1
|
Zhang X, Zhang X, Fu Y, Cui Y, Wu N, Li Y, Yang Z, Zhang C, Song H, He G, Sang X. HTT1, a Stearoyl-Acyl Carrier Protein Desaturase Involved Unsaturated Fatty Acid Biosynthesis, Affects Rice Heat Tolerance. PLANT, CELL & ENVIRONMENT 2025; 48:3391-3405. [PMID: 39757551 DOI: 10.1111/pce.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Elucidating the mechanisms underlying heat tolerance in rice (Oryza Sativa. L) is vital for adapting this crop to rising global temperature while increasing yields. Here, we identified a rice mutant, high temperature tolerance 1 (htt1), with high survival rates under heat stress. HTT1 encodes a chloroplast-localized stearoyl-acyl carrier protein (ACP) desaturase involved in the biosynthesis of unsaturated fatty acids, converting C18:0 to C18:1 fatty acid. Overexpression and knockout rice lines provided evidence that HTT1 negatively regulates the response to heat stress. In the htt1 mutant, a G-to-A base substitution in HTT1 impairs unsaturated fatty acid biosynthesis, remodelling the lipid content of cellular membranes and in particular increasing diglyceride contents, which improves membrane stability under heat stress. HTT1 was differentially expressed in all tissues analyzed and was inhibited by heat. Yeast one-hybrid and dual-luciferase reporter assays showed that OsHsfA2d binds to the promoter of HTT1, inhibiting its expression. Different HTT1 alleles were identified between the two Asian cultivated rice subspecies, indica and japonica, potentially facilitating their adaptation to different environmental temperature. Taken together, these findings demonstrate that HTT1 is a previously unidentified negative regulator of heat tolerance and a potential target gene for the improvement of heat adaptability in rice.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xuefei Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yao Fu
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Nai Wu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhenglin Yang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Changwei Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Li X, Munir M, Zeng W, Sun Z, Chang X, Yang W. Characterization of fatty acid desaturase gene family in Glycine max and their expression patterns in seeds after Fusarium fujikuroi infection. FRONTIERS IN PLANT SCIENCE 2025; 16:1540003. [PMID: 40070705 PMCID: PMC11893595 DOI: 10.3389/fpls.2025.1540003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Background The family of membrane-bound fatty acid desaturase (FAD) genes play a vital role in plant growth, development, and stress responses. The seed-borne pathogen Fusarium fujikuroi causes seed decay disease during pre-harvest and post-harvest stages of soybean, leading to a significant reduction in yield and quality. Therefore, it is very meaningful to characterize the diversity and function of the GmFAD gene family in soybean and to elucidate their roles in seed resistance to F. fujikuroi. Results In this study, 30 full-length GmFAD genes were identified from the soybean genome. A range of analysis was conducted to characterize gene and protein structures, chromosomal locations, conserved motif and conserved structural domains, and results showed that GmFAD genes were clustered into seven subfamilies (FAB2, ADS, SLD, DES, FAD6, FAD2, FAD3/7/8), which is also supported by phylogenetic analysis. The diversity and expansion of the GmFAD gene family were mainly caused by segmental duplication, and their encoding proteins were observed to locate in chloroplast or endoplasmic reticulum. The promoters of GmFAD genes contained a set of cis-acting elements in response to plant hormone, defense and stress, light, and plant growth and development, indicating these genes have the complex expression regulation and diverse functions. Gene ontology (GO) and KEGG enrichment pathway analyses showed that GmFAD genes were closely related to the biosynthesis and metabolism of lipid and unsaturated fatty acids (UFAs). In addition, the expression of GmFADs was significantly changed in soybean seeds when challenged by the seed decay pathogen F. fujikuroi. Specifically, GmFAB2.1/2.2, GmFAD3.3/3-2B/7-1//8-2, and GmFAD2.3/2.5 genes displayed distinct temporal expression patterns in the resistant ND25 and susceptible CX12, highlighting their potential roles in soybean resistance against F. fujikuroi infection. Conclusion Our findings contribute to a deeper understanding of the GmFAD gene family and their intricate roles in soybean resistance against the seed-borne pathogen F. fujikuroi. Moreover, several distinct genes provide valuable candidates for further application in soybean resistant breeding.
Collapse
Affiliation(s)
- Xinyuan Li
- College of Agronomy and Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Maira Munir
- College of Agronomy and Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weiying Zeng
- Institute of Economic Crops, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Zudong Sun
- Institute of Economic Crops, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Xiaoli Chang
- College of Agronomy and Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyu Yang
- College of Agronomy and Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Kumar R, Das SP, Choudhury BU, Kumar A, Prakash NR, Verma R, Chakraborti M, Devi AG, Bhattacharjee B, Das R, Das B, Devi HL, Das B, Rawat S, Mishra VK. Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. Biol Res 2024; 57:80. [PMID: 39506826 PMCID: PMC11542492 DOI: 10.1186/s40659-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.
Collapse
Affiliation(s)
- Rahul Kumar
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India.
| | | | - Burhan Uddin Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Umiam, 793103, Meghalaya, India
| | | | - Ramlakhan Verma
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bijoya Bhattacharjee
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Bapi Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | | | - Biswajit Das
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Agartala, 799210, Tripura, India
| | - Santoshi Rawat
- Department of Food Science and Technology, College of Agriculture, G.B.P.U.A.&T., Pantnagar, India
| | | |
Collapse
|
4
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
5
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
6
|
Calayugan MIC, Hore TK, Palanog AD, Amparado A, Inabangan-Asilo MA, Joshi G, Chintavaram B, Swamy BPM. Deciphering the genetic basis of agronomic, yield, and nutritional traits in rice (Oryza sativa L.) using a saturated GBS-based SNP linkage map. Sci Rep 2024; 14:18024. [PMID: 39098874 PMCID: PMC11298551 DOI: 10.1038/s41598-024-67543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing. Most of the traits demonstrated moderate to high broad-sense heritability. There was a positive relationship between Zn and Fe contents. The principal components and correlation results revealed a significant negative association between YLD and Zn/Fe. ICIM identified 81 QTLs, while IM detected 36 QTLs across populations. The multi-parent population analysis detected 27 QTLs with six of them consistently detected across seasons. We shortlisted eight candidate genes associated with yield QTLs, 19 genes with QTLs for agronomic traits, and 26 genes with Zn and Fe QTLs. Notable candidate genes included CL4 and d35 for YLD, dh1 for DF, OsIRX10, HDT702, sd1 for PH, OsD27 for NP, whereas WFP and OsIPI1 were associated with PL, OsRSR1 and OsMTP1 were associated to TGW. The OsNAS1, OsRZFP34, OsHMP5, OsMTP7, OsC3H33, and OsHMA1 were associated with Fe and Zn QTLs. We identified promising RILs with acceptable yield potential and high grain Zn content from each population. The major effect QTLs, genes and high Zn RILs identified in our study are useful for efficient Zn biofortification of rice.
