1
|
Koch H, Sessitsch A. The microbial-driven nitrogen cycle and its relevance for plant nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5547-5556. [PMID: 38900822 DOI: 10.1093/jxb/erae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Nitrogen (N) is a vital nutrient and an essential component of biological macromolecules such as nucleic acids and proteins. Microorganisms are major drivers of N-cycling processes in all ecosystems, including the soil and plant environment. The availability of N is a major growth-limiting factor for plants and it is significantly affected by the plant microbiome. Plants and microorganisms form complex interaction networks resulting in molecular signaling, nutrient exchange, and other distinct metabolic responses. In these networks, microbial partners influence growth and N use efficiency of plants either positively or negatively. Harnessing the beneficial effects of specific players within crop microbiomes is a promising strategy to counteract the emerging threats to human and planetary health due to the overuse of industrial N fertilizers. However, in addition to N-providing activities (e.g. the well-known symbiosis of legumes and Rhizobium spp.), other plant-microorganism interactions must be considered to obtain a complete picture of how microbial-driven N transformations might affect plant nutrition. For this, we review recent insights into the tight interplay between plants and N-cycling microorganisms, focusing on microbial N-transformation processes representing N sources and sinks that ultimately shape plant N acquisition.
Collapse
Affiliation(s)
- Hanna Koch
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430 Tulln, Austria
| | - Angela Sessitsch
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, A-3430 Tulln, Austria
| |
Collapse
|
2
|
Tian Y, Li P, Chen X, He J, Tian M, Zheng Z, Hu R, Fu Z, Yi Z, Li J. R3 strain and Fe-Mn modified biochar reduce Cd absorption capacity of roots and available Cd content of soil by affecting rice rhizosphere and endosphere key flora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116418. [PMID: 38696873 DOI: 10.1016/j.ecoenv.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microorganisms have a significant role in regulating the absorption and transportation of Cd in the soil-plant system. However, the mechanism by which key microbial taxa play a part in response to the absorption and transportation of Cd in rice under Cd stress requires further exploration. In this study, the cadmium-tolerant endophytic bacterium Herbaspirillum sp. R3 (R3) and Fe-Mn-modified biochar (Fe-Mn) were, respectively, applied to cadmium-contaminated rice paddies to investigate the effects of key bacterial taxa in the soil-rice system on the absorption and transportation of Cd in rice under different treatments. The results showed that both R3 and Fe-Mn treatments considerably decreased the content of cadmium in roots, stems and leaves of rice at the peak tillering stage by 17.24-49.28% in comparison to the control (CK). The cadmium content reduction effect of R3 treatment is better than that of Fe-Mn treatment. Further analysis revealed that the key bacterial taxa in rice roots under R3 treatment were Sideroxydans and Actinobacteria, and that their abundance showed a substantial positive correlation and a significant negative correlation with the capacity of rice roots to assimilate Cd from the surroundings, respectively. The significant increase in soil pH under Fe-Mn treatment, significant reduction in the relative abundances of Acidobacteria, Verrucomicrobia, Subdivision3 genera incertae sedis, Sideroxydans, Geobacter, Gp1, and Gp3, and the significant increase in the relative abundance of Thiobacillus among the soil bacterial taxa may be the main reasons for the decrease in available Cd content of the soil. In addition, both the R3 and Fe-Mn treatments showed some growth-promoting effects on rice, which may be related to their promotion of transformations of soil available nutrients. This paper describes the possible microbial mechanisms by which strain R3 and Fe-Mn biochar reduce Cd uptake in rice, providing a theoretical basis for the remediation of Cd contamination in rice and soil by utilizing key microbial taxa.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, 410125, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jing He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongyi Zheng
- College of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqiang Fu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
3
|
Huang L, Fu Y, Liu Y, Chen Y, Wang T, Wang M, Lin X, Feng Y. Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172231. [PMID: 38608902 DOI: 10.1016/j.scitotenv.2024.172231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yijie Chen
- IDEO Play Lab, CA 91006, United States of America
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
5
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
6
|
Kashyap N, Singh SK, Yadav N, Singh VK, Kumari M, Kumar D, Shukla L, Bhardwaj N, Kumar A. Biocontrol Screening of Endophytes: Applications and Limitations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2480. [PMID: 37447041 DOI: 10.3390/plants12132480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.
Collapse
Affiliation(s)
- Nikhil Kashyap
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Sandeep Kumar Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nisha Yadav
- Division of Agriculture Extension, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur 247001, India
| | - Ajay Kumar
- Department of Botany, M.V. College, Buxar 802101, India
| |
Collapse
|
7
|
Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S. Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 2023; 13:9445. [PMID: 37296159 PMCID: PMC10256816 DOI: 10.1038/s41598-023-36494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Pseudomonads are metabolically flexible and can thrive on different plant hosts. However, the metabolic adaptations required for host promiscuity are unknown. Here, we addressed this knowledge gap by employing RNAseq and comparing transcriptomic responses of Pseudomonas donghuensis P482 to root exudates of two plant hosts: tomato and maize. Our main goal was to identify the differences and the common points between these two responses. Pathways upregulated only by tomato exudates included nitric oxide detoxification, repair of iron-sulfur clusters, respiration through the cyanide-insensitive cytochrome bd, and catabolism of amino and/or fatty acids. The first two indicate the presence of NO donors in the exudates of the test plants. Maize specifically induced the activity of MexE RND-type efflux pump and copper tolerance. Genes associated with motility were induced by maize but repressed by tomato. The shared response to exudates seemed to be affected both by compounds originating from the plants and those from their growth environment: arsenic resistance and bacterioferritin synthesis were upregulated, while sulfur assimilation, sensing of ferric citrate and/or other iron carriers, heme acquisition, and transport of polar amino acids were downregulated. Our results provide directions to explore mechanisms of host adaptation in plant-associated microorganisms.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka-Pach
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
8
|
Harten T, Nimzyk R, Gawlick VEA, Reinhold-Hurek B. Elucidation of Essential Genes and Mutant Fitness during Adaptation toward Nitrogen Fixation Conditions in the Endophyte Azoarcus olearius BH72 Revealed by Tn-Seq. Microbiol Spectr 2022; 10:e0216222. [PMID: 36416558 PMCID: PMC9769520 DOI: 10.1128/spectrum.02162-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Theresa Harten
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Rolf Nimzyk
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Nucleic Acid Analysis Facility (NAA), Bremen, Germany
| | - Vivian E. A. Gawlick
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Barbara Reinhold-Hurek
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| |
Collapse
|
9
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Abstract
Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.
