1
|
Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D. VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. THE NEW PHYTOLOGIST 2021; 229:3481-3496. [PMID: 33231304 PMCID: PMC7986166 DOI: 10.1111/nph.17109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 05/08/2023]
Abstract
The intimate association of host and fungus in arbuscular mycorrhizal (AM) symbiosis can potentially trigger induction of host defence mechanisms against the fungus, implying that successful symbiosis requires suppression of defence. We addressed this phenomenon by using AM-defective vapyrin (vpy) mutants in Petunia hybrida, including a new allele (vpy-3) with a transposon insertion close to the ATG start codon. We explore whether abortion of fungal infection in vpy mutants is associated with the induction of defence markers, such as cell wall alterations, accumulation of reactive oxygen species (ROS), defence hormones and induction of pathogenesis-related (PR) genes. We show that vpy mutants exhibit a strong resistance against intracellular colonization, which is associated with the generation of cell wall appositions (papillae) with lignin impregnation at fungal entry sites, while no accumulation of defence hormones, ROS or callose was observed. Systematic analysis of PR gene expression revealed that several PR genes are induced in mycorrhizal roots of the wild-type, and even more in vpy plants. Some PR genes are induced exclusively in vpy mutants. Our results suggest that VPY is involved in avoiding or suppressing the induction of a cellular defence syndrome that involves localized lignin deposition and PR gene induction.
Collapse
Affiliation(s)
- Min Chen
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | | | - Laure Bapaume
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Geoffrey Darbon
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtel2000Switzerland
| | | | - Didier Reinhardt
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
2
|
|
3
|
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 2020; 18:649-660. [PMID: 32694620 DOI: 10.1038/s41579-020-0402-3] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Skiada V, Avramidou M, Bonfante P, Genre A, Papadopoulou KK. An endophytic Fusarium-legume association is partially dependent on the common symbiotic signalling pathway. THE NEW PHYTOLOGIST 2020; 226:1429-1444. [PMID: 31997356 DOI: 10.1111/nph.16457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Legumes interact with a wide range of microbes in their root systems, ranging from beneficial symbionts to pathogens. Symbiotic rhizobia and arbuscular mycorrhizal glomeromycetes trigger a so-called common symbiotic signalling pathway (CSSP), including the induction of nuclear calcium spiking in the root epidermis. By combining gene expression analysis, mutant phenotypic screening and analysis of nuclear calcium elevations, we demonstrate that recognition of an endophytic Fusarium solani strain K (FsK) in model legumes is initiated via perception of chitooligosaccharidic molecules and is, at least partially, CSSP-dependent. FsK induced the expression of Lysin-motif receptors for chitin-based molecules, CSSP members and CSSP-dependent genes in Lotus japonicus. In LysM and CSSP mutant/RNAi lines, root penetration and fungal intraradical progression was either stimulated or limited, whereas FsK exudates triggered CSSP-dependent nuclear calcium spiking, in epidermal cells of Medicago truncatula root organ cultures. Our results corroborate CSSP being involved in the perception of signals from other microbes beyond the restricted group of symbiotic interactions sensu stricto.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, 41500, Greece
| |
Collapse
|
5
|
Chabaud M, Fournier J, Brichet L, Abdou-Pavy I, Imanishi L, Brottier L, Pirolles E, Hocher V, Franche C, Bogusz D, Wall LG, Svistoonoff S, Gherbi H, Barker DG. Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species. PLoS One 2019; 14:e0223149. [PMID: 31600251 PMCID: PMC6786586 DOI: 10.1371/journal.pone.0223149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023] Open
Abstract
Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.
Collapse
Affiliation(s)
- Mireille Chabaud
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Joëlle Fournier
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Lukas Brichet
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Iltaf Abdou-Pavy
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| | - Leandro Imanishi
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Laurent Brottier
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Elodie Pirolles
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Valérie Hocher
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Claudine Franche
- Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France
| | - Didier Bogusz
- Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France
| | - Luis G. Wall
- Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina
| | - Sergio Svistoonoff
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - Hassen Gherbi
- Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France
| | - David G. Barker
- Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France
| |
Collapse
|
6
|
Carotenuto G, Sciascia I, Oddi L, Volpe V, Genre A. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC PLANT BIOLOGY 2019; 156:265-273. [PMID: 31054574 DOI: 10.1046/j.1469-8137.2002.00508.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. RESULTS We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. CONCLUSIONS In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy.