Collapse
Affiliation(s)
- Mark Ian C Calayugan
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
| | - Tapas Kumer Hore
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
- Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Alvin D Palanog
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
- PhilRice Negros, Philippine Rice Research Institute, Murcia, Negros, Philippines
| | - Amery Amparado
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Mary Ann Inabangan-Asilo
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Gaurav Joshi
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Balachiranjeevi Chintavaram
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - B P Mallikarjuna Swamy
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines.
| |
Collapse
|
7
|
Yuan G, Shi J, Zeng C, Shi H, Yang Y, Zhang C, Ma T, Wu M, Jia Z, Du J, Zou C, Ma L, Pan G, Shen Y. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. BMC Genomics 2024; 25:733. [PMID: 39080512 PMCID: PMC11288080 DOI: 10.1186/s12864-024-10656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Gibberella ear rot (GER) is one of the most devastating diseases in maize growing areas, which directly reduces grain yield and quality. However, the underlying defense response of maize to pathogens infection is largely unknown. RESULTS To gain a comprehensive understanding of the defense response in GER resistance, two contrasting inbred lines 'Nov-82' and 'H10' were used to explore transcriptomic profiles and defense-related phytohormonal alterations during Fusarium graminearum infection. Transcriptomic analysis revealed 4,417 and 4,313 differentially expressed genes (DEGs) from the Nov-82 and H10, respectively, and 647 common DEGs between the two lines. More DEGs were obviously enriched in phenylpropanoid biosynthesis, secondary metabolites biosynthesis, metabolic process and defense-related pathways. In addition, the concentration of the defense-related phytohormones, jasmonates (JAs) and salicylates (SAs), was greatly induced after the pathogen infection. The level of JAs in H10 was more higher than in Nov-82, whereas an opposite pattern for the SA between the both lines. Integrated analysis of the DEGs and the phytohormones revealed five vital modules based on co-expression network analysis according to their correlation. A total of 12 hub genes encoding fatty acid desaturase, subtilisin-like protease, ethylene-responsive transcription factor, 1-aminocyclopropane-1-carboxylate oxidase, and sugar transport protein were captured from the key modules, indicating that these genes might play unique roles in response to pathogen infection, CONCLUSIONS: Overall, our results indicate that large number DEGs related to plant disease resistance and different alteration of defensive phytohormones were activated during F. graminearum infection, providing new insight into the defense response against pathogen invasion, in addition to the identified hub genes that can be further investigated for enhancing maize GER resistance.
Collapse
Affiliation(s)
- Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiahao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cheng Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoya Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuntian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tieli Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyang Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheyi Jia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
8
|
Hou J, Xiao H, Yao P, Ma X, Shi Q, Yang J, Hou H, Li L. Unveiling the mechanism of broad-spectrum blast resistance in rice: The collaborative role of transcription factor OsGRAS30 and histone deacetylase OsHDAC1. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1740-1756. [PMID: 38294722 PMCID: PMC11123394 DOI: 10.1111/pbi.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
9
|
Williams K, Subramani M, Lofton LW, Penney M, Todd A, Ozbay G. Tools and Techniques to Accelerate Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:1520. [PMID: 38891328 PMCID: PMC11174677 DOI: 10.3390/plants13111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
As climate changes and a growing global population continue to escalate the need for greater production capabilities of food crops, technological advances in agricultural and crop research will remain a necessity. While great advances in crop improvement over the past century have contributed to massive increases in yield, classic breeding schemes lack the rate of genetic gain needed to meet future demands. In the past decade, new breeding techniques and tools have been developed to aid in crop improvement. One such advancement is the use of speed breeding. Speed breeding is known as the application of methods that significantly reduce the time between crop generations, thereby streamlining breeding and research efforts. These rapid-generation advancement tactics help to accelerate the pace of crop improvement efforts to sustain food security and meet the food, feed, and fiber demands of the world's growing population. Speed breeding may be achieved through a variety of techniques, including environmental optimization, genomic selection, CRISPR-Cas9 technology, and epigenomic tools. This review aims to discuss these prominent advances in crop breeding technologies and techniques that have the potential to greatly improve plant breeders' ability to rapidly produce vital cultivars.
Collapse
Affiliation(s)
- Krystal Williams
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Lily W. Lofton
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA;
- Toxicology & Mycotoxin Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA 30602, USA
| | - Miranda Penney
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Gulnihal Ozbay
- One Health Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
10
|
Maeda S, Goto S, Inoue H, Suwazono H, Takatsuji H, Mori M. Improvement of Broad-Spectrum Disease-Resistant Rice by the Overexpression of BSR1 via a Moderate-Strength Constitutive Promoter and a Pathogen-Inducible Promoter. PLANTS (BASEL, SWITZERLAND) 2024; 13:1138. [PMID: 38674547 PMCID: PMC11054640 DOI: 10.3390/plants13081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| | - Shingo Goto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shizuoka 424-0292, Japan
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Haruka Suwazono
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Hiroshi Takatsuji
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| | - Masaki Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| |
Collapse
|
11
|
Cao T, Du Q, Ge R, Li R. Genome-wide identification and characterization of FAD family genes in barley. PeerJ 2024; 12:e16812. [PMID: 38436034 PMCID: PMC10909363 DOI: 10.7717/peerj.16812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024] Open
Abstract
Fatty acid desaturases (FADs) play pivotal roles in determining plant stress tolerance. Barley is the most salt-tolerant cereal crop. In this study, we performed genome-wide identification and characterization analysis of the FAD gene family in barley (Hordeum vulgare). A total of 24 HvFADs were identified and divided into four subfamilies based on their amino acid sequence similarity. HvFADs unevenly distributed on six of seven barley chromosomes, and three clusters of HvFADs mainly occurred on the chromosome 2, 3 and 6. Segmental duplication events were found to be a main cause for the HvFAD gene family expansion. The same HvFAD subfamily showed the relatively consistent exon-intron composition and conserved motifs of HvFADs. Cis-element analysis in HvFAD promoters indicated that the expression of HvFADs may be subject to complex regulation, especially stress-responsive elements that may involve in saline-alkaline stress response. Combined transcriptomic data with quantitative experiments, at least five HvFADs highly expressed in roots under salt or alkali treatment, suggesting they may participate in saline or alkaline tolerance in barley. This study provides novel and valuable insights for underlying salt/alkali-tolerant mechanisms in barley.
Collapse
Affiliation(s)
- TingTing Cao
- College of Life Science, Hebei Normal University, Hebei, China
| | - QingWei Du
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - RongChao Ge
- College of Life Science, Hebei Normal University, Hebei, China
| | - RuiFen Li
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
12
|
Sowadan O, Xu S, Li Y, Muleke EM, Sitoe HM, Dang X, Jiang J, Dong H, Hong D. Genome-Wide Association Analysis Unravels New Quantitative Trait Loci (QTLs) for Eight Lodging Resistance Constituent Traits in Rice ( Oryza sativa L.). Genes (Basel) 2024; 15:105. [PMID: 38254994 PMCID: PMC10815206 DOI: 10.3390/genes15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Lodging poses a significant challenge to rice yield, prompting the need to identify elite alleles for lodging resistance traits to improve cultivated rice varieties. In this study, a natural population of 518 rice accessions was examined to identify elite alleles associated with plant height (PH), stem diameter (SD), stem anti-thrust (AT/S), and various internode lengths (first (FirINL), second (SecINL), third (ThirINL), fourth (ForINL), and fifth (FifINL) internode lengths). A total of 262 SSR markers linked to these traits were uncovered through association mapping in two environmental conditions. Phenotypic evaluations revealed striking differences among cultivars, and genetic diversity assessments showed polymorphisms across the accessions. Favorable alleles were identified for PH, SD, AT/S, and one to five internode lengths, with specific alleles displaying considerable effects. Noteworthy alleles include RM6811-160 bp on chromosome 6 (which reduces PH) and RM161-145 bp on chromosome 5 (which increases SD). The study identified a total of 42 novel QTLs. Specifically, seven QTLs were identified for PH, four for SD, five for AT/S, five for FirINL, six for SecINL, five for ThirINL, six for ForINL, and four for FifINL. QTLs qAT/S-2, qPH2.1, qForINL2.1, and qFifINL exhibited the most significant phenotypic variance (PVE) of 3.99% for the stem lodging trait. AT/S, PH, ForINL, and FifINL had additive effects of 5.31 kPa, 5.42 cm, 4.27 cm, and 4.27 cm, respectively, offering insights into eight distinct cross-combinations for enhancing each trait. This research suggests the potential for crossbreeding superior parents based on stacked alleles, promising improved rice cultivars with enhanced lodging resistance to meet market demands.
Collapse
Affiliation(s)
- Ognigamal Sowadan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Shanbin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Yulong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Institute of Crop Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Everlyne Mmbone Muleke
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Department of Agriculture and Land Use Management, School of Agriculture, Veterinary Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega P.O. Box 190-50100, Kenya
| | - Hélder Manuel Sitoe
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Faculty of Agronomy and Biological Sciences, Púngue University, P.O. Box 323, Manica 2202, Mozambique
| | - Xiaojing Dang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (X.D.); (J.J.)
| | - Jianhua Jiang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (X.D.); (J.J.)
