1
|
Contribution of a WRKY Transcription Factor, ShWRKY81, to Powdery Mildew Resistance in Wild Tomato. Int J Mol Sci 2023; 24:ijms24032583. [PMID: 36768909 PMCID: PMC9917159 DOI: 10.3390/ijms24032583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Tomato powdery mildew, caused by Oidium neolycopersici, is a destructive fungal disease that damages almost all of the aerial parts of tomato, causing devastating losses in tomato production worldwide. WRKY transcription factors are key regulators of plant immunity, but the roles of ShWRKYs in wild tomato Solanum habrochaites LA1777 against O. neolycopersici still remain to be uncovered. Here, we show that ShWRKY81 is an important WRKY transcription factor from wild tomato Solanum habrochaites LA1777, contributing to plant resistance against O. neolycopersici. ShWRKY81 was isolated and identified to positively modulate tomato resistance against On-Lz. The transient overexpression of the ShWRKY81-GFP (green fluorescent protein) fusion protein in Nicotiana benthamiana cells revealed that ShWRKY81 was localized in the nucleus. ShWRKY81 responded differentially to abiotic and biotic stimuli, with ShWRKY81 mRNA accumulation in LA1777 seedlings upon On-Lz infection. The virus-induced gene silencing of ShWRKY81 led to host susceptibility to On-Lz in LA1777, and a loss of H2O2 formation and hypersensitive response (HR) induction. Furthermore, the transcripts of ShWRKY81 were induced by salicylic acid (SA), and ShWRKY81-silenced LA1777 seedlings displayed decreased levels of the defense hormone SA and SA-dependent PRs gene expression upon On-Lz infection. Together, these results demonstrate that ShWRKY81 acts as a positive player in tomato powdery mildew resistance.
Collapse
|
2
|
Santillán Martínez MI, Bracuto V, Koseoglou E, Appiano M, Jacobsen E, Visser RGF, Wolters AMA, Bai Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC PLANT BIOLOGY 2020; 20:284. [PMID: 32560695 PMCID: PMC7304142 DOI: 10.1186/s12870-020-02497-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/15/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The development of CRISPR/Cas9 technology has facilitated targeted mutagenesis in an efficient and precise way. Previously, RNAi silencing of the susceptibility (S) gene PowderyMildewResistance 4 (PMR4) in tomato has been shown to enhance resistance against the powdery mildew pathogen Oidium neolycopersici (On). RESULTS To study whether full knock-out of the tomato PMR4 gene would result in a higher level of resistance than in the RNAi-silenced transgenic plants we generated tomato PMR4 CRISPR mutants. We used a CRISPR/Cas9 construct containing four single-guide RNAs (sgRNAs) targeting the tomato PMR4 gene to increase the possibility of large deletions in the mutants. After PCR-based selection and sequencing of transformants, we identified five different mutation events, including deletions from 4 to 900-bp, a 1-bp insertion and a 892-bp inversion. These mutants all showed reduced susceptibility to On based on visual scoring of disease symptoms and quantification of relative fungal biomass. Histological observations revealed a significantly higher occurrence of hypersensitive response-like cell death at sites of fungal infection in the pmr4 mutants compared to wild-type plants. Both haustorial formation and hyphal growth were diminished but not completely inhibited in the mutants. CONCLUSION CRISPR/Cas-9 targeted mutagenesis of the tomato PMR4 gene resulted in mutants with reduced but not complete loss of susceptibility to the PM pathogen On. Our study demonstrates the efficiency and versatility of the CRISPR/Cas9 system as a powerful tool to study and characterize S-genes by generating different types of mutations.
