcriptome and Coexpression Network Analyses Reveal Hub Genes in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis) During Different Stages of Plasmodiophora brassicae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:650252. [PMID: 34447397 PMCID: PMC8383047 DOI: 10.3389/fpls.2021.650252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/20/2021] [Indexed: 05/15/2023]
Abstract
Clubroot, caused by the soil-borne protist Plasmodiophora brassicae, is one of the most destructive diseases of Chinese cabbage worldwide. However, the clubroot resistance mechanisms remain unclear. In this study, in both clubroot-resistant (DH40R) and clubroot-susceptible (DH199S) Chinese cabbage lines, the primary (root hair infection) and secondary (cortical infection) infection stages started 2 and 5 days after inoculation (dai), respectively. With the extension of the infection time, cortical infection was blocked and complete P. brassica resistance was observed in DH40R, while disease scales of 1, 2, and 3 were observed at 8, 13, and 22 dai in DH199S. Transcriptome analysis at 0, 2, 5, 8, 13, and 22 dai identified 5,750 relative DEGs (rDEGs) between DH40R and DH199S. The results indicated that genes associated with auxin, PR, disease resistance proteins, oxidative stress, and WRKY and MYB transcription factors were involved in clubroot resistance regulation. In addition, weighted gene coexpression network analysis (WGCNA) identified three of the modules whose functions were highly associated with clubroot-resistant, including ten hub genes related to clubroot resistance (ARF2, EDR1, LOX4, NHL3, NHL13, NAC29, two AOP1, EARLI 1, and POD56). These results provide valuable information for better understanding the molecular regulatory mechanism of Chinese cabbage clubroot resistance.
Collapse
Affiliation(s)
- Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Liuyue Qin
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Honglei Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Bai J, Wang X, Yao X, Chen X, Lu K, Hu Y, Wang Z, Mu Y, Zhang L, Dong H. Rice aquaporin OsPIP2;2 is a water-transporting facilitator in relevance to drought-tolerant responses. PLANT DIRECT 2021; 5:e338. [PMID: 34430793 PMCID: PMC8365552 DOI: 10.1002/pld3.338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 05/30/2023]
Abstract
In rice (Oryza sativa), the PLASMA MEMBRANE INTRINSIC PROTEIN (PIP) family of aquaporin has 11 members, OsPIP1;1 to OsPIP1;3, and OsPIP2;1 to OsPIP2;8, which are hypothesized to facilitate the transport of H2O and other small compounds across cell membranes. To date, however, only OsPIP1;2, OsPIP2;1, and OsPIP2;4 have been demonstrated for substrate selectivity in their source plant (rice). In this study, OsPIP2;2 was characterized as the most efficient facilitator of H2O transport across cell membranes in comparison with the other 10 OsPIPs. In concomitant tests of all OsPIPs, four genes (OsPIP1;3, OsPIP2;1, OsPIP2;2, and OsPIP2;4) were induced to express in leaves of rice plants following a physiological drought stress, while OsPIP2;2 was expressed to the highest level. After de novo expression in frog oocytes and yeast cells, the four OsPIP proteins were localized to the plasma membranes in trimer and tetramer and displayed the activity to increase the membrane permeability to H2O. In comparison, OsPIP2;2 was most supportive to H2O import to oocytes and yeast cells. After de novo expression in tobacco protoplasts, OsPIP2;2 exceeded OsPIP1;3, OsPIP2;1, and OsPIP2;4 to support H2O transport across the plasma membranes. OsPIP2;2-mediated H2O transport was accompanied by drought-tolerant responses, including increases in concentrations of proline and polyamines, both of which are physiological markers of drought tolerance. In rice protoplasts, H2O transport and drought-tolerant responses, which included expression of marker genes of drought tolerance pathway, were considerably enhanced by OsPIP2;2 overexpression but strongly inhibited by the gene silencing. Furthermore, OsPIP2;2 played a role in maintenance of the cell membrane integrity and effectively protected rice cells from electrolyte leakage caused by the physiological drought stress. These results suggest that OsPIP2;2 is a predominant facilitator of H2O transport in relevance to drought tolerance in the plant.
Collapse
Affiliation(s)
- Jiaqi Bai
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xuan Wang
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
- School of Life SciencesNanjing UniversityNanjingChina
| | - Xiaohui Yao
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Xiaochen Chen
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Kai Lu
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Yiqun Hu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant Protection and Agroproduct SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Zuodong Wang
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Yanjie Mu
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
| | - Liyuan Zhang
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| | - Hansong Dong
- College of Plant ProtectionShandong Agricultural UniversityTaianChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| |
Collapse
|
16
|
Liu Y, Zhu P, Cai S, Haughn G, Page JE. Three novel transcription factors involved in cannabinoid biosynthesis in Cannabis sativa L. PLANT MOLECULAR BIOLOGY 2021; 106:49-65. [PMID: 33625643 DOI: 10.1007/s11103-021-01129-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Three novel transcription factors were successfully identified and shown to interact with the trichome-specific THCAS promoter regulatory region. Cannabinoids are important secondary metabolites present in Cannabis sativa L. (cannabis). One cannabinoid that has received considerable attention, 9-tetrahydrocannabinol (THC), is derived from Delta-9-Tetrahydrocannabinolic acid (THCA) and responsible for the mood-altering and pain-relieving effects of cannabis. A detailed understanding of transcriptional control of THCA synthase (THCAS) is currently lacking. The primary site of cannabinoid biosynthesis is the glandular trichomes that form on female flowers. Transcription factors (TFs) have been shown to play an important role in secondary-metabolite biosynthesis and glandular trichome formation in Artemisia annua, Solanum lycopersicum and Humulus lupulus. However, analogous information is not available for cannabis. Here, we characterize a 548 bp fragment of the THCAS promoter and regulatory region that drives trichome-specific expression. Using this promoter fragment in a yeast-one-hybrid screen, we identified 3 novel TFs (CsAP2L1, CsWRKY1 and CsMYB1) and provided evidence that these 3 TFs regulate the THCAS promoter in planta. The O-Box element within the proximal region of the THCAS promoter is necessary for CsAP2L1-induced transcriptional activation of THCAS promoter. Similar to THCAS, the genes for all three TFs have trichome-specific expression, and subcellular localization of the TFs indicates that all three proteins are in the nucleus. CsAP2L1 and THCAS exhibit a similar temporal, spatial and strain-specific gene expression profiles, while those expression patterns of CsWRKY1 and CsMYB1 are opposite from THCAS. Our results identify CsAP2L1 playing a positive role in the regulation of THCAS expression, while CsWRKY1 and CsMYB1 may serve as negative regulators of THCAS expression.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Anandia Labs, Vancouver, BC, V6T 1Z4, Canada.