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Delin Hong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| |
Collapse
|
13
|
Quevedo-Colmena AS, Ortiz-Atienza A, Jáquez-Gutiérrez M, Quinet M, Atarés A, Yuste-Lisbona FJ, Moreno V, Angosto T, Lozano R. Loss of function mutations at the tomato SSI2 locus impair plant growth and development by altering the fatty acid desaturation pathway. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:106-116. [PMID: 37983594 DOI: 10.1111/plb.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
The stearoyl-ACP desaturase (SACPD) is a key enzyme in the regulation of saturated to unsaturated fatty acid ratio, playing a crucial role in regulating membrane stability and fluidity, as well as photosynthesis efficiency, which makes it an important research focus in crop species. This study reports the characterization and molecular cloning of pale dwarf (pad), a new tomato (Solanum lycopersicum L.) T-DNA recessive mutant, which exhibits a dwarf and chlorotic phenotype. Functional studies of the T-DNA tagged gene were conducted, including phylogenetic analysis, expression and metabolomic analyses, and generation of CRISPR/Cas9 knockout lines. The cloning of T-DNA flanking genomic sequences and a co-segregation analysis found the pad phenotype was caused by a T-DNA insertion disrupting the tomato homologue of the Arabidopsis SUPPRESSOR OF SALICYLIC ACID INSENSITIVITY 2 (SlSSI2), encoding a plastid localized isoform of SACPD. The phenotype of CRISPR/Cas9 SlSSI2 knockout lines confirmed that the morphological abnormalities in pad plants were due to SlSSI2 loss of function. Functional, metabolomic and expression analyses proved that SlSSI2 disruption causes deficiencies in 18:1 fatty acid desaturation and leads to diminished jasmonic acid (JA) content and increased salicylic acid (SA) levels. Overall, these results proved that SSI2 plays a crucial role in the regulation of polyunsaturated fatty acid profiles in tomato, and revealed that SlSSI2 loss of function results in an inhibited JA-responsive signalling pathway and a constitutively activated SA-mediated defence signalling response. This study lays the foundation for further research on tomato SACPDs and their role in plant performance and fitness.
Collapse
Affiliation(s)
- A S Quevedo-Colmena
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Almería, Spain
| | - A Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Almería, Spain
| | - M Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - M Quinet
- Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - A Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - F J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Almería, Spain
| | - V Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - T Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Almería, Spain
| | - R Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Almería, Spain
| |
Collapse
|
14
|
Jing H, Wang H, Wang G, Liu G, Cheng Y. The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition. ISME COMMUNICATIONS 2023; 3:120. [PMID: 37985715 PMCID: PMC10662252 DOI: 10.1038/s43705-023-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Forests are composed of various plant species, and rhizosphere soil microbes are driven by root exudates. However, the interplay between root exudates, microbial communities in the rhizosphere soil of canopy trees, understory shrubs, grasses, and their responses to nitrogen (N) deposition remains unclear. Pinus tabulaeformis, Rosa xanthina, and Carex lancifolia were used to investigate root exudates, rhizosphere soil microbial communities, and their responses to N application in forest ecosystem. Root exudate abundances of P. tabulaeformis were significantly higher than that of R. xanthina and C. lancifolia, with carbohydrates dominating P. tabulaeformis and R. xanthina root exudates, fatty acids prevailing in C. lancifolia root exudates. Following N application, root exudate abundances of P. tabulaeformis and R. xanthina initially increased before decreasing, whereas those of C. lancifolia decreased. Microbial number of rhizosphere soil of C. lancifolia was higher than that of P. tabulaeformis and R. xanthina, but there was insignificant variation of rhizosphere soil microbial diversity among plant species. N application exerted promotional and inhibitory impacts on bacterial and fungal numbers, respectively, while bacterial and fungal diversities were increased by N application. Overall, N application had negative effects on root exudates of P. tabulaeformis, inhibiting rhizosphere soil microbial populations. N application suppressed rhizosphere soil microbial populations by increasing root exudates of R. xanthina. Conversely, N application elevated nutrient content in the rhizosphere soil of C. lancifolia, reducing root exudates and minimally promoting microbial populations. This study highlights the importance of understory vegetation in shaping soil microbial communities within forests under N deposition.
Collapse
Affiliation(s)
- Hang Jing
- School of Geography, Nanjing Normal University, 210023, Nanjing, China
| | - Huiling Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China.
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China.
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, 712100, Yangling, China
| | - Yi Cheng
- School of Geography, Nanjing Normal University, 210023, Nanjing, China
| |
Collapse
|
15
|
Zhao X, Li J, Zhang D, Jiang L, Wang Y, Hu B, Wang S, Dai Y, Luo C, Zhang G. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation. ENVIRONMENT INTERNATIONAL 2023; 180:108215. [PMID: 37741005 DOI: 10.1016/j.envint.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
16
|
Jiang R, Zhou S, Da X, Yan P, Wang K, Xu J, Mo X. OsMKK6 Regulates Disease Resistance in Rice. Int J Mol Sci 2023; 24:12678. [PMID: 37628859 PMCID: PMC10454111 DOI: 10.3390/ijms241612678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China; (R.J.); (S.Z.); (X.D.); (P.Y.); (K.W.); (J.X.)
| |
Collapse
|
17
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
18
|
Liu L, Wang Y, Tian Y, Song S, Wu Z, Ding X, Zheng H, Huang Y, Liu S, Dong X, Wan J, Liu L. Isolation and Characterization of SPOTTED LEAF42 Encoding a Porphobilinogen Deaminase in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:403. [PMID: 36679117 PMCID: PMC9866984 DOI: 10.3390/plants12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The formation and development of chloroplasts play a vital role in the breeding of high-yield rice (Oryza sativa L.). Porphobilinogen deaminases (PBGDs) act in the early stage of chlorophyll and heme biosynthesis. However, the role of PBGDs in chloroplast development and chlorophyll production remains elusive in rice. Here, we identified the spotted leaf 42 (spl42) mutant, which exhibited a reddish-brown spotted leaf phenotype. The mutant showed a significantly lower chlorophyll content, abnormal thylakoid morphology, and elevated activities of reactive oxygen species (ROS)-scavenging enzymes. Consistently, multiple genes related to chloroplast development and chlorophyll biosynthesis were significantly down-regulated, whereas many genes involved in leaf senescence, ROS production, and defense responses were upregulated in the spl42 mutant. Map-based cloning revealed that SPL42 encodes a PBGD. A C-to-T base substitution occurred in spl42, resulting in an amino acid change and significantly reduced PBGD enzyme activity. SPL42 targets to the chloroplast and interacts with the multiple organelle RNA editing factors (MORFs) OsMORF8-1 and OsMORF8-2 to affect RNA editing. The identification and characterization of spl42 helps in elucidating the molecular mechanisms associated with chlorophyll synthesis and RNA editing in rice.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewan Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Ding
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
20
|
Zhang H, Yuan M, Tang C, Wang R, Cao M, Chen X, Wang D, Li M, Wu L. A novel nanocomposite that effectively prevents powdery mildew infection in wheat. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153858. [PMID: 36356512 DOI: 10.1016/j.jplph.2022.153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The rapidly growing world population is constantly increasing the demand for food. Being the second most consumed food crop, wheat hold an important economic position. However, powdery mildew is a disease that seriously affects the improvement in the yield and quality of wheat. Currently, triadimefon is the chemical pesticide that is predominantly used to prevent powdery mildew during wheat production. However, using triadimefon not only pollutes the environment, but also deteriorates the quality of harvested wheat grains. In this study, a nanocomposite complex with optimal montmorillonite and dimethyl silicone oil (OMM), which interact with each other through numerous hydrogen bonds. OMM was sprayed onto the surface of the wheat leaves to ensure a uniform nano isolation film that was found to effectively inhibit the contact germination of powdery mildew spores and reduce the disease index by 99.30%. OMM also significantly alleviated both physiological and biochemical stress of powdery mildew infection on the wheat. Furthermore, OMM treatment was found to significantly improve the processed quality of harvested grains. These results demonstrate that OMM treatment is an efficient and environmentally sustainable approach that is suitable for the large-scale prevention of powdery mildew infection in wheat.