Collapse
|
11
|
Zhang T, Xiong J, Tian R, Li Y, Zhang Q, Li K, Xu X, Liang L, Zheng Y, Tian B. Effects of single- and mixed-bacterial inoculation on the colonization and assembly of endophytic communities in plant roots. FRONTIERS IN PLANT SCIENCE 2022; 13:928367. [PMID: 36105708 PMCID: PMC9464981 DOI: 10.3389/fpls.2022.928367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/28/2022] [Indexed: 06/10/2023]
Abstract
The introduction and inoculation of beneficial bacteria in plants have consistently been considered as one of the most important ways to improve plant health and production. However, the effects of bacterial inoculation on the community assembly and composition of the root endophytic microbiome remain largely unknown. In this study, 55 strains were randomly isolated from tomato roots and then inoculated into wheat seeds singly or in combination. Most of the isolated bacterial strains showed an ability to produce lignocellulose-decomposing enzymes and promote plant growth. The results demonstrated that bacterial inoculation had a significant effect on the wheat root endophytic microbiome. The wheat root samples inoculated with single-bacterial species were significantly separated into two groups (A and B) that had different community structures and compositions. Among these, root endophytic communities for most wheat samples inoculated with a single-bacterial strain (Group A) were predominated by one or several bacterial species, mainly belonging to Enterobacterales. In contrast, only a few of the root samples inoculated with a single-bacterial strain (Group B) harbored a rich bacterial flora with relatively high bacterial diversity. However, wheat roots inoculated with a mixed bacterial complex were colonized by a more diverse and abundant bacterial flora, which was mainly composed of Enterobacterales, Actinomycetales, Bacillales, Pseudomonadales, and Rhizobiales. The results demonstrated that inoculation with bacterial complexes could help plants establish more balanced and beneficial endophytic communities. In most cases, bacterial inoculation does not result in successful colonization by the target bacterium in wheat roots. However, bacterial inoculation consistently had a significant effect on the root microbiome in plants. CAP analysis demonstrated that the variation in wheat root endophytic communities was significantly related to the taxonomic status and lignocellulose decomposition ability of the inoculated bacterial strain (p < 0.05). To reveal the role of lignocellulose degradation in shaping the root endophytic microbiome in wheat, four bacterial strains with different colonization abilities were selected for further transcriptome sequencing analysis. The results showed that, compared with that in the dominant bacterial species Ent_181 and Ent_189 of Group A, the expression of lignocellulose-decomposing enzymes was significantly downregulated in Bac_133 and Bac_71 (p < 0.05). In addition, we found that the dominant bacterial species of the tomato endophytic microbiome were more likely to become dominant populations in the wheat root microbiome. In general, our results demonstrated that lignocellulose-decomposing enzymes played a vital role in the formation of endophytes and their successful colonization of root tissues. This finding establishes a theoretical foundation for the development of broad-spectrum probiotics.
Collapse
Affiliation(s)
- Ting Zhang
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Juan Xiong
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Rongchuan Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ye Li
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qinyi Zhang
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ke Li
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, China
| | - Lianming Liang
- Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | - Yi Zheng
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Baoyu Tian
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
12
|
Plant-Endophyte Interaction during Biotic Stress Management. PLANTS 2022; 11:plants11172203. [PMID: 36079585 PMCID: PMC9459794 DOI: 10.3390/plants11172203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host–endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant–endophyte interaction in biotic stress management.
Collapse
|
13
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|
14
|
Abel AJ, Hilzinger JM, Arkin AP, Clark DS. Systems-informed genome mining for electroautotrophic microbial production. Bioelectrochemistry 2022; 145:108054. [DOI: 10.1016/j.bioelechem.2022.108054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
|
15
|
Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions. J Adv Res 2021; 40:45-58. [PMID: 36100333 PMCID: PMC9481936 DOI: 10.1016/j.jare.2021.11.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Plant-microbiome interaction occurs at the rhizosphere, endosphere, and phyllosphere. Root exudates can favor the recruitment of a beneficial microbiome in the rhizosphere. Plant topology and phytochemistry influence the recruitment of the phyllosphere microbiome. Diverse plant strategies selectively recruit beneficial microbiomes. Multiple plant mechanisms displace potential pathogens from the rhizosphere. The beneficial microbiome helps plants to recruit other beneficial microbiota.