Collapse
Affiliation(s)
- Miguel I Santillán Martínez
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Valentina Bracuto
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Michela Appiano
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Evert Jacobsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Anne-Marie A Wolters
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Zhang Y, Xu K, Pei D, Yu D, Zhang J, Li X, Chen G, Yang H, Zhou W, Li C. ShORR-1, a Novel Tomato Gene, Confers Enhanced Host Resistance to Oidium neolycopersici. FRONTIERS IN PLANT SCIENCE 2019; 10:1400. [PMID: 31787994 PMCID: PMC6854008 DOI: 10.3389/fpls.2019.01400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 05/17/2023]
Abstract
A previous complementary cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis examined responses to the powdery mildew pathogen Oidium neolycopersici (On) of the resistant cultivar Solanum habrochiates G1.1560, carrying the Ol-1 resistance gene, and susceptible cultivar S. lycopersicum Moneymaker (MM). Among other findings, a differentially expressed transcript-derived fragment (DE-TDF) (M14E72-213) was upregulated in near isogenic line (NIL)-Ol-1, but absent in MM. This DE-TDF showed high homology to a gene of unknown function, which we named ShORR-1 (Solanum habrochaites Oidium Resistance Required-1). However, MM homolog of ShORR-1 (named ShORR-1-M) was still found with 95.26% nucleic acid sequence similarity to ShORR-1 from G1.1560 (named ShORR-1-G); this was because the cut sites of restriction enzymes in the previous complementary cDNA-AFLP analysis was absent in ShORR-1-M and differs at 13 amino acids from ShORR-1-G. Transient expression in onion epidermal cells showed that ShORR-1 is a membrane-localized protein. Virus-induced gene silencing (VIGS) of ShORR-1-G in G1.1560 plants increased susceptibility to On. Furthermore, overexpressing of ShORR-1-G conferred MM with resistance to On, involving extensive hydrogen peroxide accumulation and formation of abnormal haustoria. Knockdown of ShORR-1-M in MM did not affect its susceptibility to On, while overexpressing of ShORR-1-M enhanced MM's susceptibility to On. We also found that changes in transcript levels of six well-known hormone signaling and defense-related genes are involved in ShORR-1-G-mediated resistance to On. The results indicate that ShORR-1-M and ShORR-1-G have antagonistic effects in tomato responses to On, and that ShORR-1 is essential for Ol-1-mediated resistance in tomato.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Dongli Pei
- Department of Life Science, Shangqiu Normal University, Shangqiu, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Guo Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Hui Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Wenjie Zhou
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, China
| | - Chengwei Li
- Henan Engineering Research Center of Grain Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Chengwei Li,
| |
Collapse
|
4
|
Cui Y, Jiang J, Yang H, Zhao T, Xu X, Li J. Virus-induced gene silencing (VIGS) of the NBS-LRR gene SLNLC1 compromises Sm-mediated disease resistance to Stemphylium lycopersici in tomato. Biochem Biophys Res Commun 2018; 503:1524-1529. [PMID: 30037434 DOI: 10.1016/j.bbrc.2018.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023]
Abstract
In a previous study, when resistant tomato plants (cv. Motelle) carrying the Sm gene were challenged with S. lycopersici, the SLNLC1 gene was significantly upregulated. In this study, to verify the function of the SLNLC1 gene response to disease resistance against S. lycopersici, virus-induced gene silencing (VIGS) was used to downregulate the expression level of the SLNLC1 gene in resistant tomato plants inoculated with S. lycopersici. After inoculation with S. lycopersici, a susceptible phenotype was observed in the silenced SLNLC1-resistant plants. Through microscopy, impaired hypersensitive response (HR) and decreased ROS accumulation were also observed in the silenced SLNLC1 plants. In addition, the production of lignin and callose were decreased in the silenced SLNLC1 plants. Taken together, these results indicated that silencing the SLNLC1 gene attenuated the resistance of tomato plants resistant to S. lycopersici.
Collapse
Affiliation(s)
- Yanan Cui
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingbin Jiang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Huanhuan Yang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Tingting Zhao
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiangyang Xu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Jingfu Li
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Bai Y, Kissoudis C, Yan Z, Visser RGF, van der Linden G. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:781-793. [PMID: 29237240 DOI: 10.1111/tpj.13800] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Crop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress. There is evidence that plant resistance to pathogens can be attenuated or enhanced by abiotic stress factors. With stress tolerance research being mostly focused on plant responses to individual stresses, the understanding of a plant's ability to adapt to combined stresses is limited. In the last few years, we studied powdery mildew resistance under salt stress conditions in the model crop plant tomato with the aim to understand the requirements to achieve plant resilience to a wider array of combined abiotic and biotic stress combinations. We uncovered specific responses of tomato plants to combined salinity-pathogen stress, which varied with salinity intensity and plant resistance genes. Moreover, hormones, with their complex regulation and cross-talk, were shown to play a key role in the adaptation of tomato plants to the combined stress. In this review, we attempt to understand the complexity of plant responses to abiotic and biotic stress combinations, with a focus on tomato responses (genetic control and cross-talk of signaling pathways) to combined salinity and pathogen stresses. Further, we provide recommendations on how to design novel strategies for breeding crops with a sustained performance under diverse environmental conditions.