| | - Panpan Zhu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Cai
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jonathan E Page
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Anandia Labs, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
17
|
Liu Y, Zhou X, Liu W, Huang J, Liu Q, Sun J, Cai X, Miao W. HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth. BMC Microbiol 2020; 20:4. [PMID: 31906854 PMCID: PMC6945534 DOI: 10.1186/s12866-019-1691-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Harpins are proteins secreted by the type III secretion system of Gram-negative bacteria during pathogen-plant interactions that can act as elicitors, stimulating defense and plant growth in many types of non-host plants. Harpin-treated plants have higher resistance, quality and yields and, therefore, harpin proteins may potentially have many valuable agricultural applications. Harpins are characterized by high thermal stability at 100 °C. However, it is unknown whether harpins are still active at temperatures above 100 °C or whether different temperatures affect the activity of the harpin protein in different ways. The mechanism responsible for the heat stability of harpins is also unknown. RESULTS We identified a novel harpin, HpaXpm, from the cassava blight bacteria Xanthomonas phaseoli pv. manihotis HNHK. The predicted secondary structure and 3-D structure indicated that the HpaXpm protein has two β-strand domains and two major α-helical domains located at the N- and C-terminal regions, respectively. A phylogenetic tree generated using the maximum likelihood method grouped HpaXpm in clade I of the Hpa1 group along with harpins produced by other Xanthomonas spp. (i.e., HpaG-Xag, HpaG-Xcm, Hpa1-Xac, and Hpa1Xm). Phenotypic assays showed that HpaXpm induced the hypersensitive response (HR), defense responses, and growth promotion in non-host plants more effectively than Hp1Xoo (X. oryzae pv. oryzae). Quantitative real-time PCR analysis indicated that HpaXpm proteins subjected to heat treatments at 100 °C, 150 °C, or 200 °C were still able to stimulate the expression of function-related genes (i.e., the HR marker genes Hin1 and Hsr203J, the defense-related gene NPR1, and the plant growth enhancement-related gene NtEXP6); however, the ability of heat-treated HpaXpm to induce HR was different at different temperatures. CONCLUSIONS These findings add a new member to the harpin family. HpaXpm is heat-stable up to 200 °C and is able to stimulate powerful beneficial biological functions that could potentially be more valuable for agricultural applications than those stimulated by Hpa1Xoo. We hypothesize that the extreme heat resistance of HpaXpm is because the structure of harpin is very stable and, therefore, the HpaXpm structure is less affected by temperature.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xiaoyun Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Wenbo Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jiamin Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Qinghuan Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jianzhang Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xinfeng Cai
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Weiguo Miao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China.
| |
Collapse
|
18
|
Piao W, Sakuraba Y, Paek NC. Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana. BMB Rep 2019. [PMID: 31072449 PMCID: PMC6889895 DOI: 10.5483/bmbrep.2019.52.11.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102-OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
An C, Sheng L, Du X, Wang Y, Zhang Y, Song A, Jiang J, Guan Z, Fang W, Chen F, Chen S. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. HORTICULTURE RESEARCH 2019; 6:84. [PMID: 31645945 PMCID: PMC6804602 DOI: 10.1038/s41438-019-0166-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 05/27/2023]
Abstract
MYB transcription factors are widely involved in the development of and physiological processes in plants. Here, we isolated the chrysanthemum R2R3-MYB family transcription factor CmMYB15, a homologous gene of AtMYB15. It was demonstrated that CmMYB15 expression was induced by aphids and that CmMYB15 could bind to AC elements, which usually exist in the promoter of lignin biosynthesis genes. Overexpression of CmMYB15 in chrysanthemum enhanced the resistance of aphids. Additionally, the content of lignin and the expression of several lignin biosynthesis genes increased. In summary, the results indicate that CmMYB15 regulates lignin biosynthesis genes that enhance the resistance of chrysanthemum to aphids.
Collapse
Affiliation(s)
- Cong An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinping Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yinjie Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, the Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
20
|
Piao W, Kim SH, Lee BD, An G, Sakuraba Y, Paek NC. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2699-2715. [PMID: 30825376 PMCID: PMC6506775 DOI: 10.1093/jxb/erz095] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the responses to several abiotic stresses. In rice (Oryza sativa), the roles of MYB-related TFs in leaf senescence are not well documented. Here, we examined rice MYB TF gene OsMYB102 and found that an OsMYB102 T-DNA activation-tagged line (termed osmyb102-D), which constitutively expresses OsMYB102 under the control of four tandem repeats of the 35S promoter, and OsMYB102-overexpressing transgenic lines (35S:OsMYB102 and 35S:GFP-OsMYB102) maintain green leaves much longer than the wild-type under natural, dark-induced, and abscisic acid (ABA)-induced senescence conditions. Moreover, an osmyb102 knockout mutant showed an accelerated senescence phenotype under dark-induced and ABA-induced leaf senescence conditions. Microarray analysis showed that a variety of senescence-associated genes (SAGs) were down-regulated in the osmyb102-D line. Further studies demonstrated that overexpression of OsMYB102 controls the expression of SAGs, including genes associated with ABA degradation and ABA signaling (OsABF4, OsNAP, and OsCYP707A6), under dark-induced senescence conditions. OsMYB102 inhibits ABA accumulation by directly activating the transcription of OsCYP707A6, which encodes the ABA catabolic enzyme ABSCISIC ACID 8'-HYDROXYLASE. OsMYB102 also indirectly represses ABA-responsive genes, such as OsABF4 and OsNAP. Collectively, these results demonstrate that OsMYB102 plays a critical role in leaf senescence by down-regulating ABA accumulation and ABA signaling responses.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Doo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Present address: Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo 113–8657, Japan
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Correspondence: or
| |
Collapse
|
21
|
AtMYB44 interacts with TOPLESS-RELATED corepressors to suppress protein phosphatase 2C gene transcription. Biochem Biophys Res Commun 2018; 507:437-442. [PMID: 30448055 DOI: 10.1016/j.bbrc.2018.11.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 11/21/2022]
Abstract
AtMYB44 has been described in diverse hormonal signaling processes including abscisic acid (ABA)-mediated tolerance to abiotic stress; however, its function as a transcription factor is controversial. AtMYB44 contains the amino acid sequence LSLSL, a putative ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC REPRESSION (EAR) motif. In yeast two-hybrid assay, physical interaction between AtMYB44 and a TOPLESS-RELATED (TPR) corepressor was observed, but abolished by mutation of the EAR motif. We performed bimolecular fluorescence complementation assay to confirm their interaction in planta. Chromatin immunoprecipitation assay revealed binding of AtMYB44 to the promoter regions of clade A protein phosphatase 2C (PP2C) genes (e.g., ABI1, ABI2, and HAI1), implying putative targets. Levels of histone H3 acetylation around the promoter regions were markedly lower in AtMYB44-overexpressing (35S:AtMYB44) plants than in wild-type plants. These results suggest that AtMYB44 forms a complex with TPR corepressors and recruits histone deacetylase(s) to suppress PP2C gene transcription in a signal-independent manner.