Background Research on beneficial mechanisms by plant-associated microbiomes, such as plant growth stimulation and protection from plant pathogens, has gained considerable attention over the past decades; however, the mechanisms used by plants to recruit their microbiome is largely unknown. Aim of Review Here, we review the latest studies that have begun to reveal plant strategies in selectively recruiting beneficial microbiomes, and how they manage to exclude potential pathogens. Key Scientific concepts of Review: We examine how plants attract beneficial microbiota from the main areas of interaction, such as the rhizosphere, endosphere, and phyllosphere, and demonstrate that such process occurs by producing root exudates, and recognizing molecules produced by the beneficial microbiota or distinguishing pathogens using specific receptors, or by triggering signals that support plant-microbiome homeostasis. Second, we analyzed the main environmental or biotic factors that modulate the structure and successional dynamics of microbial communities. Finally, we review how the associated microbiome is capable of engaging with other synergistic microbes, hence providing an additional element of selection. Collectively, this study reveals the importance of understanding the complex network of plant interactions, which will improve the understanding of bioinoculant application in agriculture, based on a microbiome that interacts efficiently with plant organs under different environmental conditions.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
16
|
Stone W, Lukashe NS, Blake LI, Gwandu T, Hardie AG, Quinton J, Johnson K, Clarke CE. The microbiology of rebuilding soils with water treatment residual co-amendments: Risks and benefits. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1381-1394. [PMID: 34464455 DOI: 10.1002/jeq2.20286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Water treatment residual (WTR) is composed of sludges from the potable water treatment process, currently largely destined for landfill. This waste can be diverted to rebuild degraded soils, aligning with the UN's Sustainable Development Goals 12 (Consumption and Production) and 15 (Terrestrial Ecosystems). Biosolids are tested against stringent pathogen guidelines, yet few studies have explored the microbial risk of WTR land application, despite anthropogenic impacts on water treatment. We explored the microbial risks and benefits of amending nutrient-poor sandy soil with WTRs. Our results showed that the culturable pathogen load of wet and dry WTRs did not warrant pre-processing before land application, according to South African national quality guidelines, with fecal coliforms not exceeding 104 colony forming units per gram dry weight in wet sludges sampled from four South African and Zimbabwean water treatment plants and decreasing upon drying and processing. There was no culturable pathogenic (fecal coliforms, enterococci, Salmonella, and Shigella) regrowth in soil incubations amended with dry WTR. However, the competition (microbial load and diversity) introduced by a WTR co-amendment did not limit pathogen survival in soils amended with biosolids. Application of WTR to nutrient-poor sandy soils for wheat (Triticum aestivum L.) growth improved the prokaryotic and eukaryotic culturable cell concentrations, similar to compost. However, the compost microbiome more significantly affected the bacterial beta diversity of the receiving soil than WTR when analyzed with automated ribosomal intergenic spacer analysis. Thus, although there was a low pathogen risk for WTR amendment in receiving soils and total soil microbial loads were increased, microbial diversity was more significantly enhanced by compost than WTR.
Collapse
Affiliation(s)
- Wendy Stone
- Environmental Microbiology Laboratory, Dep. of Microbiology, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | - Noxolo S Lukashe
- Dep. of Soil Science, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | | | - Tariro Gwandu
- Dep. of Engineering, Durham Univ., Durham, DH1 3LE, UK
- Dep. of Soil Science & Environment, Univ. of Zimbabwe, Harare, Zimbabwe
| | - Ailsa G Hardie
- Dep. of Soil Science, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | - John Quinton
- Lancaster Environment Centre, Lancaster Univ., Lancaster, Lancashire, UK
| | - Karen Johnson
- Dep. of Engineering, Durham Univ., Durham, DH1 3LE, UK
| | | |
Collapse
|
17
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). BIOLOGY 2021; 10:biology10060475. [PMID: 34072072 PMCID: PMC8229920 DOI: 10.3390/biology10060475] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities. Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
- Correspondence:
| | - Carlos Alberto Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - Pedro Damián Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico;
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
18
|
Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, White JF. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol 2021; 131:2161-2177. [PMID: 33893707 DOI: 10.1111/jam.15111] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Plants associate with communities of microbes (bacteria and fungi) that play critical roles in plant development, nutrient acquisition and oxidative stress tolerance. The major share of plant microbiota is endophytes which inhabit plant tissues and help them in various capacities. In this article, we have reviewed what is presently known with regard to how endophytic microbes interact with plants to modulate root development, branching, root hair formation and their implications in overall plant development. Endophytic microbes link the interactions of plants, rhizospheric microbes and soil to promote nutrient solubilization and further vectoring these nutrients to the plant roots making the soil-plant-microbe continuum. Further, plant roots internalize microbes and oxidatively extract nutrients from microbes in the rhizophagy cycle. The oxidative interactions between endophytes and plants result in the acquisition of nutrients by plants and are also instrumental in oxidative stress tolerance of plants. It is evident that plants actively cultivate microbes internally, on surfaces and in soils to acquire nutrients, modulate development and improve health. Understanding this continuum could be of greater significance in connecting endophytes with the hidden half of the plant that can also be harnessed in applied terms to enhance nutrient acquisition through the development of favourable root system architecture for sustainable production under stress conditions.
Collapse
Affiliation(s)
- S K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P K Sahu
- National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - K Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - G Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S K Gond
- Botany Section, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - R N Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - J F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
19
|
Marian M, Fujikawa T, Shimizu M. Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Arch Microbiol 2021; 203:3373-3388. [PMID: 33880605 DOI: 10.1007/s00203-021-02327-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.,College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8605, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
20
|
Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol 2021; 61:475-505. [PMID: 33834549 DOI: 10.1002/jobm.202000657] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Plant growth promotion has been found associated with plants on the surface (epiphytic), inside (endophytic), or close to the plant roots (rhizospheric). Endophytic bacteria mainly have been researched for their beneficial activities in terms of nutrient availability, plant growth hormones, and control of soil-borne and systemic pathogens. Molecular communications leading to these interactions between plants and endophytic bacteria are now being unrevealed using multidisciplinary approaches with advanced techniques such as metagenomics, metaproteomics, metatranscriptomics, metaproteogenomic, microRNAs, microarray, chips as well as the comparison of complete genome sequences. More than 400 genes in both the genomes of host plant and bacterial endophyte are up- or downregulated for the establishment of endophytism and plant growth-promoting activity. The involvement of more than 20 genes for endophytism, about 50 genes for direct plant growth promotion, about 25 genes for biocontrol activity, and about 10 genes for mitigation of different stresses has been identified in various bacterial endophytes. This review summarizes the progress that has been made in recent years by these modern techniques and approaches.