Collapse
Affiliation(s)
- Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Christos Kissoudis
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Gerard van der Linden
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| |
Collapse
|
6
|
Kissoudis C, Seifi A, Yan Z, Islam ATMT, van der Schoot H, van de Wiel CCM, Visser RGF, van der Linden CG, Bai Y. Ethylene and Abscisic Acid Signaling Pathways Differentially Influence Tomato Resistance to Combined Powdery Mildew and Salt Stress. FRONTIERS IN PLANT SCIENCE 2017; 7:2009. [PMID: 28119708 PMCID: PMC5220069 DOI: 10.3389/fpls.2016.02009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
There is currently limited knowledge on the role of hormones in plants responses to combinations of abiotic and pathogen stress factors. This study focused on the response of tomato near-isogenic lines (NILs) that carry the Ol-1, ol-2, and Ol-4 loci, conferring resistance to tomato powdery mildew (PM) caused by Oidium neolycopersici, to combined PM and salt stress. These NILs were crossed with the notabilis (ABA-deficient), defenceless1 (JA-deficient), and epinastic (ET overproducer) tomato mutants to investigate possible roles of hormone signaling in response to combined stresses. In the NILs, marker genes for hormonal pathways showed differential expression patterns upon PM infection. The epinastic mutation resulted in breakdown of resistance in NIL-Ol-1 and NIL-ol-2. This was accompanied by reduced callose deposition, and was more pronounced under combined salt stress. The notabilis mutation resulted in H2O2 overproduction and reduced susceptibility to PM in NIL-Ol-1 under combined stress, but lead to higher plant growth reduction under salinity and combined stress. Resistance in NIL-ol-2 was compromised by the notabilis mutation, which was potentially caused by reduction of callose deposition. Under combined stress the compromised resistance in NIL-ol-2 was restored. PM resistance in NIL-Ol-4 remained robust across all mutant and treatment combinations. Hormone signaling is critical to the response to combined stress and PM, in terms of resistance and plant fitness. ABA appears to be at the crossroads of disease susceptibility/senescence and plant performance under combined stress These gained insights can aid in narrowing down targets for improving crop performance under stress combinations.
Collapse
Affiliation(s)
| | - Alireza Seifi
- Biotechnology and Plant Breeding Department, Faculty of Agriculture, Ferdowsi University of MashhadMashhad, Iran
| | - Zhe Yan
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| | | | | | | | | | | | - Yuling Bai
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
7
|
Kissoudis C, Sunarti S, van de Wiel C, Visser RGF, van der Linden CG, Bai Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5119-32. [PMID: 27436279 PMCID: PMC5014164 DOI: 10.1093/jxb/erw285] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.
Collapse
Affiliation(s)
- Christos Kissoudis
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Sri Sunarti
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Clemens van de Wiel
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - C Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| |
Collapse
|
8
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Nie J, Wang Y, He H, Guo C, Zhu W, Pan J, Li D, Lian H, Pan J, Cai R. Loss-of-Function Mutations in CsMLO1 Confer Durable Powdery Mildew Resistance in Cucumber (Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1155. [PMID: 26734050 PMCID: PMC4687411 DOI: 10.3389/fpls.2015.01155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/04/2015] [Indexed: 05/18/2023]
Abstract
Powdery mildew (PM) is a serious fungal disease of cucumber worldwide. The identification of resistance genes is very important for resistance breeding to ensure cucumber production. Here, natural loss-of-function mutations at an MLO homologous locus, CsMLO1, were found to confer durable PM resistance in cucumber. CsMLO1 encoded a cell membrane protein, was mainly expressed in leaves and cotyledons, and was up-regulated by PM at the early stage of host-pathogen interaction. Ectopic expression of CsMLO1 rescued the phenotype of the PM resistant Atmlo2 Atmlo12 double mutant to PM susceptible in Arabidopsis. Domesticated and wild resistant cucumbers originating from various geographical regions of the world were found to harbor three independent natural mutations that resulted in CsMLO1 loss of function. In addition, between the near-isogenic lines (NILs) of PM resistant and susceptible, S1003 and NIL(Pm5.1), quantitative RT-PCR revealed that there is no difference at expression levels of several genes in the pathways of ethylene, jasmonic acid or salicylic acid. Moreover, the two NILs were used for transcriptome profiling to explore the mechanism underlying the resistance. Several genes correlated with plant cell wall thickening are possibly involved in the PM resistance. This study revealed that loss of function of CsMLO1 conferred durable PM resistance, and that this loss of function is necessary but alone may not be sufficient for PM resistance in cucumber. These findings will facilitate the molecular breeding of PM resistant varieties to control this destructive disease in cucumber.