Collapse
|
22
|
Wang WL, Cui X, Wang YX, Liu ZW, Zhuang J. Members of R2R3-type MYB transcription factors from subgroups 20 and 22 are involved in abiotic stress response in tea plants. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1512898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Nguyen NH, Cheong JJ. The AtMYB44 promoter is accessible to signals that induce different chromatin modifications for gene transcription. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:14-19. [PMID: 29957571 DOI: 10.1016/j.plaphy.2018.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
AtMYB44 transcripts accumulate non-specifically under diverse stress conditions and with various phytohormone treatments in Arabidopsis thaliana. We investigated the chromatin modifications caused by various signals to uncover the induction mechanism of AtMYB44 transcription. Bisulfite sequencing confirmed a previous database illustrating that the AtMYB44 promoter and gene-body regions are completely DNA methylation-free. Chromatin immunoprecipitation (ChIP) assays revealed that the nucleosome density is remarkably low at the AtMYB44 promoter region. Thus, the promoter region appears to be highly accessible for various trans-acting factors. ChIP assays revealed that osmotic stress (mannitol treatment) lowered the nucleosome density at the gene-body regions, while abscisic acid (ABA) or jasmonic acid (JA) treatment did so at the proximal transcription start site (TSS) region. In response to mannitol treatment, histone H3 lysine 4 trimethylation (H3K4me3) and H3 acetylation (H3ac) levels within the promoter, TSS, and gene-body regions of AtMYB44 were significantly increased. However, occupancy of histone variant H2A.Z was not affected by the mannitol treatment. We previously reported that salt stress triggered a significant decrease in H2A.Z occupation without affecting the H3K4me3 and H3ac levels. In combination, our data suggest that each signal transduced to the highly accessible promoter induces a different chromatin modification for AtMYB44 transcription.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Michelotti V, Lamontanara A, Buriani G, Orrù L, Cellini A, Donati I, Vanneste JL, Cattivelli L, Tacconi G, Spinelli F. Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics 2018; 19:585. [PMID: 30081820 PMCID: PMC6090863 DOI: 10.1186/s12864-018-4967-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. RESULTS De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. CONCLUSIONS Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.
Collapse
Affiliation(s)
- Vania Michelotti
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Antonella Lamontanara
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Giampaolo Buriani
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Luigi Orrù
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Antonio Cellini
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Joel L. Vanneste
- The New Zealand Institute for Plant & Food Research Ltd, Ruakura Research Centre, Bisley Road, Ruakura, Private Bag 3123, Hamilton, 3240 New Zealand
| | - Luigi Cattivelli
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Gianni Tacconi
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Francesco Spinelli
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
25
|
Ajengui A, Bertolini E, Ligorio A, Chebil S, Ippolito A, Sanzani SM. Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. PLANT CELL REPORTS 2018; 37:483-499. [PMID: 29290008 DOI: 10.1007/s00299-017-2244-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Host perception of Phytophthora nicotianae switching to necrotrophy is fundamental for disease tolerance of citrus. It involves an HR-like response, strengthening of the cell wall structure and hormonal signaling. Stem rot caused by P. nicotianae is a worldwide disease of several important crops, including citrus. Given the growing awareness of chemical fungicides drawbacks, genetic improvement of citrus rootstocks remains the best alternative. However, the molecular basis underlying the successful response of resistant and/or tolerant genotypes remains poorly understood. Therefore, we performed a transcriptomic analysis to examine the differential defense response to P. nicotianae of two germplasms-tolerant sour orange (SO, Citrus aurantium) and susceptible Madam Vinous (MV, C. sinensis)-in both the biotrophic and necrotrophic phases of host-pathogen interaction. Our results revealed the necrotrophic phase as a decisive turning point, since it included stronger modulation of a number of genes implicated in pathogen perception, signal transduction, HR-like response, transcriptional reprogramming, hormone signaling, and cell wall modifications. In particular, the pathogen perception category reflected the ability of SO to perceive the pathogen even after its switch to necrotrophy, and thus to cope successfully with the infection, while MV failed. The concomitant changes in genes involved in the remaining functional categories seemed to prevent pathogen spread. This investigation provided further understanding of the successful defense mechanisms of C. aurantium against P. nicotianae, which might be exploited in post-genomic strategies to develop resistant Citrus genotypes.
Collapse
Affiliation(s)
- Arwa Ajengui
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Angela Ligorio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Samir Chebil
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
26
|
Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant-Bacterial Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:114. [PMID: 29520283 PMCID: PMC5827301 DOI: 10.3389/fpls.2018.00114] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 05/18/2023]
Abstract
Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection.
Collapse
Affiliation(s)
- Francisco X. Nascimento
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J. Rossi
- Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
27
|
Zhai Y, Li P, Mei Y, Chen M, Chen X, Xu H, Zhou X, Dong H, Zhang C, Jiang W. Three MYB genes co-regulate the phloem-based defence against English grain aphid in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4153-4169. [PMID: 28922762 DOI: 10.1093/jxb/erx204] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant phloem-based defence (PBD) against phloem-feeding insects is characteristic of the sieve occlusion by phloem lectins and β-1,3-glucan callose, both of which are produced under regulation by ethylene and MYB transcription factors. Wheat PBD requires β-1,3-glucan synthase-like proteins GSL2, GSL10, and GSL12, and may also require insect-resistant mannose-binding lectins Hfr-1 and Wci-1, which can accumulate in the phloem upon aphid feeding. This study elucidates whether any of the 73 MYB genes identified previously in the common wheat Triticum aestivum genome plays a role in wheat PBD activation with regard to the GSLs and lectins. Wheat MYB genes TaMYB19, TaMYB29, and TaMYB44 are highly activated in response to infestation of English grain aphid, and their silencing facilitates aphid feeding on wheat phloem and represses wheat PBD responses. Repressed PBD is shown to decrease aphid-induced callose deposition in wheat leaf epidermis and decrease aphid-induced expression of genes GSL2, GSL10, GSL12, Hfr-1, and Wci-1 in wheat leaf tissues. Based on single gene silencing effects, TaMYB19, TaMYB29, and TaMYB44 contribute 55-82% of PBD responses. However, the contributions of TaMYB genes to PBD are eliminated by ethylene signalling inhibitors, while simultaneous silencing of the three TaMYB genes cancels the tested PBD responses. Therefore, TaMYB19, TaMYB29, and TaMYB44 are co-regulators of wheat PBD and execute this function through crosstalk with the ethylene signalling pathway.
Collapse
Affiliation(s)
- Yan Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Li
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Yu Mei
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingye Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaochen Chen
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Heng Xu
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Xuan Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hansong Dong
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| | - Chunling Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Jiang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing 210095, China
| |
Collapse
|
28
|
Li P, Chen X, Sun F, Dong H. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:525-532. [PMID: 28247955 DOI: 10.1111/plb.12560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/22/2017] [Indexed: 05/07/2023]
Abstract
Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour.