Collapse
Affiliation(s)
- Surjit S Dudeja
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Pooja Suneja-Madan
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Minakshi Paul
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Rajat Maheswari
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty for Biosciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
21
|
Fernández-Llamosas H, Díaz E, Carmona M. Motility, Adhesion and c-di-GMP Influence the Endophytic Colonization of Rice by Azoarcus sp. CIB. Microorganisms 2021; 9:microorganisms9030554. [PMID: 33800326 PMCID: PMC7998248 DOI: 10.3390/microorganisms9030554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Proficient crop production is needed to ensure the feeding of a growing global population. The association of bacteria with plants plays an important role in the health state of the plants contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most plant species providing, in most cases, plant promotion properties. However, the knowledge on the genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly understood. In this work we have used a genetic approach based on the construction of fliM, pilX and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further strategies to modulate the interaction of endophytes with their target plant hosts.
Collapse
|
22
|
Nain Z, Karim MM. Whole-genome sequence, functional annotation, and comparative genomics of the high biofilm-producing multidrug-resistant Pseudomonas aeruginosa MZ4A isolated from clinical waste. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Fadiji AE, Ayangbenro AS, Babalola OO. Unveiling the putative functional genes present in root-associated endophytic microbiome from maize plant using the shotgun approach. J Appl Genet 2021; 62:339-351. [PMID: 33486715 DOI: 10.1007/s13353-021-00611-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
To ensure food security for the ever-increasing world's population, it is important to explore other alternatives for enhancing plant productivity. This study is aimed at identifying the putative plant growth-promoting (PGP) and endophytic gene clusters in root-associated endophytic microbes from maize root and to also verify if their abundance is affected by different farming practices. To achieve this, we characterize endophytic microbiome genes involved in PGP and endophytic lifestyle inside maize root using the shotgun metagenomic approach. Our results revealed the presence of genes involved in PGP activities such as nitrogen fixation, HCN biosynthesis, siderophore, 4-hydroxybenzoate, ACC deaminase, phenazine, phosphate solubilization, butanediol, methanol utilization, acetoin, nitrogen metabolism, and IAA biosynthesis. We also identify genes involved in stress resistance such as glutathione, catalase, and peroxidase. Our results further revealed the presence of putative genes involved in endophytic behaviors such as aerotaxis, regulator proteins, motility mechanisms, flagellum biosynthesis, nitrogen regulation, regulation of carbon storage, formation of biofilm, reduction of nitric oxide, regulation of beta-lactamase resistance, type III secretion, type IV conjugal DNA, type I pilus assembly, phosphotransferase system (PTS), and ATP-binding cassette (ABC). Our study suggests a high possibility in the utilization of endophytic microbial community for plant growth promotion, biocontrol activities, and stress mitigation. Further studies in ascertaining this claim through culturing of the beneficial isolates as well as pot and field experiments are necessary.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, South Africa.
| |
Collapse
|
24
|
|
25
|
Insights into the early stages of plant-endophytic bacteria interaction. World J Microbiol Biotechnol 2021; 37:13. [PMID: 33392741 DOI: 10.1007/s11274-020-02966-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
The plant holobiont is a complex entity composed of the plant and the organisms that live in and on it including its microbiota. The plant microbiota includes, among other microorganisms, bacterial endophytes, which are bacteria that can invade living plant tissues without causing symptoms of disease. The interaction between the endophytic bacterial microbiota and their plant host has profound influences on their fitness and depends on biotic and abiotic factors. For these interactions to be established, the bacteria have to be present at the right time, in the right place either colonizing the soil or the seed. In this review we summarize the current knowledge regarding the sources of the bacterial endophytic microbiome and the processes involved in the assemblage of the resulting community during the initial stages of plant development. The adaptations that allow the spatial approximation of soil- and seed-borne bacteria towards infection and colonization of the internal tissues of plants will be addressed in this review.
Collapse
|
26
|
Kumar A, Zhimo Y, Biasi A, Salim S, Feygenberg O, Wisniewski M, Droby S. Endophytic Microbiome in the Carposphere and Its Importance in Fruit Physiology and Pathology. POSTHARVEST PATHOLOGY 2021. [DOI: 10.1007/978-3-030-56530-5_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A. The plant endosphere world - bacterial life within plants. Environ Microbiol 2020; 23:1812-1829. [PMID: 32955144 DOI: 10.1111/1462-2920.15240] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
The plant endosphere is colonized by complex microbial communities and microorganisms, which colonize the plant interior at least part of their lifetime and are termed endophytes. Their functions range from mutualism to pathogenicity. All plant organs and tissues are generally colonized by bacterial endophytes and their diversity and composition depend on the plant, the plant organ and its physiological conditions, the plant growth stage as well as on the environment. Plant-associated microorganisms, and in particular endophytes, have lately received high attention, because of the increasing awareness of the importance of host-associated microbiota for the functioning and performance of their host. Some endophyte functions are known from mostly lab assays, genome prediction and few metagenome analyses; however, we have limited understanding on in planta activities, particularly considering the diversity of micro-environments and the dynamics of conditions. In our review, we present recent findings on endosphere environments, their physiological conditions and endophyte colonization. Furthermore, we discuss microbial functions, the interaction between endophytes and plants as well as methodological limitations of endophyte research. We also provide an outlook on needs of future research to improve our understanding on the role of microbiota colonizing the endosphere on plant traits and ecosystem functioning.