Collapse
Affiliation(s)
- Huilan Zhang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Meng Yuan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Ren Wang
- Anhui Guotaizhongxin Testing Technology Co., LTD, Baohe District Dalian Road, Hefei, 230051, Anhui, PR China
| | - Minghui Cao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Xu Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, PR China
| | - Minghao Li
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; Zhongke Taihe Experimental Station, Jiuxian Town G105 East Side of the National Road, Taihe, 236626, PR China.
| |
Collapse
|
21
|
Zhang M, Liu K. Lipid and Protein Oxidation of Brown Rice and Selenium-Rich Brown Rice during Storage. Foods 2022; 11:foods11233878. [PMID: 36496686 PMCID: PMC9737139 DOI: 10.3390/foods11233878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Selenium-rich rice has become one of the effective ways to increase people's selenium intake. Selenium-containing proteins have higher antioxidant properties, which may lead to selenium-rich brown rice (Se-BR) having better storage stability than ordinary brown rice (BR). By measuring the peroxidation value, fatty acid value, carbonyl value and protein secondary structure, it was found that Se-BR had higher oxidation resistance stability than BR. The biological function of the differential proteins (DEPs) between ordinary brown rice stored for 0 days (BR-0) and 180 days (BR-6) as well as Se-rich brown rice stored for 0 days (Se-0) and 180 days (Se-6) was investigated by using iTRAQ. A total of 237, 235, 113 and 213 DEPs were identified from group A (BR-0/BR-6), group B (Se-0/Se-6), group C (BR-0/Se-0) and group D (BR-6/Se-6), respectively. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs were mainly enriched in glucose metabolism, tricarboxylic acid cycle, fatty acid biosynthesis and degradation, glutathione metabolism, sulfur metabolism, peroxisome and other metabolic pathways. This study provides theoretical support for the study of protein oxidation kinetics and storage quality control of brown rice during storage.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67758850
| |
Collapse
|
22
|
Poonguzhali P, Chauhan A, Kar A, Lavale S, Nayak SN, Prashanthi SK. New Sources of Resistance and Identification of DNA Marker Loci for Sheath Blight Disease Caused by Rhizoctonia solani Kuhn, in Rice. THE PLANT PATHOLOGY JOURNAL 2022; 38:572-582. [PMID: 36503186 PMCID: PMC9742804 DOI: 10.5423/ppj.oa.04.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Sheath blight disease caused by the necrotrophic, soilborne pathogen Rhizoctonia solani Kuhn, is the global threat to rice production. Lack of reliable stable resistance sources in rice germplasm pool for sheath blight has made resistance breeding a very difficult task. In the current study, 101 rice landraces were screened against R. solani under artificial epiphytotics and identified six moderately resistant landraces, Jigguvaratiga, Honasu, Jeer Sali, Jeeraga-2, BiliKagga, and Medini Sannabatta with relative lesion height (RLH) range of 21-30%. Landrace Jigguvaratiga with consistent and better level of resistance (21% RLH) than resistant check Tetep (RLH 28%) was used to develop mapping population. DNA markers associated with ShB resistance were identified in F2 mapping population developed from Jigguvaratiga × BPT5204 (susceptible variety) using bulk segregant analysis. Among 56 parental polymorphic markers, RM5556, RM6208, and RM7 were polymorphic between the bulks. Single marker analysis indicated the significant association of ShB with RM5556 and RM6208 with phenotypic variance (R2) of 28.29 and 20.06%, respectively. Co-segregation analysis confirmed the strong association of RM5556 and RM6208 located on chromosome 8 for ShB trait. This is the first report on association of RM6208 marker for ShB resistance. In silico analysis revealed that RM6208 loci resides the stearoyl ACP desaturases protein, which is involved in defense mechanism against plant pathogens. RM5556 loci resides a protein, with unknown function. The putative candidate genes or quantitative trait locus harbouring at the marker interval of RM5556 and RM6208 can be further used to develop ShB resistant varieties using molecular breeding approaches.
Collapse
Affiliation(s)
- Pachai Poonguzhali
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
| | - Ashish Chauhan
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
| | - Abinash Kar
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
| | - Shivaji Lavale
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
| | - S. K. Prashanthi
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
- Department of Plant Pathology, University of Agricultural Sciences, Dharwad 580005, Karnataka,
India
| |
Collapse
|
23
|
Transcriptome Analysis Reveals a Comprehensive Virus Resistance Response Mechanism in Pecan Infected by a Novel Badnavirus Pecan Virus. Int J Mol Sci 2022; 23:ijms232113576. [PMID: 36362365 PMCID: PMC9655656 DOI: 10.3390/ijms232113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pecan leaf-variegated plant, which was infected with a novel badnavirus named pecan mosaic virus (PMV) detected by small RNA deep sequencing, is a vital model plant for studying the molecular mechanism of retaining green or chlorosis of virus-infected leaves. In this report, PMV infection in pecan leaves induced PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). PMV infection suppressed the expressions of key genes of fatty acid, oleic acid (C18:1), and very-long-chain fatty acids (VLCFA) biosynthesis, indicating that fatty acids-derived signaling was one of the important defense pathways in response to PMV infection in pecan. PMV infection in pecans enhanced the expressions of pathogenesis-related protein 1 (PR1). However, the transcripts of phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) were downregulated, indicating that salicylic acid (SA) biosynthesis was blocked in pecan infected with PMV. Meanwhile, disruption of auxin signaling affected the activation of the jasmonic acid (JA) pathway. Thus, C18:1 and JA signals are involved in response to PMV infection in pecan. In PMV-infected yellow leaves, damaged chloroplast structure and activation of mitogen-activated protein kinase 3 (MPK3) inhibited photosynthesis. Cytokinin and SA biosynthesis was blocked, leading to plants losing immune responses and systemic acquired resistance (SAR). The repression of photosynthesis and the induction of sink metabolism in the infected tissue led to dramatic changes in carbohydrate partitioning. On the contrary, the green leaves of PMV infection in pecan plants had whole cell tissue structure and chloroplast clustering, establishing a strong antiviral immunity system. Cytokinin biosynthesis and signaling transductions were remarkably strengthened, activating plant immune responses. Meanwhile, cytokinin accumulation in green leaves induced partial SA biosynthesis and gained comparatively higher SAR compared to that of yellow leaves. Disturbance of the ribosome biogenesis might enhance the resistance to PMV infection in pecan and lead to leaves staying green.