Collapse
Affiliation(s)
- P Li
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - X Chen
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F Sun
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - H Dong
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1265-1281. [PMID: 28338870 PMCID: PMC5441854 DOI: 10.1093/jxb/erx026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphorus is an important macronutrient for plant growth, but often deficient in soil. To understand the molecular basis of the complex responses of potato (Solanum tuberosum L.) to phosphate (Pi) deficiency stress, the RNA-Seq approach was taken to identify genes responding to Pi starvation in potato roots. A total of 359 differentially expressed genes were identified, among which the Solanum tuberosum transcription factor gene MYB44 (StMYB44) was found to be down-regulated by Pi starvation. StMYB44 was ubiquitously expressed in potato tissues and organs, and StMYB44 protein was exclusively localized in the nucleus. Overexpression of StMYB44 in potato resulted in lower accumulation of Pi in shoots. Transcriptomic analysis indicated that the abundance of S. tuberosum PHOSPHATE1 (StPHO1), a Pi transport-related gene, was reduced in StMYB44 overexpression lines. In contrast, knock-out of StMYB44 by a CRISPR/Cas9 system failed to increase transcription of StPHO1. Moreover, StMYB44 was found to interact in the nucleus with AtWRKY6, a known Arabidopsis transcription factor directly regulating PHO1 expression, and StWRKY6, indicating that StMYB44 could be a member of the regulatory complex controlling transcription of StPHO1. Taken together, our study demonstrates that StMYB44 negatively regulates Pi transport in potato by suppressing StPHO1 expression.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Agronomy, Purdue University, West Lafayette IN 47907, USA
| | - Manrong Zha
- Department of Agronomy, Purdue University, West Lafayette IN 47907, USA
| | - Jing Huang
- Department of Agronomy, Purdue University, West Lafayette IN 47907, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Muhammad Imran
- Department of Agronomy, Purdue University, West Lafayette IN 47907, USA
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Pakistan 40100
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
30
|
Dong Y, Li P, Zhang C. Harpin Hpa1 promotes flower development in Impatiens and Parochetus plants. BOTANICAL STUDIES 2016; 57:22. [PMID: 28597432 PMCID: PMC5430589 DOI: 10.1186/s40529-016-0132-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing plant resistance to pathogens and insect pests. In these effects, the 10-40 residue fragment (Hpa110-42) isolated from the Hpa1 sequence is 1.3 to 7.5-fold more effective than the full length. RESULTS This study extends the beneficial effects of Hpa1 and Hpa110-42 to flower development in three species of the garden balsam Impatiens and the garden scoparius Parochetus communis plant. The external application of Hpa1 or Hpa110-42 to the four ornamental plants had three effects, i.e., promoting flower growth, retarding senescence of fully expanded flowers, and increasing anthocyanin concentrations in those flowers and therefore improving their ornamental visages. Based on quantitative comparisons, Hpa110-42 was at least 17 and 42 % more effective than Hpa1 to increase anthocyanin concentrations and to promote the growth of flowers or delay their senescence. CONCLUSION Our results suggest that Hpa1 and especially Hpa110-42 have a great potential of horticultural application to increase ornamental merits of the different garden plants.
Collapse
Affiliation(s)
- Yilan Dong
- Nanjing Foreign Language School, 30 East Beijing Road, Nanjing, 210008 China
| | - Ping Li
- College of Plant Protection, Nanjing Agricultural University, 1 Weigang Town, Nanjing, 210095 China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, 1 Weigang Town, Nanjing, 210095 China
| |
Collapse
|
31
|
Zhao Q, Li M, Jia Z, Liu F, Ma H, Huang Y, Song S. AtMYB44 Positively Regulates the Enhanced Elongation of Primary Roots Induced by N-3-Oxo-Hexanoyl-Homoserine Lactone in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:774-785. [PMID: 27604593 DOI: 10.1094/mpmi-03-16-0063-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
N-acyl-homoserine lactones (AHL) are the quorum-sensing (QS) signal molecules used by many gram-negative bacteria to coordinate their collective behavior in a population. Recent evidence demonstrates their roles in plant root growth and defense responses. AtMYB44 is a multifaceted transcriptional factor that functions in many physiological processes in plants but whether AtMYB44 modulates the plant response to AHL with aspects of primary root elongation remains unknown. Here, we show that the expression of AtMYB44 was upregulated upon treatment with N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL). The stimulatory effect of 3OC6-HSL on primary root elongation was abolished in the AtMYB44 functional-deficiency mutant atmby44. In contrast, an enhanced promoting-impact of 3OC6-HSL on primary root growth was observed in AtMYB44-overexpressing plant MYB44OTA. Cellular analysis indicated that the prolonged primary root elicited by 3OC6-HSL is the consequence of increased cell division in the meristem zone and enhanced cell elongation in the elongation zone, and AtMYB44 may act as a positive regulator in this process. Furthermore, we demonstrated that AtMYB44 might participate in the 3OC6-HSL-mediated primary root growth via regulating the expression of cytokinin- and auxin-related genes. The data establish a genetic connection between the regulatory role of AtMYB44 in phytohormones-related gene expression and plant response to the bacterial QS signal.
Collapse
Affiliation(s)
- Qian Zhao
- 1 Biology Institute, Hebei Academy of Sciences; and
- 2 Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Man Li
- 1 Biology Institute, Hebei Academy of Sciences; and
| | - Zhenhua Jia
- 1 Biology Institute, Hebei Academy of Sciences; and
- 2 Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Fang Liu
- 1 Biology Institute, Hebei Academy of Sciences; and
- 2 Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Hong Ma
- 1 Biology Institute, Hebei Academy of Sciences; and
- 2 Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Yali Huang
- 1 Biology Institute, Hebei Academy of Sciences; and
- 2 Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Shuishan Song
- 1 Biology Institute, Hebei Academy of Sciences; and
- 2 Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| |
Collapse
|
32
|
Hieno A, Naznin HA, Hyakumachi M, Higuchi-Takeuchi M, Matsui M, Yamamoto YY. Possible Involvement of MYB44-Mediated Stomatal Regulation in Systemic Resistance Induced by Penicillium simplicissimum GP17-2 in Arabidopsis. Microbes Environ 2016; 31:154-9. [PMID: 27301421 PMCID: PMC4912150 DOI: 10.1264/jsme2.me16025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 11/12/2022] Open
Abstract
The plant growth-promoting fungus (PGPF), Penicillium simplicissimum GP17-2 (GP17-2), induces systemic resistance against Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis thaliana. The molecular mechanisms underlying induced systemic resistance (ISR) by GP17-2 were investigated in the present study. Microscopic observations revealed that stomatal reopening by Pst was restricted by elicitation with the culture filtrate (CF) from GP17-2. A gene expression analysis of MYB44, which enhances abscisic acid signaling and consequently closes stomata, revealed that the gene was activated by CF. CF-elicited myb44 mutant plants failed to restrict stomatal reopening and showed lower resistance to Pst than wild-type plants. These results indicate that stomatal resistance by GP17-2 is mediated by the gene activation of MYB44. We herein revealed that the MYB44-mediated prevention of penetration through the stomata is one of the components responsible for GP17-2-elicited ISR.