Collapse
Affiliation(s)
- Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| | | | | | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| | - Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V4C7, Canada
| | - Angela Sessitsch
- Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, AIT Austrian Institute of Technology, Tulln, A-3430, Austria
| |
Collapse
|
28
|
Adhikary R, Kundu S, Maiti PK, Mitra PK, Mandal S, Mandal V. Effect of different stimuli on twitching behavior of endophytic bacteria isolated from Loranthus sp. Jacq. Antonie van Leeuwenhoek 2020; 113:1489-1505. [PMID: 32789713 DOI: 10.1007/s10482-020-01458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Bacteria need to adopt to different behavioral tuning depending on the dynamic eco-physiological conditions they are exposed to. One of these adaptive strategies is the use of motility. Here we report the twitching motility response of four endophytic isolates of Bacillus sp. when exposed to different eco-physiological stimuli like different nutrient sources, and mechanical and chemical antagonists on solid surfaces. These endophytic bacteria were isolated from different parts of a hemiparasite Loranthus sp. Jacq. (Loranthaceae) growing on economically important mango trees. The results show that the twitching motility of these bacteria was more when exposed to organic acids, metals salts (among nutrients) and mechanical shearing (stress) than the other factors. Their motility is not affected by surface lubrication or EPS production, but instead is influenced by shear-sensitive structures and affinity to metal ions. Further molecular studies are needed to elucidate the basis of this twitching behaviour on solid surfaces.
Collapse
Affiliation(s)
| | - Smriti Kundu
- University of Gour Banga, Malda, West Bengal, India
| | | | | | | | | |
Collapse
|
29
|
Bünger W, Jiang X, Müller J, Hurek T, Reinhold-Hurek B. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Sci Rep 2020; 10:8692. [PMID: 32457320 PMCID: PMC7251102 DOI: 10.1038/s41598-020-65277-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/30/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the relevance of complex root microbial communities for plant health, growth and productivity, the molecular basis of these plant-microbe interactions is not well understood. Verrucomicrobia are cosmopolitans in the rhizosphere, nevertheless their adaptations and functions are enigmatic since the proportion of cultured members is low. Here we report four cultivated Verrucomicrobia isolated from rice, putatively representing four novel species, and a novel subdivision. The aerobic strains were isolated from roots or rhizomes of Oryza sativa and O. longistaminata. Two of them are the first cultivated endophytes of Verrucomicrobia, as validated by confocal laser scanning microscopy inside rice roots after re-infection under sterile conditions. This extended known verrucomicrobial niche spaces. Two strains were promoting root growth of rice. Discovery of root compartment-specific Verrucomicrobia permitted an across-phylum comparison of the genomic conformance to life in soil, rhizoplane or inside roots. Genome-wide protein domain comparison with niche-specific reference bacteria from distant phyla revealed signature protein domains which differentiated lifestyles in these microhabitats. Our study enabled us to shed light into the dark microbial matter of root Verrucomicrobia, to define genetic drivers for niche adaptation of bacteria to plant roots, and provides cultured strains for revealing causal relationships in plant-microbe interactions by reductionist approaches.
Collapse
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Xun Jiang
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Jana Müller
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany.,Department of Botany, University of Bremen, Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | |
Collapse
|
30
|
Chen X, Marszałkowska M, Reinhold-Hurek B. Jasmonic Acid, Not Salicyclic Acid Restricts Endophytic Root Colonization of Rice. FRONTIERS IN PLANT SCIENCE 2020; 10:1758. [PMID: 32063914 PMCID: PMC7000620 DOI: 10.3389/fpls.2019.01758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
Research on the interaction between the non-nodule-forming bacterial endophytes and their host plants is still in its infancy. Especially the understanding of plant control mechanisms which govern endophytic colonization is very limited. The current study sets out to determine which hormonal signaling pathway controls endophytic colonization in rice, and whether the mechanisms deviate for a pathogen. The endophyte Azoarcus olearius BH72-rice model was used to investigate root responses to endophytes in comparison to the recently established pathosystem of rice blight Xanthomonas oryzae pv. oryzae PXO99 (Xoo) in flooded roots. In the rice root transcriptome, 523 or 664 genes were found to be differentially expressed in response to Azoarcus or Xoo colonization, respectively; however, the response was drastically different, with only 6% of the differentially expressed genes (DEGs) overlapping. Overall, Xoo infection induced a much stronger defense reaction than Azoarcus colonization, with the latter leading to down-regulation of many defense related DEGs. Endophyte-induced DEGs encoded several enzymes involved in phytoalexin biosynthesis, ROS (reactive oxygen species) production, or pathogenesis-related (PR) proteins. Among putative plant markers related to signal transduction pathways modulated exclusively during Azoarcus colonization, none overlapped with previously published DEGs identified for another rice endophyte, Azospirillum sp. B510. This suggests a large variation in responses of individual genotypic combinations. Interestingly, the DEGs related to jasmonate (JA) signaling pathway were found to be consistently activated by both beneficial endophytes. In contrast, the salicylate (SA) pathway was activated only in roots infected by the pathogen. To determine the impact of SA and JA production on root colonization by the endophyte and the pathogen, rice mutants with altered hormonal responses were employed: mutant cpm2 deficient in jasmonate synthesis, and RNA interference (RNAi) knockdown lines of NPR1 decreased in salicylic acid-mediated defense responses (NPR1-kd). Only in cpm2, endophytic colonization of Azoarcus was significantly increased, while Xoo colonization was not affected. Surprisingly, NPR1-kd lines showed slightly decreased colonization by Xoo, contrary to published results for leaves. These outcomes suggest that JA but not SA signaling is involved in controlling the Azoarcus endophyte density in roots and can restrict internal root colonization, thereby shaping the beneficial root microbiome.