| |
Collapse
|
7
|
Moscatiello R, Sello S, Ruocco M, Barbulova A, Cortese E, Nigris S, Baldan B, Chiurazzi M, Mariani P, Lorito M, Navazio L. The Hydrophobin HYTLO1 Secreted by the Biocontrol Fungus Trichoderma longibrachiatum Triggers a NAADP-Mediated Calcium Signalling Pathway in Lotus japonicus. Int J Mol Sci 2018; 19:E2596. [PMID: 30200468 PMCID: PMC6164116 DOI: 10.3390/ijms19092596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma filamentous fungi are increasingly used as biocontrol agents and plant biostimulants. Growing evidence indicates that part of the beneficial effects is mediated by the activity of fungal metabolites on the plant host. We have investigated the mechanism of plant perception of HYTLO1, a hydrophobin abundantly secreted by Trichoderma longibrachiatum, which may play an important role in the early stages of the plant-fungus interaction. Aequorin-expressing Lotus japonicus suspension cell cultures responded to HYTLO1 with a rapid cytosolic Ca2+ increase that dissipated within 30 min, followed by the activation of the defence-related genes MPK3, WRK33, and CP450. The Ca2+-dependence of these gene expression was demonstrated by using the extracellular Ca2+ chelator EGTA and Ned-19, a potent inhibitor of the nicotinic acid adenine dinucleotide phosphate (NAADP) receptor in animal cells, which effectively blocked the HYTLO1-induced Ca2+ elevation. Immunocytochemical analyses showed the localization of the fungal hydrophobin at the plant cell surface, where it forms a protein film covering the plant cell wall. Our data demonstrate the Ca2+-mediated perception by plant cells of a key metabolite secreted by a biocontrol fungus, and provide the first evidence of the involvement of NAADP-gated Ca2+ release in a signalling pathway triggered by a biotic stimulus.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Simone Sello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, CNR, Via Università 133, 80055 Portici (NA), Italy.
| | - Ani Barbulova
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Enrico Cortese
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Sebastiano Nigris
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Barbara Baldan
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Maurizio Chiurazzi
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Paola Mariani
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| |
Collapse
|
8
|
Cosme M, Fernández I, Van der Heijden MGA, Pieterse CMJ. Non-Mycorrhizal Plants: The Exceptions that Prove the Rule. TRENDS IN PLANT SCIENCE 2018; 23:577-587. [PMID: 29753631 DOI: 10.1016/j.tplants.2018.04.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 05/21/2023]
Abstract
The widespread symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi relies on a complex molecular dialog with reciprocal benefits in terms of nutrition, growth, and protection. Approximately 29% of all vascular plant species do not host AM symbiosis, including major crops. Under certain conditions, however, presumed non-host plants can become colonized by AM fungi and develop rudimentary AM (RAM) phenotypes. Here we zoom in on the mustard family (Brassicaceae), which harbors AM hosts, non-hosts, and presumed non-host species such as Arabidopsis thaliana, for which conditional RAM colonization has been described. We advocate that RAM phenotypes and redundant genomic elements of the symbiotic 'toolkit' are missing links that can help to unravel genetic constraints that drive the evolution of symbiotic incompatibility.
Collapse
Affiliation(s)
- Marco Cosme
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands.
| | - Ivan Fernández
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands
| | - Marcel G A Van der Heijden
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands; Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zurich, Switzerland; These two authors are shared last authors
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands; These two authors are shared last authors.