Collapse
Affiliation(s)
- Ayaka Hieno
- The Graduate School of Agricultural Science, Gifu UniversityYanagido 1–1, Gifu 501–1193Japan
| | - Hushna Ara Naznin
- Applied Biological Sciences, Gifu UniversityYanagido 1–1, Gifu 501–1193Japan
| | - Mitsuro Hyakumachi
- The Graduate School of Agricultural Science, Gifu UniversityYanagido 1–1, Gifu 501–1193Japan
- Applied Biological Sciences, Gifu UniversityYanagido 1–1, Gifu 501–1193Japan
- JST ALCAJapan
| | | | - Minami Matsui
- RIKEN CSRSSuehiro-cho 1–7–22, Tsurumi-ku, Yokohama-shi, Kanagawa, 230–0045Japan
- JST ALCAJapan
| | - Yoshiharu Y. Yamamoto
- The Graduate School of Agricultural Science, Gifu UniversityYanagido 1–1, Gifu 501–1193Japan
- Applied Biological Sciences, Gifu UniversityYanagido 1–1, Gifu 501–1193Japan
- RIKEN CSRSSuehiro-cho 1–7–22, Tsurumi-ku, Yokohama-shi, Kanagawa, 230–0045Japan
- JST ALCAJapan
| |
Collapse
|
33
|
Ge J, Li B, Shen D, Xie J, Long J, Dong H. Tobacco TTG2 regulates vegetative growth and seed production via the predominant role of ARF8 in cooperation with ARF17 and ARF19. BMC PLANT BIOLOGY 2016; 16:126. [PMID: 27255279 PMCID: PMC4890496 DOI: 10.1186/s12870-016-0815-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant TRANSPARENT TESTA GLABRA (TTG) proteins regulate various developmental activities via the auxin signaling pathway. Recently, we elucidated the developmental role of tobacco (Nicotiana tabacum L.) NtTTG2 in association with 12 genes that putatively encode AUXIN RESPONSIVE FACTOR (ARF) proteins, including NtARF8, NtARF17, and NtARF19. Here we show that NtTTG2 regulates tobacco growth and development by involving the NtARF8, NtARF17, and NtARF19 genes, with the NtARF8 gene playing a predominant contribution. RESULTS Independent silencing of the NtARF8 gene more strongly repressed tobacco growth than silencing the NtARF17 or NtARF19 gene and more effectively eradicated the growth enhancement effect of NtTTG2 overexpression. In contrast, plant growth was not affected by silencing additional nine NtTTG2-regulated NtARF genes. In double and triple gene silencing combinations, silencing the NtARF8 gene was more effective than silencing the NtARF17 or NtARF19 gene to repress growth as well as nullify growth enhancement. Therefore, the NtARF8 predominantly cooperated with the NtARF17 and NtAFR19 of the NtTTG2 functional pathway. NtARF8 also contributed to NtTTG2-regulated seed production as concurrent NtTTG2 and NtARF8 overexpression played a synergistic role in seed production quantity, whereas concurrent silencing of both genes caused more severe seed abortion than single gene silencing. In plant cells, the NtTTG2 protein facilitated the nuclear import of NtARF8 as well as increased its function as a transcription activator. CONCLUSIONS NtARF8 is an integral component of the NtTTG2 functional pathway, which regulates tobacco growth and development.
Collapse
Affiliation(s)
- Jun Ge
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoyan Li
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Dan Shen
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junyi Xie
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juying Long
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hansong Dong
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Sattar S, Thompson GA. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles. FRONTIERS IN PLANT SCIENCE 2016; 7:1241. [PMID: 27625654 PMCID: PMC5003895 DOI: 10.3389/fpls.2016.01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the host transcriptome that appear to be fine-tuned by sRNAs. The role of sRNA in plant defense responses is complex. Different forms of sRNAs, with specific modes of action, regulate changes in the host transcriptome primarily through post-transcriptional gene silencing and occasionally through translational repression. Plant genetic resistance against hemipterans provides a model to explore the regulatory roles of sRNAs in plant defense. Aphid-induced sRNA expression in resistance genotypes delivers a new paradigm in understanding the regulation of R gene-mediated resistance in host plants. Unique sRNA profiles, including changes in sRNA biogenesis and expression can also provide insights into susceptibility to insect herbivores. Activation of phytohormone-mediated defense responses against insect herbivory is another hallmark of this interaction, and recent studies have shown that regulation of phytohormone signaling is under the control of sRNAs. Hemipterans feeding on resistant plants also show changes in insect sRNA profiles, possibly influencing insect development and reproduction. Changes in insect traits such as fecundity, host range, and resistance to insecticides are impacted by sRNAs and can directly contribute to the success of certain insect biotypes. In addition to causing direct damage to the host plant, hemipteran insects are often vectors of viral pathogens. Insect anti-viral RNAi machinery is activated to limit virus accumulation, suggesting a role in insect immunity. Virus-derived long sRNAs strongly resemble insect piRNAs, leading to the speculation that the piRNA pathway is induced in response to viral infection. Evidence for robust insect RNAi machinery in several hemipteran species is of immense interest and is being actively pursued as a possible tool for insect control. RNAi-induced gene silencing following uptake of exogenous dsRNA was successfully demonstrated in several hemipterans and the presence of sid-1 like genes support the concept of a systemic response in some species.
Collapse
|
35
|
Li L, Wang H, Gago J, Cui H, Qian Z, Kodama N, Ji H, Tian S, Shen D, Chen Y, Sun F, Xia Z, Ye Q, Sun W, Flexas J, Dong H. Harpin Hpa1 Interacts with Aquaporin PIP1;4 to Promote the Substrate Transport and Photosynthesis in Arabidopsis. Sci Rep 2015; 5:17207. [PMID: 26607179 PMCID: PMC4660436 DOI: 10.1038/srep17207] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Abstract
Harpin proteins produced by plant-pathogenic Gram-negative bacteria are the venerable player in regulating bacterial virulence and inducing plant growth and defenses. A major gap in these effects is plant sensing linked to cellular responses, and plant sensor for harpin Hpa1 from rice bacterial blight pathogen points to plasma membrane intrinsic protein (PIP). Here we show that Arabidopsis AtPIP1;4 is a plasma membrane sensor of Hpa1 and plays a dual role in plasma membrane permeability of CO2 and H2O. In particular, AtPIP1;4 mediates CO2 transport with a substantial contribute to photosynthesis and further increases this function upon interacting with Hpa1 at the plasma membrane. As a result, leaf photosynthesis rates are increased and the plant growth is enhanced in contrast to the normal process without Hpa1-AtPIP1;4 interaction. Our findings demonstrate the first case that plant sensing of a bacterial harpin protein is connected with photosynthetic physiology to regulate plant growth.