Collapse
|
24
|
Li L, Liu J, Gong H, Zhao Y, Luo J, Sun Z, Li T. A dominant gene Ihrl1 is tightly linked to and inhibits the gene Ndhrl1 mediating nitrogen-dependent hypersensitive reaction-like phenotype in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3563-3570. [PMID: 36030437 DOI: 10.1007/s00122-022-04200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Identification and mapping of an inhibitor of Ndhrl1 mediating nitrogen-dependent hypersensitive reaction-like phenotype in wheat. Hypersensitive reaction-like (HRL) traits are characteristic of spontaneous lesions including yellowish spots, brown spots or white-stripe that appeared randomly and dispersedly on all the leaves in the absence of plant pathogens. Our previous studies have shown that the wheat line P7001 showed an HRL trait at low nitrogen supply, and this trait was controlled by the gene Ndhrl1 (Nitrogen-dependent hypersensitive reaction-like 1). In order to investigate the robustness of the trait expression mediated by Ndhrl1 under different genetic backgrounds, seven genetic populations, with P7001 being the common female parent, were constructed and analyzed. F1 plants from six of the seven combinations showed HRL trait and Ndhrl1 segregated in a dominant way of HRL: non-HRL = 3:1 in the six populations (F2). Exceptionally, the F1 plants of P7001/Fielder combination showed non-HRL trait and HRL trait in the F2 population showed a contrasting recessive segregation ratio of HRL: non-HRL = 1:3, suggesting Fielder may have another HRL-related gene. Using 55 K SNP array and PCR-based markers, the HRL-related gene in Fielder was mapped to an interval of 5.63-12.91 Mb on the short arm of chromosome 2B with the flanking markers Yzu660R075552 and Yzu660F075941. A recombinant with genomic region of Fielder at Ndhrl1 locus showing HRL trait demonstrated that Fielder also harbored Ndhrl1 same as P7001. Thus, Fielder carries a single dominant suppressor of Ndhrl1, designated as Ihrl1 (Inhibitor of hypersensitive reaction-like). Interestingly, Ihrl1 is tightly linked to Ndhrl1 and may be also involved in nitrogen metabolic and (or) signaling pathways.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China
| | - Jiaqi Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China
| | - Hao Gong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China
| | - Yang Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China
| | - Jinbiao Luo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China
| | - Zhengxi Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Yan J, Fang Y, Xue D. Advances in the Genetic Basis and Molecular Mechanism of Lesion Mimic Formation in Rice. PLANTS 2022; 11:plants11162169. [PMID: 36015472 PMCID: PMC9412831 DOI: 10.3390/plants11162169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Plant lesion mutation usually refers to the phenomenon of cell death in green tissues before senescence in the absence of external stress, and such mutants also show enhanced resistance to some plant pathogens. The occurrence of lesion mimic mutants in rice is affected by gene mutation, reactive oxygen species accumulation, an uncontrolled programmed cell death system, and abiotic stress. At present, many lesion mimic mutants have been identified in rice, and some genes have been functionally analyzed. This study reviews the occurrence mechanism of lesion mimic mutants in rice. It analyzes the function of rice lesion mimic mutant genes to elucidate the molecular regulation pathways of rice lesion mimic mutants in regulating plant disease resistance.
Collapse
|
26
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
27
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|
28
|
Detection of QTLs for Plant Height Architecture Traits in Rice (Oryza sativa L.) by Association Mapping and the RSTEP-LRT Method. PLANTS 2022; 11:plants11070999. [PMID: 35406978 PMCID: PMC9002822 DOI: 10.3390/plants11070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
Plant height (PH) and its component traits are critical determinants of lodging resistance and strongly influence yield in rice. The genetic architecture of PH and its component traits were mined in two mapping populations. In the natural population composed of 504 accessions, a total of forty simple sequence repeat (SSR) markers associated with PH and its component traits were detected across two environments via association mapping. Allele RM305-210 bp on chromosome 5 for PH had the largest phenotypic effect value (PEV) (−51.42 cm) with a reducing effect. Allele RM3533-220 bp on chromosome 9 for panicle length and allele RM264-120 bp on chromosome 8 for the length of upper first elongated internode (1IN) showed the highest positive PEV. Among the elongated internodes with negative effects being desirable, the allele RM348-130 bp showed the largest PEV (−7.48 cm) for the length of upper second elongated internode. In the chromosome segment substitution line population consisting of 53 lines, a total of nine QTLs were detected across two environments, with the phenotypic variance explained (PVE) ranging 10.07–28.42%. Among the detected QTLs, q1IN-7 explained the largest PVE (28.42%) for the 1IN, with an additive of 5.31 cm. The favorable allele RM257-125 bp on chromosome 9 for the 1IN increasing was detected in both populations. The favorable alleles provided here could be used to shape PH architecture against lodging.
Collapse
|
29
|
Cheng C, Liu F, Sun X, Wang B, Liu J, Ni X, Hu C, Deng G, Tong Z, Zhang Y, Lü P. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. Int J Biol Macromol 2022; 204:661-676. [PMID: 35181326 DOI: 10.1016/j.ijbiomac.2022.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Fatty acid desaturase (FAD) plays important roles in plant growth and development and plant defense processes. In this study, we identified 27 MaFAD genes from the banana genome. According to the amino acid sequence similarities, their encoded proteins could be classified into five subfamilies. This classification is consistently supported by their gene and protein structures, conserved motifs and subcellular localizations. Segmental duplication events were found to play predominant roles in the MaFAD gene family expansion. Thirty miRNAs targeting MaFADs were identified and many hormone- and stress-responsive cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, indicating that the MaFADs expression regulation was very complicated. Gene expression analysis showed that some MaFADs showed significant differential expression in response to high and low temperature. FocTR4 influenced greatly the expression of several MaFADs and greatly induced the fatty acid (FA) accumulations in roots. Although S. indica showed no significant influence on the expression of most MaFADs, it could greatly alleviate the influence of FocTR4 on several MaFADs and FA biosynthesis. Our study revealed that MaFADs contributed greatly to the responses of high and low temperature stresses and mutualistic and parasitic fungi colonization in banana.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xueli Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bin Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Ni
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongyan Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
30
|
Li C, Liu H, Wang J, Pan Q, Wang Y, Wu K, Jia P, Mu Y, Tang H, Xu Q, Jiang Q, Liu Y, Qi P, Zhang X, Huang L, Chen G, Wang J, Wei Y, Zheng Y, Gou L, Yao Q, Lan X, Ma J. Characterization and fine mapping of a lesion mimic mutant (Lm5) with enhanced stripe rust and powdery mildew resistance in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:421-438. [PMID: 34661696 DOI: 10.1007/s00122-021-03973-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
A novel light intensity-dependent lesion mimic mutant with enhanced disease resistance was physiologically, biochemically, and genetically characterized, and the causative gene was fine mapped to a 1.28 Mbp interval containing 17 high-confidence genes. Lesion mimic mutants are ideal for studying disease resistance and programmed cell death photosynthesis in plants to improve crop yield. In this study, a novel light intensity-dependent lesion mimic mutant (MC21) was obtained from the wheat variety Chuannong16 (CN16) by ethyl methane sulfonate treatment. The mutant initially developed tiny lesion spots on the basal part of the leaves, which then gradually proceeded down to leaf sheaths, stems, shells, and awns at the flowering stage. The major agronomic traits were significantly altered in the mutant compared to that in the wild-type CN16. Furthermore, the mutant exhibited a lesion phenotype with degenerated chloroplast structure, decreased chlorophyll content, increased level of reactive oxygen species, and increased resistance to stripe rust and powdery mildew. Genetic analysis indicated that the lesion phenotype was controlled by a novel single semi-dominant nuclear gene. The target gene was mapped on chromosome arm 2AL located between Kompetitive Allele Specific PCR (KASP) markers, KASP-4211 and KASP-5353, and tentatively termed as lesion mimic 5 (Lm5). The fine mapping suggested that Lm5 was located in a 1.28 Mbp interval between markers KASP-5825 and KASP-9366; 17 high-confidence candidate genes were included in this genomic region. This study provides an important foundational step for further cloning of Lm5 using a map-based approach.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Pan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kunyan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiying Jia
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifu Yao
- College of Agroforestry Engineering and Planning/Guizhou Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, 554300, China.
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
31
|
Xiao X, Wang R, Khaskhali S, Gao Z, Guo W, Wang H, Niu X, He C, Yu X, Chen Y. A Novel Glycerol Kinase Gene OsNHO1 Regulates Resistance to Bacterial Blight and Blast Diseases in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:800625. [PMID: 35126424 PMCID: PMC8811351 DOI: 10.3389/fpls.2021.800625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Glycerol-induced resistance to various pathogens has been reported in different plants. Glycerol kinase (GK), a vital rate-limiting enzyme that catalyzes glycerol conversion to glycerol-3-phosphate (G3P), participates in responses to both abiotic and biotic stresses. However, its physiological importance in rice defenses against pathogens remains unclear. In this research, quantification analysis revealed that GK levels were significantly induced in rice leaves infected by Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99. A typical GK-encoding gene OsNHO1 was cloned in rice. The transcriptional levels of OsNHO1 were significantly induced by salicylic acid, jasmonic acid, and Xoo-PXO99. Ectopic expression of OsNHO1 partially rescued the resistance to P. s. pv. phaseolicola in the Arabidopsis nho1 mutant. In the overexpressing transgenic rice lines (OsNHO1-OE), the content of GK and the transcriptional level of OsNHO1 were increased and the resistance to bacterial blight and blast was improved, while reduced OsNHO1 expression impaired the resistance in OsNHO1-RNAi lines. The wax contents and expression of the wax synthesis regulatory genes were significantly increased in the overexpression lines but decreased in the OsNHO1-RNAi lines. We then confirmed the interaction partner of OsNHO1 using yeast two-hybrid and bimolecular fluorescence complementation assays. The transcription of the interaction partner-encoding genes OsSRC2 and OsPRs in OsNHO1-RNAi lines was downregulated but upregulated in OsNHO1-OE lines. Thus, we concluded that OsNHO1 provided disease resistance by affecting the wax content and modulating the transcription levels of PR genes.