| |
Collapse
|
9
|
John J, Kernaghan G, Lundholm J. The potential for mycorrhizae to improve green roof function. Urban Ecosyst 2016. [DOI: 10.1007/s11252-016-0573-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis 2016. [DOI: 10.1007/s13199-016-0382-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Song F, Qi D, Liu X, Kong X, Gao Y, Zhou Z, Wu Q. Proteomic analysis of symbiotic proteins of Glomus mosseae and Amorpha fruticosa. Sci Rep 2015; 5:18031. [PMID: 26658758 PMCID: PMC4674871 DOI: 10.1038/srep18031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022] Open
Abstract
Arbuscular mycorrhiza fungi (AMF) can colonize the roots of Amorpha fruticosa, a perennial leguminous woody shrub, and form arbuscular mycorrhiza (AM). AMF have significant promoting effects on A. fruticosa growth as the intensity of fungal colonization increases. Taking AMF-A. fruticosa symbionts as the experimental material, gel-free isobaric tags for relative and absolute quantification (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the expression of A. fruticosa mycorrhizal proteins at the maturation stage. A total of 3,473 proteins were identified, of which 77 showed dramatic changes in their root expression levels; 33 increased, and 44 decreased. We also found nine AMF proteins that were expressed with AMF treatment. The 77 proteins were classified according to function. Plant proteins were assigned into 11 categories: metabolism-related (32%), protein folding and degradation-related (22%), energy-related (10%), protein synthesis-related (8%), stress and defense-related (24%), transcription-related (6%), membrane and transport-related (4%), cellular structure-related (2.5%), signaling transduction-related (11%) and unknown proteins (5%). The results of the study provide a foundation for further investigation of the metabolic characteristics and molecular mechanisms of AM.
Collapse
Affiliation(s)
- Fuqiang Song
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Dandan Qi
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Xuan Liu
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Xiangshi Kong
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Yang Gao
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Zixin Zhou
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Qi Wu
- Heilongjiang University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Sun XG, Bonfante P, Tang M. Effect of volatiles versus exudates released by germinating spores of Gigaspora margarita on lateral root formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:1-10. [PMID: 26397199 DOI: 10.1016/j.plaphy.2015.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi influence the root system architecture of their hosts; however, the underlying mechanisms have not been fully elucidated. Ectomycorrhizal fungi influence root architecture via volatiles. To determine whether volatiles also play a role in root system changes in response to AM fungi, spores of the AM fungus Gigaspora margarita were inoculated on the same plate as either wild type (WT) Lotus japonicus, the L. japonicus mutant Ljcastor (which lacks the symbiotic cation channel CASTOR, which is required for inducing nuclear calcium spiking, which is necessary for symbiotic partner recognition), or Arabidopsis thaliana, separated by cellophane membranes (fungal exudates experiment), or on different media but with a shared head space (fungal volatiles experiment). Root development was monitored over time. Both germinating spore exudates (GSEs) and geminated-spore-emitted volatile organic compounds (GVCs) significantly promoted lateral root formation (LRF) in WT L. japonicus. LRF in Ljcastor was significantly enhanced in the presence of GVCs. GVCs stimulated LRF in A. thaliana, whereas GSEs showed an inhibitory effect. The expression profile of the genes involved in mycorrhizal establishment and root development were investigated using quantitative reverse transcription-PCR analysis. Only the expression of the LjCCD7 gene, an important component of the strigolactone synthesis pathway, was differentially expressed following exposure to GVCs. We conclude that volatile organic compounds released by the germinating AM fungal spores may stimulate LRF in a symbiosis signaling pathway (SYM)- and host-independent way, whereas GSEs stimulate LRF in a SYM- and host-dependent way.
Collapse
Affiliation(s)
- Xue-Guang Sun
- State Key Laboratory of Soil Erosion and Arid-land Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, I-10125, Torino, Italy
| | - Ming Tang
- State Key Laboratory of Soil Erosion and Arid-land Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R. Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation. ACTA ACUST UNITED AC 2014; 55:928-41. [DOI: 10.1093/pcp/pcu024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Abstract
The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Institute of Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany; ,
| | | |
Collapse
|
15
|
Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. FRONTIERS IN PLANT SCIENCE 2013; 4:426. [PMID: 24194742 PMCID: PMC3810610 DOI: 10.3389/fpls.2013.00426] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner.
Collapse
Affiliation(s)
- Coline Balzergue
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| | - Mireille Chabaud
- Laboratory of Plant–Microbe Interactions, Institut National de la Recherche Agronomique (UMR441), Centre National de la Recherche Scientifique (UMR2594)Castanet-Tolosan, France
| | - David G. Barker
- Laboratory of Plant–Microbe Interactions, Institut National de la Recherche Agronomique (UMR441), Centre National de la Recherche Scientifique (UMR2594)Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| | - Soizic F. Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR5546Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, UMR5546Castanet-Tolosan, France
| |
Collapse
|
16
|
Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. FRONTIERS IN PLANT SCIENCE 2012; 3:223. [PMID: 23060892 PMCID: PMC3464683 DOI: 10.3389/fpls.2012.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/14/2012] [Indexed: 05/19/2023]
Abstract
As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.