Collapse
Affiliation(s)
- Liang Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears 07122, Spain
| | - Haiying Cui
- Institute of Grassland Science, Northeast Normal University and National Ministry of Education Key Laboratory of Vegetation Ecology, Changchun 130024, China
| | - Zhengjiang Qian
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Naomi Kodama
- Agro-Meteorology Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengli Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhonglan Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Ye
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wei Sun
- Institute of Grassland Science, Northeast Normal University and National Ministry of Education Key Laboratory of Vegetation Ecology, Changchun 130024, China
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears 07122, Spain
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Wu J, Wang M, Zhang H, Liu R. Extreme Thermophilic Enzyme CelB-m Efficiently Degrades the Cellulose in Transgenic Arabidopsis thaliana. Appl Biochem Biotechnol 2015; 177:362-72. [PMID: 26186956 DOI: 10.1007/s12010-015-1748-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Agricultural and forestry wastes abundant in the plant biomass are an important resource of green energy. However, little is known about how to exploit efficiently the resource. In this study, we isolated the CelB gene that encodes the extremely thermophilic cellulose-degrading enzyme from Thermotoga maritime. The enzyme-encoding gene CelB was optimized and reconstructed in N' codes by the code adaptability in Arabidopsis thaliana. Then, the optimized gene (CelB-m) or the recombinant gene (CBD-CelB) was fused with the plant binary vector which harbors the β-glucuronidase (GUS) gene that was transferred into Arabidopsis, respectively. GUS assay results showed CelB gene ubiquitous expression in transgenic plants. The enzyme-activity assays exhibited that the cellulase activity in the leaves of CelB-m transgenic plants were significantly higher than that of wild-type plants. The highest amount of enzymatic activity obtained was 131.2 U for every gram of fresh leaves in CBD-CelB plants. In addition, the enzymatic activity was stable at the temperature of 90 °C. These results suggested that the ectopic expression of pertinent biomass-degrading enzymes in transgenic plants can degrade effectively the plant biomass and lay a foundation on the application for the transgenic technique to crops.
Collapse
Affiliation(s)
- Jiandong Wu
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | | | | | | |
Collapse
|
37
|
Li L, Hu L, Han LP, Ji H, Zhu Y, Wang X, Ge J, Xu M, Shen D, Dong H. Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:381. [PMID: 25547226 PMCID: PMC4310184 DOI: 10.1186/s12870-014-0381-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recently we showed that de novo expression of a turtle riboflavin-binding protein (RfBP) in transgenic Arabidopsis increased H2O2 concentrations inside leaf cells, enhanced the expression of floral regulatory gene FD and floral meristem identity gene AP1 at the shoot apex, and induced early flowering. Here we report that RfBP-induced H2O2 presumably results from electron leakage at the mitochondrial electron transport chain (METC) and this source of H2O2 contributes to the early flowering phenotype. RESULTS While enhanced expression of FD and AP1 at the shoot apex was correlated with early flowering, the foliar expression of 13 of 19 METC genes was repressed in RfBP-expressing (RfBP+) plants. Inside RfBP+ leaf cells, cytosolic H2O2 concentrations were increased possibly through electron leakage because similar responses were also induced by a known inducer of electron leakage from METC. Early flowering no longer occurred when the repression on METC genes was eliminated by RfBP gene silencing, which restored RfBP+ to wild type in levels of FD and AP1 expression, H2O2, and flavins. Flowering was delayed by the external riboflavin application, which brought gene expression and flavins back to the steady-state levels but only caused 55% reduction of H2O2 concentrations in RfBP+ plants. RfBP-repressed METC gene expression remedied the cytosolic H2O2 diminution by genetic disruption of transcription factor NFXLl and compensated for compromises in FD and AP1 expression and flowering time. By contrast, RfBP resembled a peroxisomal catalase mutation, which augments the cytosolic H2O2, to enhance FD and AP1 expression and induce early flowering. CONCLUSIONS RfBP-repressed METC gene expression potentially causes electron leakage as one of cellular sources for the generation of H2O2 with the promoting effect on flowering. The repressive effect on METC gene expression is not the only way by which RfBP induces H2O2 and currently unappreciated factors may also function under RfBP+ background.
Collapse
Affiliation(s)
- Liang Li
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li Hu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Li-Ping Han
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hongtao Ji
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Yueyue Zhu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Xiaobing Wang
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Jun Ge
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Manyu Xu
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University and State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 China
| |
Collapse
|
38
|
Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan Z, Chen S. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics 2014; 15:1050. [PMID: 25466867 PMCID: PMC4265409 DOI: 10.1186/1471-2164-15-1050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. RESULTS Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. CONCLUSIONS Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.
Collapse
Affiliation(s)
- Xiaolong Xia
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Yafeng Shao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| |
Collapse
|
39
|
Ji H, Zhu Y, Tian S, Xu M, Tian Y, Li L, Wang H, Hu L, Ji Y, Ge J, Wen W, Dong H. Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:237. [PMID: 25201173 PMCID: PMC4172855 DOI: 10.1186/s12870-014-0237-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/20/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Riboflavin is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), essential cofactors for many metabolic enzymes that catalyze a variety of biochemical reactions. Previously we showed that free flavin (riboflavin, FMN, and FAD) concentrations were decreased in leaves of transgenic Arabidopsis plants expressing a turtle riboflavin-binding protein (RfBP). Here, we report that flavin downregulation by RfBP induces the early flowering phenotype and enhances expression of floral promoting photoperiod genes. RESULTS Early flowering was a serendipitous phenomenon and was prudently characterized as a constant phenotype of RfBP-expressing transgenic Arabidopsis plants in both long days and short days. The phenotype was eliminated when leaf free flavins were brought back to the steady-state levels either by the RfBP gene silencing and consequently nullified production of the RfBP protein, or by external riboflavin feeding treatment. RfBP-induced early flowering was correlated with enhanced expression of floral promoting photoperiod genes and the florigen gene FT in leaves but not related to genes assigned to vernalization, autonomous, and gibberellin pathways, which provide flowering regulation mechanisms alternative to the photoperiod. RfBP-induced early flowering was further correlated with increased expression of the FD gene encoding bZIP transcription factor FD essential for flowering time control and the floral meristem identity gene AP1 in the shoot apex. By contrast, the expression of FT and photoperiod genes in leaves and the expression of FD and AP1 in the shoot apex were no longer enhanced when the RfBP gene was silenced, RfBP protein production canceled, and flavin concentrations were elevated to the steady-state levels inside plant leaves. CONCLUSIONS Token together, our results provide circumstantial evidence that downregulation of leaf flavin content by RfBP induces early flowering and coincident enhancements of genes that promote flowering through the photoperiod pathway.