Collapse
Affiliation(s)
- Xiaorong Xiao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
- Cereal Crops Institute, Hainan Academy of Agricultural Sciences/Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Rui Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Shahneela Khaskhali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiliang Gao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Wenya Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
| | - Honggang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Chaoze He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
| |
Collapse
|
32
|
Gao Y, Xiang X, Zhang Y, Cao Y, Wang B, Zhang Y, Wang C, Jiang M, Duan W, Chen D, Zhan X, Cheng S, Liu Q, Cao L. Disruption of OsPHD1, Encoding a UDP-Glucose Epimerase, Causes JA Accumulation and Enhanced Bacterial Blight Resistance in Rice. Int J Mol Sci 2022; 23:ijms23020751. [PMID: 35054937 PMCID: PMC8775874 DOI: 10.3390/ijms23020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Xiaojiao Xiang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Yongrun Cao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Beifang Wang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Yue Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Chen Wang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Min Jiang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Wenjing Duan
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
- Correspondence: (Q.L.); (L.C.); Tel.: +86-0571-6337-0218 (Q.L.); +86-0571-6337-0329 (L.C.)
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
- Northern Center of China National Rice Research Institute, China National Rice Research Institute, Shuangyashan 155100, China
- Correspondence: (Q.L.); (L.C.); Tel.: +86-0571-6337-0218 (Q.L.); +86-0571-6337-0329 (L.C.)
| |
Collapse
|
33
|
Cai L, Yan M, Yun H, Tan J, Du D, Sun H, Guo Y, Sang X, Zhang C. Identification and fine mapping of lesion mimic mutant spl36 in rice ( Oryza sativa L.). BREEDING SCIENCE 2021; 71:510-519. [PMID: 35087315 PMCID: PMC8784353 DOI: 10.1270/jsbbs.20160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/09/2021] [Indexed: 06/14/2023]
Abstract
In the absence of pathogen attack, lesion mimic mutants (LMMs) in plants undergo spontaneous cell death and develop necrosis or apoptosis-like lesions on the leaves or sheath, resembling symptoms of hypersensitive response. In-depth research has been conducted on LMMs, especially regarding the molecular mechanisms underlying programmed cell death and disease resistance. In this study, the spotted leaf 36 (spl36) mutant was identified as a typical LMM, showing lesions on both the leaf blade and leaf sheath. The formation of lesions was found to be caused by cell death accompanied by accumulation of hydrogen peroxide and degradation of chloroplasts. Compared with wild-type, the main agronomic traits such as plant height, effective panicle number, panicle length, grain per panicle, seed setting rate, and 1000-grain weight of spl36 were significantly reduced. The defence and pathogenesis-related genes PR1a, PR1b, PR10, and NPR1, were transcriptionally activated in mutant spl36 without pathogen attack. Genetic analysis showed that the mutant phenotype was controlled by the gene SPL36, which was mapped to an interval of 260 kb at the end of the long arm on chromosome 11. Pathogen inoculation analysis showed that spl36 has enhanced resistance to sheath blight, rice blast, and bacterial blight.
Collapse
Affiliation(s)
- LinJun Cai
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Meng Yan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Han Yun
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Jia Tan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Dan Du
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Hang Sun
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - YunXia Guo
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - XianChun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - ChangWei Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| |
Collapse
|
34
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
35
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
36
|
Kachroo P, Burch-Smith TM, Grant M. An Emerging Role for Chloroplasts in Disease and Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:423-445. [PMID: 34432508 DOI: 10.1146/annurev-phyto-020620-115813] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK;
| |
Collapse
|
37
|
Li J, Galla A, Avila CA, Flattmann K, Vaughn K, Goggin FL. Fatty Acid Desaturases in the Chloroplast and Endoplasmic Reticulum Promote Susceptibility to the Green Peach Aphid Myzus persicae in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:691-702. [PMID: 33596108 DOI: 10.1094/mpmi-12-20-0345-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acid desaturases (FADs) in plants influence levels of susceptibility to multiple stresses, including insect infestations. In this study, populations of the green peach aphid (Myzus persicae) on Arabidopsis thaliana were reduced by mutations in three desaturases: AtFAB2/SSI2, which encodes a chloroplastic stearoyl-[acyl-carrier-protein] 9-desaturase, and AtFAD7 or AtFAD3, which encode ω-3 FADs in the chloroplast and endoplasmic reticulum (ER), respectively. These data indicate that certain FADs promote susceptibility to aphids and that aphids are impacted by desaturases in both the chloroplast and ER. Aphid resistance in ssi2, fad3, and fad7, singly or in combination, might involve altered signaling between these subcellular compartments. C18:1 levels are depleted in ssi2, whereas C18:2 accumulation is enhanced in fad3 and fad7. In contrast, fad8 has higher than normal C18:2 levels but also high C18:1 and low C18:0 and does not impact aphid numbers. Potentially, aphids may be influenced by the balance of multiple fatty acids (FAs) rather than by a single species, with C18:2 promoting aphid resistance and C18:1 promoting susceptibility. Although the fad7 mutant also accumulates higher-than-normal levels of C16:2, this FA does not contribute to aphid resistance because a triple mutant line that lacks detectable levels of C16:2 (fad2fad6fad7) retains comparable levels of aphid resistance as fad7. In addition, aphid numbers are unaffected by the fad5 mutation that inhibits C16:1 synthesis. Together, these results demonstrate that certain FADs are important susceptibility factors in plant-aphid interactions and that aphid resistance is more strongly associated with differences in C18 abundance than C16 abundance.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jiamei Li
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Aravind Galla
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Carlos A Avila
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Kaitlin Flattmann
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Kaleb Vaughn
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
38
|
Meng B, Wang T, Luo Y, Xu D, Li L, Diao Y, Gao Z, Hu Z, Zheng X. Genome-Wide Association Study Identified Novel Candidate Loci/Genes Affecting Lodging Resistance in Rice. Genes (Basel) 2021; 12:718. [PMID: 34064770 PMCID: PMC8151605 DOI: 10.3390/genes12050718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022] Open
Abstract
Lodging reduces rice yield, but increasing lodging resistance (LR) usually limits yield potential. Stem strength and leaf type are major traits related to LR and yield, respectively. Hence, understanding the genetic basis of stem strength and leaf type is of help to reduce lodging and increase yield in LR breeding. Here, we carried out an association analysis to identify quantitative trait locus (QTLs) affecting stem strength-related traits (internode length/IL, stem wall thickness/SWT, stem outer diameter/SOD, and stem inner diameter/SID) and leaf type-associated traits (Flag leaf length/FLL, Flag leaf angle/FLA, Flag leaf width/FLW, leaf-rolling/LFR and SPAD/Soil, and plant analyzer development) using a diverse panel of 550 accessions and evaluated over two years. Genome-wide association study (GWAS) using 4,076,837 high-quality single-nucleotide polymorphisms (SNPs) identified 89 QTLs for the nine traits. Next, through "gene-based association analysis, haplotype analysis, and functional annotation", the scope was narrowed down step by step. Finally, we identified 21 candidate genes in 9 important QTLs that included four reported genes (TUT1, OsCCC1, CFL1, and ACL-D), and seventeen novel candidate genes. Introgression of alleles, which are beneficial for both stem strength and leaf type, or pyramiding stem strength alleles and leaf type alleles, can be employed for LR breeding. All in all, the experimental data and the identified candidate genes in this study provide a useful reference for the genetic improvement of rice LR.