Collapse
Affiliation(s)
| | | | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, Bremen, Germany
| |
Collapse
|
31
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
32
|
Defining the Genetic Basis of Plant⁻Endophytic Bacteria Interactions. Int J Mol Sci 2019; 20:ijms20081947. [PMID: 31010043 PMCID: PMC6515357 DOI: 10.3390/ijms20081947] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Endophytic bacteria, which interact closely with their host, are an essential part of the plant microbiome. These interactions enhance plant tolerance to environmental changes as well as promote plant growth, thus they have become attractive targets for increasing crop production. Numerous studies have aimed to characterise how endophytic bacteria infect and colonise their hosts as well as conferring important traits to the plant. In this review, we summarise the current knowledge regarding endophytic colonisation and focus on the insights that have been obtained from the mutants of bacteria and plants as well as ‘omic analyses. These show how endophytic bacteria produce various molecules and have a range of activities related to chemotaxis, motility, adhesion, bacterial cell wall properties, secretion, regulating transcription and utilising a substrate in order to establish a successful interaction. Colonisation is mediated by plant receptors and is regulated by the signalling that is connected with phytohormones such as auxin and jasmonic (JA) and salicylic acids (SA). We also highlight changes in the expression of small RNAs and modifications of the cell wall properties. Moreover, in order to exploit the beneficial plant-endophytic bacteria interactions in agriculture successfully, we show that the key aspects that govern successful interactions remain to be defined.
Collapse
|
33
|
Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 2019; 221:36-49. [DOI: 10.1016/j.micres.2019.02.001] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
34
|
Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 2019; 17:284-294. [DOI: 10.1038/s41579-019-0182-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero JC, Martínez-Romero E. Metatranscriptomic Analysis of the Bacterial Symbiont Dactylopiibacterium carminicum from the Carmine Cochineal Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae). Life (Basel) 2019; 9:life9010004. [PMID: 30609847 PMCID: PMC6463064 DOI: 10.3390/life9010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
- Department of Ecology, Evolution and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Julio César Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
36
|
Naher K, Miwa H, Okazaki S, Yasuda M. Effects of Different Sources of Nitrogen on Endophytic Colonization of Rice Plants by Azospirillum sp. B510. Microbes Environ 2018; 33:301-308. [PMID: 30158365 PMCID: PMC6167112 DOI: 10.1264/jsme2.me17186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Azospirillum sp. B510, a free-living nitrogen-fixing bacterium isolated from the stems of rice (Oryza sativa cv. Nipponbare), was investigated to establish effective conditions for the colonization of rice plants. We analyzed the effects of the nitrogen sources KNO3, NH4Cl, urea (CO[NH2]2), and NH4NO3 at different concentrations (0.01–10 mM) on this colonization. Nitrogen promoted plant growth in a concentration-dependent manner, with minor differences being observed among the different nitrogen sources. Bacterial colonization was markedly suppressed on media containing NH4+ concentrations higher than 1 mM. Since concentrations of up to and including 10 mM NH4+ did not exhibit any antibacterial activity, we analyzed several factors affecting the NH4+-dependent inhibition of endophytic colonization, including the accumulation of the reactive oxygen species H2O2 and the secretion of the chemotactic substrate malic acid. The accumulation of H2O2 was increased in rice roots grown on 1 mM NH4Cl. The amounts of malic acid secreted from NH4-grown rice plants were lower than those secreted from plants grown without nitrogen or with KNO3. Although the bacterium exhibited chemotactic activity, moving towards root exudates from plants grown without nitrogen and KNO3-grown plants, this activity was not observed with root exudates from NH4+-grown plants. NH4+, but not NO3−, caused the acidification of growth media, which inhibited plant bacterial colonization. These NH4+-dependent phenomena were markedly suppressed by the stabilization of medium pH using a buffer. These results demonstrate that the type and concentration of nitrogen fertilizer affects the colonization of rice plants by Azospirillum sp. B510.
Collapse
Affiliation(s)
- Kamrun Naher
- Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Hiroki Miwa
- Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shin Okazaki
- Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Michiko Yasuda
- Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
37
|
Jha P, Panwar J, Jha PN. Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0011-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
|
39
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017; 8:2552. [PMID: 29312235 PMCID: PMC5742157 DOI: 10.3389/fmicb.2017.02552] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C. Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Krause A, Julich H, Mankar M, Reinhold-Hurek B. The Regulatory Network Controlling Ethanol-Induced Expression of Alcohol Dehydrogenase in the Endophyte Azoarcus sp. Strain BH72. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:778-785. [PMID: 28657425 DOI: 10.1094/mpmi-01-17-0013-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The habitat of the nitrogen-fixing endophyte Azoarcus sp. strain BH72 is grass roots grown under waterlogged conditions that produce, under these conditions, ethanol. Strain BH72 is well equipped to metabolize ethanol, with eight alcohol dehydrogenases (ADHs), of which ExaA2 and ExaA3 are the most relevant ones. exaA2 and exaA3 cluster and are surrounded by genes encoding two-component regulatory systems (TCSs) termed ExaS-ExaR and ElmS-GacA. Functional genomic analyses revealed that i) expression of the corresponding genes was induced by ethanol, ii) the genes were also expressed in the rhizoplane or even inside of rice roots, iii) both TCSs were indispensable for growth on ethanol, and iv) they were important for competitiveness during rice root colonization. Both TCSs form a hierarchically organized ethanol-responsive signal transduction cascade with ExaS-ExaR as the highest level, essential for effective expression of the ethanol oxidation system based on ExaA2. Transcript and expression levels of exaA3 increased in tcs deletion mutants, suggesting no direct influence of both TCSs on its ethanol-induced expression. In conclusion, this underscores the importance of ethanol for the endophytic lifestyle of Azoarcus sp. strain BH72 and indicates a tight regulation of the ethanol oxidation system during root colonization.