Collapse
Affiliation(s)
- Hongtao Ji
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yueyue Zhu
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shan Tian
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yimin Tian
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liang Li
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huan Wang
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Li Hu
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Ji
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jun Ge
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weigang Wen
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
40
|
Zhao Y, Li C, Ge J, Xu M, Zhu Q, Wu T, Guo A, Xie J, Dong H. Recessive mutation identifies auxin-repressed protein ARP1, which regulates growth and disease resistance in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:638-54. [PMID: 24875793 DOI: 10.1094/mpmi-08-13-0250-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To study the molecular mechanism that underpins crosstalk between plant growth and disease resistance, we performed a mutant screening on tobacco and created a recessive mutation that caused the phenotype of growth enhancement and resistance impairment (geri1). In the geri1 mutant, growth enhancement accompanies promoted expression of growth-promoting genes, whereas repressed expression of defense response genes is consistent with impaired resistance to diseases caused by viral, bacterial, and oomycete pathogens. The geri1 allele identifies a single genetic locus hypothetically containing the tagged GERI1 gene. The isolated GERI1 gene was predicted to encode auxin-repressed protein ARP1, which was determined to be 13.5 kDa in size. The ARP1/GERI1 gene was further characterized as a repressor of plant growth and an activator of disease resistance based on genetic complementation, gene silencing, and overexpression analyses. ARP1/GERI1 resembles pathogen-associated molecular patterns and is required for them to repress plant growth and activate plant immunity responses. ARP1/GERI1 represses growth by inhibiting the expression of AUXIN RESPONSE FACTOR gene ARF8, and ARP1/GERI1 recruits the NPR1 gene, which is essential for the salicylic-acid-mediated defense, to coregulate disease resistance. In conclusion, ARP1/GERI1 is an integral regulator for crosstalk between growth and disease resistance in the plant.
Collapse
|
41
|
Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44. Int J Mol Sci 2014; 15:8473-90. [PMID: 24828206 PMCID: PMC4057743 DOI: 10.3390/ijms15058473] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 11/17/2022] Open
Abstract
Abscisic acid (ABA) signaling plays important roles in plant growth, development and adaptation to various stresses. RCAR1/PYL9 has been known as a cytoplasm and nuclear ABA receptor in Arabidopsis. To obtain further insight into the regulatory mechanism of RCAR1/PYL9, a yeast two-hybrid approach was performed to screen for RCAR1/PYL9-interacting proteins and an R2R3-type MYB transcription factor, AtMYB44, was identified. The interaction between RCAR1/PYL9 and AtMYB44 was further confirmed by glutathione S-transferase (GST) pull-down and bimolecular fluorescence complementation (BiFC) assays. Gene expression analysis showed that AtMYB44 negatively regulated the expression of ABA-responsive gene RAB18, in contrast to the opposite role reported for RCAR1/PYL9. Competitive GST pull-down assay and analysis of phosphatase activity demonstrated that AtMYB44 and ABI1 competed for binding to RCAR1/PYL9 and thereby reduced the inhibitory effect of RCAR1/PYL9 on ABI1 phosphatase activity in the presence of ABA in vitro. Furthermore, transient activation assay in protoplasts revealed AtMYB44 probably also decreased RCAR1/PYL9-mediated inhibition of ABI1 activity in vivo. Taken together, our work provides a reasonable molecular mechanism of AtMYB44 in ABA signaling.
Collapse
|
42
|
Wang D, Wang Y, Fu M, Mu S, Han B, Ji H, Cai H, Dong H, Zhang C. Transgenic Expression of the Functional Fragment Hpa1 10-42 of the Harpin Protein Hpa1 Imparts Enhanced Resistance to Powdery Mildew in Wheat. PLANT DISEASE 2014; 98:448-455. [PMID: 30708731 DOI: 10.1094/pdis-07-13-0687-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Powdery mildew, one of devastating diseases of wheat worldwide, is caused by Erysiphe graminis f. sp. tritici, a fungal species with constant population changes, which often poses challenges in disease management with host resistance. Transgenic approaches that utilize broad-spectrum resistance may limit changes of pathogen populations and contribute to effective control of the disease. The harpin protein Hpa1, produced by the rice bacterial blight pathogen, can induce resistance to bacterial blight and blast in rice. The fragment comprising residues 10 through 42 of Hpa1, Hpa110-42, is reportedly three- to eightfold more effective than the full-length protein. This study evaluated the transgenic expression of the Hpa110-42 gene for resistance to powdery mildew in wheat caused by E. graminis f. sp. tritici. Nine Hpa110-42 transgenic wheat lines were generated. The genomic integration of Hpa110-42 was confirmed, and expression of the transgene was detected at different levels in the individual transgenic lines. Following inoculation with the E. graminis f. sp. tritici isolate Egt15 in the greenhouse, five transgenic lines had significantly higher levels of resistance to powdery mildew compared with nontransformed plants. Thus, transgenic expression of Hpa110-42 conferred resistance to one isolate of E. graminis f. sp. tritici in wheat in the greenhouse.
Collapse
Affiliation(s)
- Defu Wang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajun Wang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Maoqiang Fu
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuyuan Mu
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bing Han
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hongtao Ji
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hongsheng Cai
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chunling Zhang
- National Ministry of Education Key Laboratory of Integrated Management of Crop Diseases and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
43
|
Fu M, Xu M, Zhou T, Wang D, Tian S, Han L, Dong H, Zhang C. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1439-53. [PMID: 24676030 PMCID: PMC3967084 DOI: 10.1093/jxb/ert488] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10-40 residue fragment (Hpa1₁₀₋₄₂) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa1₁₀₋₄₂ under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa1₁₀₋₄₂ was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa1₁₀₋₄₂-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa1₁₀₋₄₂-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa1₁₀₋₄₂ can be integrated into the germplasm of this agriculturally significant crop.
Collapse
Affiliation(s)
- Maoqiang Fu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manyu Xu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Zhou
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Defu Wang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Tian
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Han
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hansong Dong
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunling Zhang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
44
|
Li X, Han B, Xu M, Han L, Zhao Y, Liu Z, Dong H, Zhang C. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. PLANTA 2014; 239:831-46. [PMID: 24395199 PMCID: PMC3955481 DOI: 10.1007/s00425-013-2013-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/12/2013] [Indexed: 05/20/2023]
Abstract
The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.
Collapse
Affiliation(s)
- Xiaojie Li
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
- Tobacco Research Institute, Henan Provincial Academy of Agricultural Sciences, Xuchang, 461000 China
| | - Bing Han
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Han
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanying Zhao
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhilan Liu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chunling Zhang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
45
|
Zhu Q, Li B, Mu S, Han B, Cui R, Xu M, You Z, Dong H. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco. BMC Genomics 2013; 14:806. [PMID: 24252253 PMCID: PMC4046668 DOI: 10.1186/1471-2164-14-806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The phytohormone auxin mediates a stunning array of plant development through the functions of AUXIN RESPONSE FACTORs (ARFs), which belong to transcription factors and are present as a protein family comprising 10-43 members so far identified in different plant species. Plant development is also subject to regulation by TRANSPARENT TESTA GLABRA (TTG) proteins, such as NtTTG2 that we recently characterized in tobacco Nicotiana tabacum. To find the functional linkage between TTG and auxin in the regulation of plant development, we performed de novo assembly of the tobacco transcriptome to identify candidates of NtTTG2-regulated ARF genes. RESULTS The role of NtTTG2 in tobacco growth and development was studied by analyzing the biological effects of gene silencing and overexpression. The NtTTG2 gene silencing causes repressive effects on vegetative growth, floral anthocyanin synthesis, flower colorization, and seed production. By contrast, the plant growth and development processes are promoted by NtTTG2 overexpression. The growth/developmental function of NtTTG2 associates with differential expression of putative ARF genes identified by de novo assembly of the tobacco transcriptome. The transcriptome contains a total of 54,906 unigenes, including 30,124 unigenes (54.86%) with annotated functions and at least 8,024 unigenes (14.61%) assigned to plant growth and development. The transcriptome also contains 455 unigenes (0.83%) related to auxin responses, including 40 putative ARF genes. Based on quantitative analyses, the expression of the putative genes is either promoted or inhibited by NtTTG2. CONCLUSIONS The biological effects of the NtTTG2 gene silencing and overexpression suggest that NtTTG2 is an essential regulator of growth and development in tobacco. The effects of the altered NtTTG2 expression on expression levels of putative ARF genes identified in the transcriptome suggest that NtTTG2 functions in relation to ARF transcription factors.