Collapse
Affiliation(s)
| | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
17
|
Balestrini R, Ott T, Güther M, Bonfante P, Udvardi MK, De Tullio MC. Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:71-9. [PMID: 22863656 DOI: 10.1016/j.plaphy.2012.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 05/20/2023]
Abstract
Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed.
Collapse
|
18
|
Francia D, Chiltz A, Lo Schiavo F, Pugin A, Bonfante P, Cardinale F. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:963-9. [PMID: 21561784 DOI: 10.1016/j.plaphy.2011.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity.
Collapse
Affiliation(s)
- Doriana Francia
- DiVaPRA, Patologia Vegetale, Università degli Studi di Torino, Via L. da Vinci, 44, 10095 Grugliasco (TO), Italy
| | | | | | | | | | | |
Collapse
|
19
|
Masunaka A, Hyakumachi M, Takenaka S. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 2011; 26:128-34. [PMID: 21502738 DOI: 10.1264/jsme2.me10176] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relationship between the colonization of Lotus japonicus by plant growth-promoting fungi (PGPF) and biosynthesis of the isoflavonoid phytoalexin vestitol, a major defensive response of leguminous plants, was analyzed. When PGPF including Trichoderma koningi, Fusarium equiseti, and Penicillium simplicissimum were inoculated onto L. japonicus roots, only T. koningi colonized the roots long-term and increased plant dry weight (126%). Microscopic observations of transverse sections of roots colonized by T. koningi demonstrated intercellular hyphal growth and the formation of yeast-like cells. The induction of plant defenses by fungal infections was examined by Northern analysis of genes involved in vestitol biosynthesis and HPLC of vestitol production in L. japonicus. Inoculation with symbiotic Mesorhizobium loti did not induce any accumulation of the transcripts. T. koningi immediately suppressed transcript levels to those induced by M. loti. The vestitol transuded from roots by T. koningi was detected at a level equivalent to that transuded by M. loti. Other PGPF and Calonectoria ilicola pathogenic to soybean but not to L. japonicus, stimulated continuous expression of genes and exudation of vestitol. These PGPF resembled mycorrhizal fungi in the establishment of symbiotic associations rather than fungal parasites.
Collapse
Affiliation(s)
- Akira Masunaka
- National Agricultural Research Center for Hokkaido Region, Kasai, Hokkaido 082-0081, Japan.
| | | | | |
Collapse
|
20
|
Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1049-60. [PMID: 21045005 PMCID: PMC3022399 DOI: 10.1093/jxb/erq335] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/24/2010] [Accepted: 10/04/2010] [Indexed: 05/18/2023]
Abstract
Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia.
Collapse
Affiliation(s)
- Coline Balzergue
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Guillaume Bécard
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Soizic F. Rochange
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
21
|
Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. THE PLANT CELL 2010; 22:2509-26. [PMID: 20675572 PMCID: PMC2929109 DOI: 10.1105/tpc.109.069807] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 05/07/2023]
Abstract
Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant's common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK.
Collapse
Affiliation(s)
- Martin Groth
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Naoya Takeda
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Jillian Perry
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Hisaki Uchida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Stephan Dräxl
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Andreas Brachmann
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masayoshi Kawaguchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Trevor L. Wang
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Martin Parniske
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| |
Collapse
|
22
|
Gómez MR, Villate AR. Señales de reconocimiento entre plantas y hongos formadores de micorrizas arbusculares. ACTA ACUST UNITED AC 2010. [DOI: 10.21930/rcta.vol11_num1_art:195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
La asociación entre Hongo formadores de micorrizas arbusculares (HFMA) y las plantas ha permitido la adaptación de éstas a ecosistemas terrestres, presentándose en más del 80% de las plantas. El hospedero suministra carbohidratos al hongo y éste transporta los nutrientes que la planta requiere. El establecimiento de la simbiosis requiere procesos armónicos a nivel espacio-temporal, que dependen de señales específicas, para reconocimiento, colonización e intercambio de nutrientes. Las plantas presentan respuestas de defensa frente a la posible invasión de microorganismos, sin embargo, en la simbiosis éstas son débiles, localizadas y no impiden la colonización del hongo. Estas señales se observan en todas las etapas de la simbiosis, siendo la primera señal enviada por la planta en exudados de la raíz, especialmente en condiciones de bajo fósforo. Posteriormente los HFMA activan la expresión de genes que favorecen cambios a nivel celular para la formación del apresorio, del aparato de pre-penetración y en células de la corteza, del arbúsculo y la membrana periarbuscular, para el intercambio de nutrientes. Un aspecto de interés está relacionado con los mecanismos de atenuación de las respuestas de defensa de la planta. Se han planteado diversas hipótesis para entender este fenómeno y aunque el control de la simbiosis está regulado principalmente por la planta, aún se desconoce si los HFMA generan señales que facilitan el debilitamiento de las respuestas de defensa del hospedero. Este documento está orientado a hacer una revisión de las señales de reconocimiento HFMA - plantas para cada fase de la simbiosis, así como de algunos mecanismos de regulación de las respuestas de defensa de la planta para el establecimiento de la simbiosis.