Collapse
Affiliation(s)
- Andrea Krause
- Department of Microbe-Plant Interactions, Faculty of Biology/Chemistry, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
| | - Henrike Julich
- Department of Microbe-Plant Interactions, Faculty of Biology/Chemistry, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
| | - Manasee Mankar
- Department of Microbe-Plant Interactions, Faculty of Biology/Chemistry, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology/Chemistry, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
| |
Collapse
|
41
|
Faoro H, Rene Menegazzo R, Battistoni F, Gyaneshwar P, do Amaral FP, Taulé C, Rausch S, Gonçalves Galvão P, de Los Santos C, Mitra S, Heijo G, Sheu SY, Chen WM, Mareque C, Zibetti Tadra-Sfeir M, Ivo Baldani J, Maluk M, Paula Guimarães A, Stacey G, de Souza EM, Pedrosa FO, Magalhães Cruz L, James EK. The oil-contaminated soil diazotroph Azoarcus olearius DQS-4 T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:223-238. [PMID: 27893193 DOI: 10.1111/1758-2229.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The genome of Azoarcus olearius DQS-4T , a N2 -fixing Betaproteobacterium isolated from oil-contaminated soil in Taiwan, was sequenced and compared with other Azoarcus strains. The genome sequence showed high synteny with Azoarcus sp. BH72, a model endophytic diazotroph, but low synteny with five non-plant-associated strains (Azoarcus CIB, Azoarcus EBN1, Azoarcus KH32C, A. toluclasticus MF63T and Azoarcus PA01). Average Nucleotide Identity (ANI) revealed that DQS-4T shares 98.98% identity with Azoarcus BH72, which should now be included in the species A. olearius. The genome of DQS-4T contained several genes related to plant colonization and plant growth promotion, such as nitrogen fixation, plant adhesion and root surface colonization. In accordance with the presence of these genes, DQS-4T colonized rice (Oryza sativa) and Setaria viridis, where it was observed within the intercellular spaces and aerenchyma mainly of the roots. Although they promote the growth of grasses, the mechanism(s) of plant growth promotion by A. olearius strains is unknown, as the genomes of DQS-4T and BH72 do not contain genes for indole acetic acid (IAA) synthesis nor phosphate solubilization. In spite of its original source, both the genome and behaviour of DQS-4T suggest that it has the capacity to be an endophytic, nitrogen-fixing plant growth-promoting bacterium.
Collapse
Affiliation(s)
- Helisson Faoro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, Fiocruz-PR, Curitiba, Paraná, 81350-010, Brazil
| | - Rodrigo Rene Menegazzo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Federico Battistoni
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | - Fernanda P do Amaral
- Division of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cecilia Taulé
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Sydnee Rausch
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | | | - Cecilia de Los Santos
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Shubhajit Mitra
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | - Gabriela Heijo
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Shih-Yi Sheu
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, 811, Taiwan
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, 811, Taiwan
| | - Cintia Mareque
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Michelle Zibetti Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - J Ivo Baldani
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, 23891-000, Brazil
| | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Gary Stacey
- Division of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Fabio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Leonardo Magalhães Cruz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
42
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017. [PMID: 29312235 DOI: 10.1016/j.apsoil.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Müller DB, Vogel C, Bai Y, Vorholt JA. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet 2016; 50:211-234. [DOI: 10.1146/annurev-genet-120215-034952] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel B. Müller
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Christine Vogel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| |
Collapse
|
44
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
45
|
Minami T, Anda M, Mitsui H, Sugawara M, Kaneko T, Sato S, Ikeda S, Okubo T, Tsurumaru H, Minamisawa K. Metagenomic Analysis Revealed Methylamine and Ureide Utilization of Soybean-Associated Methylobacterium. Microbes Environ 2016; 31:268-78. [PMID: 27431374 PMCID: PMC5017803 DOI: 10.1264/jsme2.me16035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 01/29/2023] Open
Abstract
Methylobacterium inhabits the phyllosphere of a large number of plants. We herein report the results of comparative metagenome analyses on methylobacterial communities of soybean plants grown in an experimental field in Tohoku University (Kashimadai, Miyagi, Japan). Methylobacterium was identified as the most dominant genus (33%) among bacteria inhabiting soybean stems. We classified plant-derived Methylobacterium species into Groups I, II, and III based on 16S rRNA gene sequences, and found that Group I members (phylogenetically close to M. extorquens) were dominant in soybean-associated Methylobacterium. By comparing 29 genomes, we found that all Group I members possessed a complete set of genes for the N-methylglutamate pathway for methylamine utilization, and genes for urea degradation (urea carboxylase, urea amidolyase, and conventional urease). Only Group I members and soybean methylobacterial isolates grew in a culture supplemented with methylamine as the sole carbon source. They utilized urea or allantoin (a urea-related compound in legumes) as the sole nitrogen source; however, group III also utilized these compounds. The utilization of allantoin may be crucial in soybean-bacterial interactions because allantoin is a transported form of fixed nitrogen in legume plants. Soybean-derived Group I strain AMS5 colonized the model legume Lotus japonicus well. A comparison among the 29 genomes of plant-derived and other strains suggested that several candidate genes are involved in plant colonization such as csgG (curli fimbriae). Genes for the N-methylglutamate pathway and curli fimbriae were more abundant in soybean microbiomes than in rice microbiomes in the field. Based on these results, we discuss the lifestyle of Methylobacterium in the legume phyllosphere.