Collapse
Affiliation(s)
- Qian Zhu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Baoyan Li
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
- />Yantai Academy of Agricultural Sciences, Yantai, 265500 China
| | - Shuyuan Mu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bing Han
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runzhi Cui
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Manyu Xu
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhenzhen You
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hansong Dong
- />Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
46
|
Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1115-22. [PMID: 23745678 DOI: 10.1094/mpmi-02-13-0050-cr] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.
Collapse
|
47
|
Lü BB, Li XJ, Sun WW, Li L, Gao R, Zhu Q, Tian SM, Fu MQ, Yu HL, Tang XM, Zhang CL, Dong HS. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:841-50. [PMID: 23656500 DOI: 10.1111/j.1438-8677.2012.00675.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/15/2012] [Indexed: 05/20/2023]
Abstract
Recently we showed that the transcription activator AtMYB44 regulates expression of EIN2, a gene essential for ethylene signalling and insect resistance, in Arabidopsis thaliana (Arabidopsis). To link the transactivation with insect resistance, we investigated the wild-type and atmyb44 mutant plants, genetically Complemented atmyb44 (Catmyb44) and AtMYB44-Overexpression Transgenic Arabidopsis (MYB44OTA). We found that AtMYB44 played a critical role in Arabidopsis resistance to the phloem-feeding generalist green peach aphid (Myzus persicae Sulzer) and leaf-chewing specialist caterpillar diamondback moth (Plutella xylostella L.). AtMYB44 was required not only for the development of constitutive resistance but also for the induction of resistance by both herbivorous insects. Levels of constitutive and herbivore-induced resistance were consistent with corresponding amounts of the AtMYB44 protein constitutively produced in MYB44OTA and induced by herbivory in Catmyb44. In both cases, AtMYB44 promoted EIN2 expression to a greater extent in MYB44OTA than in Catmyb44. However, AtMYB44-promoted EIN2 expression was arrested with reduced resistance levels in the EIN2-deficient Arabidopsis mutant ein2-1 and the MYB44OTA ein2-1 hybrid. In the different plant genotypes, only MYB44OTA constitutively displayed phloem-based defences, which are specific to phloem-feeding insects, and robust expression of genes involved in the biosynthesis of glucosinolates, which are the secondary plant metabolites known as deterrents to generalist herbivores. Phloem-based defences and glucosinolate-related gene expression were not detected in ein2-1 and MYB44OTA ein2-1. These results establish a genetic connection between the regulatory role of AtMYB44 in EIN2 expression and the development of Arabidopsis resistance to insects.
Collapse
Affiliation(s)
- B-B Lü
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pests, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kettles GJ, Drurey C, Schoonbeek HJ, Maule AJ, Hogenhout SA. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. THE NEW PHYTOLOGIST 2013; 198:1178-1190. [PMID: 23528052 PMCID: PMC3666093 DOI: 10.1111/nph.12218] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
· Small RNAs play important roles in resistance to plant viruses and the complex responses against pathogens and leaf-chewing insects. · We investigated whether small RNA pathways are involved in Arabidopsis resistance against a phloem-feeding insect, the green peach aphid (Myzus persicae). We used a 2-wk fecundity assay to assess aphid performance on Arabidopsis RNA silencing and defence pathway mutants. Quantitative real-time polymerase chain reaction was used to monitor the transcriptional activity of defence-related genes in plants of varying aphid susceptibility. High-performance liquid chromatography-mass spectrometry was employed to measure the accumulation of the antimicrobial compound camalexin. Artificial diet assays allowed the assessment of the effect of camalexin on aphid performance. · Myzus persicae produces significantly less progeny on Arabidopsis microRNA (miRNA) pathway mutants. Plants unable to process miRNAs respond to aphid infestation with increased induction of PHYTOALEXIN DEFICIENT3 (PAD3) and production of camalexin. Aphids ingest camalexin when feeding on Arabidopsis and are more successful on pad3 and cyp79b2/cyp79b3 mutants defective in camalexin production. Aphids produce less progeny on artificial diets containing camalexin. · Our data indicate that camalexin functions beyond antimicrobial defence to also include hemipteran insects. This work also highlights the extensive role of the miRNA-mediated regulation of secondary metabolic defence pathways with relevance to resistance against a hemipteran pest.
Collapse
Affiliation(s)
- Graeme J Kettles
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Claire Drurey
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Andy J Maule
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Saskia A Hogenhout
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| |
Collapse
|
49
|
Zou B, Jia Z, Tian S, Wang X, Gou Z, L B, Dong H. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:304-313. [PMID: 32481109 DOI: 10.1071/fp12253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
Plant MYB transcription factors are implicated in resistance to biotic and abiotic stresses. Here, we demonstrate that an R2-R3 MYB transcription factor, AtMYB44, plays a role in the plant defence response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). The expression of AtMYB44 was upregulated upon pathogen infection and treatments with defence-related phytohormones. Transgenic plants overexpressing AtMYB44 (35S-Ms) exhibited greater levels of PR1 gene expression, cell death, callose deposition and hydrogen peroxide (H2O2) accumulation in leaves infected with PstDC3000. Consequently, 35S-M lines displayed enhanced resistance to PstDC3000. In contrast, the atmyb44 T-DNA insertion mutant was more susceptible to PstDC3000 and exhibited decreased PR1 gene expression upon infection. Using double mutants constructed via crosses of 35S-M lines with NahG transgenic plants and nonexpressor of pathogenesis-related genes1 mutant (npr1-1), we demonstrated that the enhanced PR1 gene expression and PstDC3000 resistance in 35S-M plants occur mainly through the salicylic acid signalling pathway.
Collapse
Affiliation(s)
- Baohong Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Jia
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei 050051, China
| | - Shuangmei Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Gou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Beibei L
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
50
|
Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 2013; 8:e57547. [PMID: 23437396 PMCID: PMC3578790 DOI: 10.1371/journal.pone.0057547] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023] Open
Abstract
Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.
Collapse
Affiliation(s)
- Helene Persak
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| | - Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| |
Collapse
|