Collapse
Affiliation(s)
- Jingtao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Yunli Wang
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Chunli Guo
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Wenying Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Dandan Li
- College of Agronomy, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
- *Correspondence: Junsong Pan, ; Run Cai,
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
- *Correspondence: Junsong Pan, ; Run Cai,
| |
Collapse
|
10
|
Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 2014; 15:5175-92. [PMID: 24663087 PMCID: PMC3975447 DOI: 10.3390/ijms15035175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 01/19/2023] Open
Abstract
Basal stem rot is a common disease that affects oil palm, causing loss of yield and finally killing the trees. The disease, caused by fungus Ganoderma boninense, devastates thousands of hectares of oil palm plantings in Southeast Asia every year. In the present study, root proteins of healthy oil palm seedlings, and those infected with G. boninense, were analyzed by 2-dimensional gel electrophoresis (2-DE). When the 2-DE profiles were analyzed for proteins, which exhibit consistent significant change of abundance upon infection with G. boninense, 21 passed our screening criteria. Subsequent analyses by mass spectrometry and database search identified caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, enolase, fructokinase, cysteine synthase, malate dehydrogenase, and ATP synthase as among proteins of which abundances were markedly altered.
Collapse
|
11
|
Gao D, Huibers RP, Loonen AEHM, Visser RGF, Wolters AMA, Bai Y. Down-regulation of acetolactate synthase compromises Ol-1- mediated resistance to powdery mildew in tomato. BMC PLANT BIOLOGY 2014; 14:32. [PMID: 24438198 PMCID: PMC3898995 DOI: 10.1186/1471-2229-14-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/09/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND In a cDNA-AFLP analysis comparing transcript levels between powdery mildew (Oidium neolycopersici)-susceptible tomato cultivar Moneymaker (MM) and near isogenic lines (NILs) carrying resistance gene Ol-1 or Ol-4, a transcript-derived fragment (TDF) M11E69-195 was found to be present in NIL-Ol-1 but absent in MM and NIL-Ol-4. This TDF shows homology to acetolactate synthase (ALS). ALS is a key enzyme in the biosynthesis of branched-chain amino acids valine, leucine and isoleucine, and it is also a target of commercial herbicides. RESULTS Three ALS homologs ALS1, ALS2, ALS3 were identified in the tomato genome sequence. ALS1 and ALS2 show high similarity, whereas ALS3 is more divergent. Transient silencing of both ALS1 and ALS2 in NIL-Ol-1 by virus-induced gene silencing (VIGS) resulted in chlorotic leaf areas that showed increased susceptibility to O. neolycopersici (On). VIGS results were confirmed by stable transformation of NIL-Ol-1 using an RNAi construct targeting both ALS1 and ALS2. In contrast, silencing of the three ALS genes individually by RNAi constructs did not compromise the resistance of NIL-Ol-1. Application of the herbicide chlorsulfuron to NIL-Ol-1 mimicked the VIGS phenotype and caused loss of its resistance to On. Susceptible MM and On-resistant line NIL-Ol-4 carrying a nucleotide binding site and leucine rich repeat (NB-LRR) resistance gene were also treated with chlorsulfuron. Neither the susceptibility of MM nor the resistance of NIL-Ol-4 was affected. CONCLUSIONS ALS is neither involved in basal defense, nor in resistance conferred by NB-LRR type resistance genes. Instead, it is specifically involved in Ol-1-mediated resistance to tomato powdery mildew, suggesting that ALS-induced change in amino acid homeostasis is important for resistance conferred by Ol-1.