Collapse
Affiliation(s)
- Bingxin Meng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Yi Luo
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Deze Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Lanzhi Li
- Hunan Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China;
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of life sciences, Wuhan University, Wuhan 430072, China; (B.M.); (T.W.); (Y.L.); (Y.D.); (Z.G.)
| | - Xingfei Zheng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| |
Collapse
|
39
|
Ma L, Cheng X, Wang C, Zhang X, Xue F, Li Y, Zhu Q, Sun J, Liu F. Explore the gene network regulating the composition of fatty acids in cottonseed. BMC PLANT BIOLOGY 2021; 21:177. [PMID: 33849439 PMCID: PMC8042725 DOI: 10.1186/s12870-021-02952-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. RESULTS In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5-15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10-60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25-50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. CONCLUSIONS These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.
Collapse
Affiliation(s)
- Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinqi Cheng
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chuan Wang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
40
|
Yuchun RAO, Ran JIAO, Sheng WANG, Xianmei WU, Hanfei YE, Chenyang PAN, Sanfeng LI, Dedong X, Weiyong ZHOU, Gaoxing DAI, Juan HU, Deyong REN, Yuexing WANG. SPL36 Encodes a Receptor-like Protein Kinase that Regulates Programmed Cell Death and Defense Responses in Rice. RICE (NEW YORK, N.Y.) 2021; 14:34. [PMID: 33825994 PMCID: PMC8026784 DOI: 10.1186/s12284-021-00475-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/23/2021] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants spontaneously produce disease spots in the absence of biotic or abiotic stresses. Analyzing lesion mimic mutants' sheds light on the mechanisms underlying programmed cell death and defense-related responses in plants. Here, we isolated and characterized the rice (Oryza sativa) spotted leaf 36 (spl36) mutant, which was identified from an ethyl methanesulfonate-mutagenized japonica cultivar Yundao population. spl36 displayed spontaneous cell death and enhanced resistance to rice bacterial pathogens. Gene expression analysis suggested that spl36 functions in the disease response by upregulating the expression of defense-related genes. Physiological and biochemical experiments indicated that more cell death occurred in spl36 than the wild type and that plant growth and development were affected in this mutant. We isolated SPL36 by map-based cloning. A single base substitution was detected in spl36, which results in a cysteine-to-arginine substitution in SPL36. SPL36 is predicted to encode a receptor-like protein kinase containing leucine-rich domains that may be involved in stress responses in rice. spl36 was more sensitive to salt stress than the wild type, suggesting that SPL36 also negatively regulates the salt-stress response. These findings suggest that SPL36 regulates the disease resistance response in rice by affecting the expression of defense- and stress-related genes.
Collapse
Affiliation(s)
- R A O Yuchun
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China.
| | - J I A O Ran
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - W A N G Sheng
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - W U Xianmei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Y E Hanfei
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - P A N Chenyang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - L I Sanfeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xin Dedong
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - Z H O U Weiyong
- Guangxi Academy of Agricultural Sciences, Nanning, 530000, China
| | - D A I Gaoxing
- Guangxi Academy of Agricultural Sciences, Nanning, 530000, China
| | - H U Juan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - R E N Deyong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - W A N G Yuexing
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
41
|
Acyl-Acyl Carrier Protein Desaturases and Plant Biotic Interactions. Cells 2021; 10:cells10030674. [PMID: 33803674 PMCID: PMC8002970 DOI: 10.3390/cells10030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by Δ9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by Δ9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.
Collapse
|
42
|
Fabre F, Urbach S, Roche S, Langin T, Bonhomme L. Proteomics-Based Data Integration of Wheat Cultivars Facing Fusarium graminearum Strains Revealed a Core-Responsive Pattern Controlling Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:644810. [PMID: 34135919 PMCID: PMC8201412 DOI: 10.3389/fpls.2021.644810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Fusarium head blight (FHB), mainly occurring upon Fusarium graminearum infection in a wide variety of small-grain cereals, is supposed to be controlled by a range of processes diverted by the fungal pathogen, the so-called susceptibility factors. As a mean to provide relevant information about the molecular events involved in FHB susceptibility in bread wheat, we studied an extensive proteome of more than 7,900 identified wheat proteins in three cultivars of contrasting susceptibilities during their interaction with three F. graminearum strains of different aggressiveness. No cultivar-specific proteins discriminated the three wheat genotypes, demonstrating the establishment of a core proteome regardless of unequivocal FHB susceptibility differences. Quantitative protein analysis revealed that most of the FHB-induced molecular adjustments were shared by wheat cultivars and occurred independently of the F. graminearum strain aggressiveness. Although subtle abundance changes evidenced genotype-dependent responses to FHB, cultivar distinction was found to be mainly due to basal abundance differences, especially regarding the chloroplast functions. Integrating these data with previous proteome mapping of the three F. graminearum strains facing the three same wheat cultivars, we demonstrated strong correlations between the wheat protein abundance changes and the adjustments of fungal proteins supposed to interfere with host molecular functions. Together, these results provide a resourceful dataset that expands our understanding of the specific molecular events taking place during the wheat-F. graminearum interaction.
Collapse
Affiliation(s)
- Francis Fabre
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Roche
- INRAE, Unité Experimentale 1375, Phénotypage au Champ des Céréales (PHACC), Clermont-Ferrand, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
- *Correspondence: Ludovic Bonhomme,
| |
Collapse
|
43
|
Dalio RJD, Litholdo CG, Arena G, Magalhães D, Machado MA. Contribution of Omics and Systems Biology to Plant Biotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:171-188. [DOI: 10.1007/978-3-030-80352-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
45
|
Liu X, Inoue H, Tang X, Tan Y, Xu X, Wang C, Jiang CJ. Rice OsAAA-ATPase1 is Induced during Blast Infection in a Salicylic Acid-Dependent Manner, and Promotes Blast Fungus Resistance. Int J Mol Sci 2020; 21:ijms21041443. [PMID: 32093321 PMCID: PMC7073101 DOI: 10.3390/ijms21041443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
Fatty acids (FAs) have been implicated in signaling roles in plant defense responses. We previously reported that mutation or RNAi-knockdown (OsSSI2-kd) of the rice OsSSI2 gene, encoding a stearoyl acyl carrier protein FA desaturase (SACPD), remarkably enhanced resistance to blast fungus Magnaporthe oryzae and the leaf-blight bacterium Xanthomonas oryzae pv. oryzae (Xoo). Transcriptomic analysis identified six AAA-ATPase family genes (hereafter OsAAA-ATPase1–6) upregulated in the OsSSI2-kd plants, in addition to other well-known defense-related genes. Here, we report the functional analysis of OsAAA-ATPase1 in rice’s defense response to M. oryzae. Recombinant OsAAA-ATPase1 synthesized in Escherichia coli showed ATPase activity. OsAAA-ATPase1 transcription was induced by exogenous treatment with a functional analogue of salicylic acid (SA), benzothiadiazole (BTH), but not by other plant hormones tested. The transcription of OsAAA-ATPase1 was also highly induced in response to M. oryzae infection in an SA-dependent manner, as gene induction was significantly attenuated in a transgenic rice line expressing a bacterial gene (nahG) encoding salicylate hydroxylase. Overexpression of OsAAA-ATPase1 significantly enhanced pathogenesis-related gene expression and the resistance to M. oryzae; conversely, RNAi-mediated suppression of this gene compromised this resistance. These results suggest that OsAAA-APTase1 plays an important role in SA-mediated defense responses against blast fungus M. oryzae.
Collapse
Affiliation(s)
- Xinqiong Liu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (X.L.); (C.-J.J.); Tel.: +86-189-7122-9082 (X.L.); +81-298-838-8385(C.-J.J.)