Collapse
Affiliation(s)
- Tomoyuki Minami
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Misue Anda
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0818Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
- Kazusa DNA Research Institute2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0818Japan
| | - Seishi Ikeda
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Hirohito Tsurumaru
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| |
Collapse
|
46
|
Mathew DC, Lo SC, Mathew GM, Chang KH, Huang CC. Genomic sequence analysis of a plant-associated Photobacterium halotolerans MELD1: from marine to terrestrial environment? Stand Genomic Sci 2016; 11:56. [PMID: 27594975 PMCID: PMC5009661 DOI: 10.1186/s40793-016-0177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/16/2016] [Indexed: 11/29/2022] Open
Abstract
Mercury impacts the function and development of the central nervous system in both humans and wildlife by being a potent neurotoxin. Microbial bioremediation is an important means of remediation of mercury-contaminated soil. The rhizospheric Photobacterium halotolerans strain MELD1 was isolated from mercury and dioxin contaminated site from Tainan, Taiwan. It has been shown to reduce Hg2+ to Hg0. The 4,758,027 bp genome of P. halotolerans MELD1 has a G + C content of 50.88 % and contains 4198 protein-coding and 106 RNA genes. Genomic analysis revealed the presence of a number of interesting gene cluster that maybe involved in heavy metal resistance, rhizosphere competence and colonization of the host plant.
Collapse
Affiliation(s)
- Dony Chacko Mathew
- Department of Lifesciences, National Chung Hsing University, 145 Xingda Road, Taichung, Taiwan
| | - Shou-Chen Lo
- Department of Lifesciences, National Chung Hsing University, 145 Xingda Road, Taichung, Taiwan
| | - Gincy Marina Mathew
- School of Biosciences, Mar Athanasios College for Advanced Studies (MACFAST) Biocampus, Tiruvalla, Kerala India
| | - Kung-Hao Chang
- Department of Lifesciences, National Chung Hsing University, 145 Xingda Road, Taichung, Taiwan
| | - Chieh-Chen Huang
- Department of Lifesciences, National Chung Hsing University, 145 Xingda Road, Taichung, Taiwan
| |
Collapse
|
47
|
Ma Y, Oliveira RS, Freitas H, Zhang C. Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. FRONTIERS IN PLANT SCIENCE 2016; 7:918. [PMID: 27446148 PMCID: PMC4917562 DOI: 10.3389/fpls.2016.00918] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2016] [Indexed: 05/22/2023]
Abstract
Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, acting as plant growth promoting microorganisms (PGPMs), may alleviate metal phytotoxicity and stimulate plant growth indirectly via the induction of defense mechanisms against phytopathogens, and/or directly through the solubilization of mineral nutrients (nitrogen, phosphate, potassium, iron, etc.), production of plant growth promoting substances (e.g., phytohormones), and secretion of specific enzymes (e.g., 1-aminocyclopropane-1-carboxylate deaminase). PGPM can also change metal bioavailability in soil through various mechanisms such as acidification, precipitation, chelation, complexation, and redox reactions. This review presents the recent advances and applications made hitherto in understanding the biochemical and molecular mechanisms of plant-microbe interactions and their role in the major processes involved in phytoremediation, such as heavy metal detoxification, mobilization, immobilization, transformation, transport, and distribution.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
- Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | | |
Collapse
|
48
|
Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 2016; 92:fiw112. [PMID: 27222220 DOI: 10.1093/femsec/fiw112] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Beneficial microbes are applied to the soil and plant tissues directly or through seed inoculation, whereas soil application is preferred when there is risk of inhibitors or antagonistic microbes on the plant tissues. Insufficient survival of the microorganisms, hindrance in application of fungicides to the seeds and exposure to heat and sunlight in subsequent seed storage in conventional inoculation methods force to explore appropriate and efficient bacterial application method. Seed priming, where seeds are hydrated to activate metabolism without actual germination followed by drying, increases the germination, stand establishment and stress tolerance in different crops. Seed priming with living bacterial inoculum is termed as biopriming that involves the application of plant growth promoting rhizobacteria. It increases speed and uniformity of germination; also ensures rapid, uniform and high establishment of crops; and hence improves harvest quality and yield. Seed biopriming allows the bacteria to enter/adhere the seeds and also acclimatization of bacteria in the prevalent conditions. This review focuses on methods used for biopriming, and also the role in improving crop productivity and stress tolerance along with prospects of this technology. The comparison of methods being followed is also reviewed proposing biopriming as a promising technique for application of beneficial microbes to the seeds.
Collapse
Affiliation(s)
- Ahmad Mahmood
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - Oğuz Can Turgay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rifat Hayat
- Department of Soil Science and Soil Water Conservation, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
49
|
Andreolli M, Lampis S, Zapparoli G, Angelini E, Vallini G. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 2016; 183:42-52. [DOI: 10.1016/j.micres.2015.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
|
50
|
Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MDC, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res 2015; 183:92-9. [PMID: 26805622 DOI: 10.1016/j.micres.2015.11.008] [Citation(s) in RCA: 661] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/14/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022]
Abstract
Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edificio A1',Morelia, Michoacán 58030, Mexico.
| | | | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| |
Collapse
|