Collapse
Affiliation(s)
- Dongli Gao
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Robin P Huibers
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present address: Enza Zaden Beheer B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands
| | - Annelies EHM Loonen
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | | | - Yuling Bai
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
12
|
Seifi A, Nonomura T, Matsuda Y, Toyoda H, Bai Y. An avirulent tomato powdery mildew isolate induces localized acquired resistance to a virulent isolate in a spatiotemporal manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:372-378. [PMID: 22074347 DOI: 10.1094/mpmi-06-11-0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hypersensitive response (HR) of plant cells to the attack of pathogens induces resistance to subsequent attacks by a broad spectrum of pathogens, leading to acquired resistance. In this study, we characterized the localized acquired resistance (LAR) in the epidermal cells of tomato. First, we report the discovery of a new isolate of tomato powdery mildew occurring in Japan, KTP-02, which has a different virulence spectrum compared with the previously-characterized isolate, KTP-01. Using these two isolates, we investigated LAR phenomenon in the epidermal cells of tomato plants carrying the Ol-4 resistance gene. Ol-4 encodes a nucleotide-binding site leucine-rich repeat protein that triggers HR in the epidermal cells in response to KTP-01 but not KTP-02. We mounted a single conidium of KTP-01 on a single tomato epidermal cell and then monitored the progress of HR in that cell by live microscopy. Once HR occurred in that cell, we mounted a single conidium of KTP-02 on cells adjacent to or at one-cell distance from the first challenged cells, in different time points. With a digital microscope, we consecutively tracked the progress of HR (i.e., induction of LAR) in those cells. Results showed that, in tomato plants carrying the Ol-4 gene, HR to KTP-01 results in induction of HR in the adjacent epidermal cells challenged with KTP-02. Our results show that LAR can be triggered only in adjacent cell layer and lasts 24 to 48 h after HR occurred in the first cell. We did not observe the reverse phenomenon, induced susceptibility to KTP-01 by KTP-02. Altogether, we report an advanced technique for investigating LAR phenomena, and provide data on spatiotemporal characteristics of LAR in tomato epidermal cells.
Collapse
Affiliation(s)
- Alireza Seifi
- Wageningen UR Plant Breeding, Wageningen University & Research Center, Droevendaalsesteeg, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Li C, Faino L, Dong L, Fan J, Kiss L, De Giovanni C, Lebeda A, Scott J, Matsuda Y, Toyoda H, Lindhout P, Visser RGF, Bonnema G, Bai Y. Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. MOLECULAR PLANT PATHOLOGY 2012; 13:148-59. [PMID: 21883866 PMCID: PMC6638637 DOI: 10.1111/j.1364-3703.2011.00737.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extensive research in the area of plant innate immunity has increased considerably our understanding of the molecular mechanisms associated with resistance controlled by a dominant resistance gene. In contrast, little is known about the molecular basis underlying the resistance conferred by quantitative trait loci (QTLs). In this study, using the interaction of tomato (Solanum lycopersicum) with Oidium neolycopersici, we compared the cytological, biochemical and molecular mechanisms involved in both monogenic and polygenic resistances conferred by a dominant gene (Ol-1) and three QTLs (Ol-qtls), respectively. Our results showed that the three Ol-qtls jointly confer a very high level of broad-spectrum resistance and that the resistance is associated with both the hypersensitive response and papillae formation, with the hypersensitive response being prevalent. Both H(2)O(2) and callose accumulation, which are coupled with Ol-1-mediated resistance, are also associated with the resistance conferred by Ol-qtls. Further, we analysed the pathogen-induced transcript profiles of near-isogenic lines carrying the three Ol-qtls and the Ol-1 gene. Transcript profiles obtained by cDNA-amplified fragment length polymorphism analysis showed that, on fungal challenge, about 70% of the transcript-derived fragments are up-regulated in both susceptible and resistant genotypes. Most of the sequenced transcript-derived fragments showed homology to genes with functions in defence responses, suggesting that defence-responsive genes responsible for basal defence are involved in both monogenic and polygenic resistances conferred by Ol-1 and Ol-qtls, respectively. Although about 18% of the identified transcript-derived fragments are specific for either monogenic or polygenic resistance, their expression patterns need to be further verified by quantitative reverse transcriptase-polymerase chain reaction.
Collapse
Affiliation(s)
- Chengwei Li
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Seifi A, Kaloshian I, Vossen J, Che D, Bhattarai KK, Fan J, Naher Z, Goverse A, Tjallingii WF, Lindhout P, Visser RGF, Bai Y. Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:441-50. [PMID: 21171892 DOI: 10.1094/mpmi-06-10-0145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes have evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot nematodes, aphids, and whiteflies. Previously, we mapped two genes, Ol-4 and Ol-6, for resistance to tomato powdery mildew in this cluster. The aim of this study was to investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. We show that near-isogenic lines (NIL) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. Genetically, the resistance to nematodes cosegregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from other nematode-resistant tomato lines, Motelle and VFNT, harboring the Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and tomato powdery mildew in these two NIL is governed by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster. Finally, we discuss how Solanum crops exploit Mi-1 homologues to defend themselves against distinct pathogens.