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences (NIAS), National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan
| | - Xianying Tang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanping Tan
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xin Xu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chuntai Wang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chang-Jie Jiang
- Institute of Agrobiological Sciences (NIAS), National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan
- Correspondence: (X.L.); (C.-J.J.); Tel.: +86-189-7122-9082 (X.L.); +81-298-838-8385(C.-J.J.)
| |
Collapse
|
46
|
Qin T, Hao W, Sun R, Li Y, Wang Y, Wei C, Dong T, Wu B, Dong N, Wang W, Sun J, Yang Q, Zhang Y, Yang S, Wang Q. Verticillium dahliae VdTHI20, Involved in Pyrimidine Biosynthesis, Is Required for DNA Repair Functions and Pathogenicity. Int J Mol Sci 2020; 21:E1378. [PMID: 32085660 PMCID: PMC7073022 DOI: 10.3390/ijms21041378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 11/25/2022] Open
Abstract
Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.
Collapse
Affiliation(s)
- Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Wei Hao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yuqing Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yuanyuan Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Chunyan Wei
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Tao Dong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Bingjie Wu
- College of Agriculture, Liaocheng University, Liaocheng 252059, China;
| | - Na Dong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Weipeng Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Qiuyue Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yaxin Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Song Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| |
Collapse
|
47
|
Li Y, Qiu L, Liu X, Zhang Q, Zhuansun X, Fahima T, Krugman T, Sun Q, Xie C. Glycerol-Induced Powdery Mildew Resistance in Wheat by Regulating Plant Fatty Acid Metabolism, Plant Hormones Cross-Talk, and Pathogenesis-Related Genes. Int J Mol Sci 2020; 21:ijms21020673. [PMID: 31968554 PMCID: PMC7013599 DOI: 10.3390/ijms21020673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Our previous study indicated that glycerol application induced resistance to powdery mildew (Bgt) in wheat by regulating two important signal molecules, glycerol-3-phosphate (G3P) and oleic acid (OA18:1). Transcriptome analysis of wheat leaves treated by glycerol and inoculated with Bgt was performed to identify the activated immune response pathways. We identified a set of differentially expressed transcripts (e.g., TaGLI1, TaACT1, and TaSSI2) involved in glycerol and fatty acid metabolism that were upregulated in response to Bgt infection and might contribute to G3P and OA18:1 accumulation. Gene Ontology (GO) enrichment analysis revealed GO terms induced by glycerol, such as response to jasmonic acid (JA), defense response to bacterium, lipid oxidation, and growth. In addition, glycerol application induced genes (e.g., LOX, AOS, and OPRs) involved in the metabolism pathway of linolenic and alpha-linolenic acid, which are precursor molecules of JA biosynthesis. Glycerol induced JA and salicylic acid (SA) levels, while glycerol reduced the auxin (IAA) level in wheat. Glycerol treatment also induced pathogenesis related (PR) genes, including PR-1, PR-3, PR-10, callose synthase, PRMS, RPM1, peroxidase, HSP70, HSP90, etc. These results indicate that glycerol treatment regulates fatty acid metabolism and hormones cross-talk and induces the expression of PR genes that together contribute to Bgt resistance in wheat.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Xinye Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Correspondence: ; Tel.: +86-10-62732922
| |
Collapse
|
48
|
Zhang C, Feng C, Zheng Y, Wang J, Wang F. Root Exudates Metabolic Profiling Suggests Distinct Defense Mechanisms Between Resistant and Susceptible Tobacco Cultivars Against Black Shank Disease. FRONTIERS IN PLANT SCIENCE 2020; 11:559775. [PMID: 33013978 PMCID: PMC7511587 DOI: 10.3389/fpls.2020.559775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 05/09/2023]
Abstract
There is increasing evidence that root exudates play important roles in plant disease resistance. Black shank, caused by Phytophthora nicotianae, is a destructive soil-borne disease in tobacco (Nicotiana tabacum L.). The aim of the present study was to investigate the activity and composition of the root exudates from resistant and susceptible tobacco cultivars. The root exudates of the resistant cultivar Gexin 3 showed inhibitory activity against P. nicotianae, while the exudates of susceptible cultivar Xiaohuangjin 1025 stimulated the colony growth but had no effect on spore germination. Metabolic profiling using liquid chromatography/electrospray ionization-quadrupole-time-of-flight mass spectrometry depicted differing metabolic patterns of root exudates between Gexin 3 and Xiaohuangjin 1025. The activity and composition of root exudates was altered by P. nicotianae inoculation. Multivariate analysis showed that root exudates (including organic acids, alkaloids, fatty acids, and esters) were different between the two varieties. The defense substances in root exudates, such as tartaric acid, ferulic acid, and lauric acid, may represent a pre-infection prevention strategy for tobacco. Phenylpropanoids as well as inducers of salicylic acid, fatty acids, 6-hydroxyhexanoic acid, and hydrojasmonate may be involved in tobacco defense responses. Compared to the susceptible cultivar, the roots of the resistant cultivar exhibited high enzyme activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase and 4-coumarate-CoA ligase, which may prompt the synthesis and secretion of phenylpropanoids. Our results indicated that the root exudates not only provide a pre-infection prevention strategy by exuding antimicrobial substances, but also increase tobacco disease resistance by eliciting plant defense responses. In addition, some defense compounds as well as compounds that play a role in inducing plant defense responses, showed potential for disease control application. This study provides an insight into possible disease resistance mechanisms of root exudates, and attempts the beneficial utilization of these secondary metabolites of plants.
Collapse
Affiliation(s)
- Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Qingdao Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pest Integrated Management Key Laboratory of China Tobacco, Qingdao, China
- *Correspondence: Fenglong Wang, ; Chengsheng Zhang,
| | - Chao Feng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pest Integrated Management Key Laboratory of China Tobacco, Qingdao, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Qingdao Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fenglong Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Pest Integrated Management Key Laboratory of China Tobacco, Qingdao, China
- *Correspondence: Fenglong Wang, ; Chengsheng Zhang,
| |
Collapse
|
49
|
E Z, Chen C, Yang J, Tong H, Li T, Wang L, Chen H. Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.). Sci Rep 2019; 9:19445. [PMID: 31857634 PMCID: PMC6923433 DOI: 10.1038/s41598-019-55648-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Fatty acid desaturases can catalyze saturated or unsaturated fatty acids to form a double bond at various locations in the hydrocarbon chain. In the present study, a total of 20 full-length desaturase genes were identified from rice genome. An exhaustive analysis was performed to describe their chromosomal locations, gene structures, phylogeny, cis-regulatory elements, sub-cellular localizations and expression patterns. The rice desaturase genes were distributed on ten of 12 chromosomes and phylogenetically classified into six subfamilies with the Arabidopsis counterparts, FAB2, FAD2, FAD3/7/8, FAD6, DES1 and SLD1. Among of them, 9 members were expanded via chromosomal tandem or segmental duplications. The gene structures and motif constituents were evolutionarily conserved in the same subfamilies. The majority of desaturase genes showed tissue-specific expression patterns and response to abiotic stresses and hormones based on microarray data and qRT-PCR analyses. This study will provide useful clues for functional validation of desaturase genes and contribute to produce nutritionally important fatty acids by genetic modification in rice.
Collapse
Affiliation(s)
- Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chen Chen
- Key Laboratory of Plant Functional Genomics, Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Jinyu Yang
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hanhua Tong
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tingting Li
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lei Wang
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hongqi Chen
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
50
|
Xiong QQ, Shen TH, Zhong L, Zhu CL, Peng XS, He XP, Fu JR, Ouyang LJ, Bian JM, Hu LF, Sun XT, Xu J, Zhou HY, He HH, Chen XR. Comprehensive metabolomic, proteomic and physiological analyses of grain yield reduction in rice under abrupt drought-flood alternation stress. PHYSIOLOGIA PLANTARUM 2019; 167:564-584. [PMID: 30561011 DOI: 10.1111/ppl.12901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Abrupt drought-flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought-flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought-flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought-flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought-flood alteration stress, which are factors that leads to the rice grain yield reduction.
Collapse
Affiliation(s)
- Qiang-Qiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Tian-Hua Shen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Chang-Lan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Song Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Peng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Jun-Ru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Lin-Juan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Jian-Min Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Li-Fang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Tang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Hui-Ying Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Hao-Hua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xiao-Rong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| |
Collapse
|