Collapse
Affiliation(s)
- Alireza Seifi
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Piterková J, Petrivalský M, Luhová L, Mieslerová B, Sedlárová M, Lebeda A. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. MOLECULAR PLANT PATHOLOGY 2009; 10:501-13. [PMID: 19523103 PMCID: PMC6640527 DOI: 10.1111/j.1364-3703.2009.00551.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant-pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant-pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms.
Collapse
Affiliation(s)
- Jana Piterková
- Department of Biochemistry, Palacký University in Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
16
|
Li Y, Windham MT, Trigiano RN, Reed SM, Spiers JM, Rinehart TA. Bright-Field and Fluorescence Microscopic Study of Development of Erysiphe polygoni in Susceptible and Resistant Bigleaf Hydrangea. PLANT DISEASE 2009; 93:130-134. [PMID: 30764105 DOI: 10.1094/pdis-93-2-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal development of Erysiphe polygoni and responses of bigleaf hydrangeas (Hydrangea macrophylla) to the fungal attack were investigated using bright-field and fluorescence microscopy. Conidia germinated 2 h after inoculation (HAI) and formed primary appressoria at the tip of the primary germ tubes within 4 HAI. Secondary germ tubes were initiated from primary appressoria or other parts of conidia 12 HAI. Hyphae developed through elongation of secondary germ tubes, and paired lateral appressoria were formed along hyphae within 2 days after inoculation (DAI). Conidiophores and conidia were formed 5 DAI. In the susceptible cultivar Nikko Blue and the resistant cultivar Veitchii, the fungus established a parasitic relationship, which was indicated by the formation of haustoria under primary appressoria and development of secondary germ tubes at 1 DAI. A hypersensitive response (HR) and accumulation of callose were detected in both resistant and susceptible cultivars at 3 DAI. Resistance to powdery mildew in Veitchii was evident by manifestation of early accumulation of callose, relatively high percentage of necrotic infected cells, and restricted colony development compared to the susceptible cultivar Nikko Blue. Restricting hyphal growth and sporulation by early response of callose accumulation and HR are important resistance mechanisms that could be used in screening hydrangeas for resistance to powdery mildew.
Collapse
Affiliation(s)
- Yonghao Li
- Dept. of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560
| | - Mark T Windham
- Dept. of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560
| | - Robert N Trigiano
- Dept. of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560
| | - Sandra M Reed
- USDA/ARS Floral & Nursery Plants Research Unit, McMinnville, TN 37110
| | - James M Spiers
- USDA/ARS Thad Cochran Horticultural Research Laboratory, Poplarville, MS 39470
| | - Timothy A Rinehart
- USDA/ARS Thad Cochran Horticultural Research Laboratory, Poplarville, MS 39470
| |
Collapse
|
17
|
Micali C, Göllner K, Humphry M, Consonni C, Panstruga R. The Powdery Mildew Disease of Arabidopsis: A Paradigm for the Interaction between Plants and Biotrophic Fungi. THE ARABIDOPSIS BOOK 2008; 6:e0115. [PMID: 22303240 PMCID: PMC3243333 DOI: 10.1199/tab.0115] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The powdery mildew diseases, caused by fungal species of the Erysiphales, have an important economic impact on a variety of plant species and have driven basic and applied research efforts in the field of phytopathology for many years. Although the first taxonomic reports on the Erysiphales date back to the 1850's, advances into the molecular biology of these fungal species have been hampered by their obligate biotrophic nature and difficulties associated with their cultivation and genetic manipulation in the laboratory. The discovery in the 1990's of a few species of powdery mildew fungi that cause disease on Arabidopsis has opened a new chapter in this research field. The great advantages of working with a model plant species have translated into remarkable progress in our understanding of these complex pathogens and their interaction with the plant host. Herein we summarize advances in the study of Arabidopsis-powdery mildew interactions and discuss their implications for the general field of plant pathology. We provide an overview of the life cycle of the pathogens on Arabidopsis and describe the structural and functional changes that occur during infection in the host and fungus in compatible and incompatible interactions, with special emphasis on defense signaling, resistance pathways, and compatibility factors. Finally, we discuss the future of powdery mildew research in anticipation of the sequencing of multiple powdery mildew genomes. The cumulative body of knowledge on powdery mildews of Arabidopsis provides a valuable tool for the study and understanding of disease associated with many other obligate biotrophic pathogen species.
Collapse
Affiliation(s)
- Cristina Micali
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Katharina Göllner
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Matt Humphry
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Chiara Consonni
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Ralph Panstruga
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
- Address correspondence to
| |
Collapse
|