Collapse
|
23
|
Bastianelli F, Costa A, Vescovi M, D'Apuzzo E, Zottini M, Chiurazzi M, Lo Schiavo F. Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants. PLANT MOLECULAR BIOLOGY 2010; 72:469-83. [PMID: 20012170 DOI: 10.1007/s11103-009-9585-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 11/30/2009] [Indexed: 05/07/2023]
Abstract
Salicylic acid (SA) is known to play an important role in the interaction between plant and micro-organisms, both symbiotic and pathogen. In particular, high levels of SA block nodule formation and mycorrhizal colonization in plants. A mutant of Lotus japonicus, named Ljsym4-2, was characterized as unable to establish positive interactions with Rhizobium and fungi (NOD(-), MYC(-)); in particular, it does not recognize signal molecules released by symbiotic micro-organisms so that eventually, epidermal cells undergo PCD at the contact area. We performed a detailed characterization of wild-type and Ljsym4-2 cultured cells by taking into account several parameters characterizing cell responses to SA, a molecule strongly involved in defense signaling pathways. In the presence of 0.5 mM SA, Ljsym4-2 suspension-cultured cells reduce their growth and eventually die, whereas in order to induce the same effects in wt suspension cells, SA concentration must be raised to 1.5 mM. An early and short production of nitric oxide (NO) and reactive oxygen species (ROS) was detected in wt-treated cells. In contrast, a continuous production of NO and a double-peak ROS response, similar to that reported after a pathogenic attack, was observed in the mutant Ljsym4-2 cells. At the molecular level, a constitutive higher level of a SA-inducible pathogenesis related gene was observed. The analysis in planta revealed a strong induction of the LjPR1 gene in the Ljsym4-2 mutant inoculated with Mesorhizobium loti.
Collapse
|
24
|
Hata S, Kobae Y, Banba M. Interactions Between Plants and Arbuscular Mycorrhizal Fungi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:1-48. [DOI: 10.1016/s1937-6448(10)81001-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P. Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. THE NEW PHYTOLOGIST 2009; 183:53-61. [PMID: 19555369 DOI: 10.1111/j.1469-8137.2009.02871.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
* Nutrient exchange is the key symbiotic feature of arbuscular mycorrhiza (AM). As evidence is accumulating that plants sense presymbiotic factors from AM fungi and prepare for colonization, we investigated whether modifications in plant sugar metabolism might be part of the precolonization program. * Inoculation of Lotus japonicus roots in a double Millipore sandwich with the AM fungus Gigaspora margarita prevented contact between the symbionts but allowed exchange of signal molecules. Starch content was used as a marker for root carbohydrate status. * Mycorrhizal colonization of L. japonicus roots led to a decrease in starch concentration. In roots inoculated in the double sandwich, the polysaccharide accumulated after 1 wk and persisted for at least 4 wk. The response was absent in the castor myc(-) mutant, sym4-2, while transcript levels of both CASTOR and POLLUX were slightly enhanced in the wild-type L. japonicus roots, suggesting a requirement of the corresponding proteins for the starch-accumulation response. Exudates obtained from fungal spores germinated in the absence of the plant also induced starch accumulation in wild-type L. japonicus roots. * We conclude that factors released from germinating AM fungal spores induce changes in the root carbon status, possibly by enhancing sugar import, which leads to starch accumulation when colonization is prevented.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Mara Novero
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Mike Guether
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Ombretta Montanari
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm-Potsdam, Germany
| | - Michael Udvardi
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
26
|
Manjarrez M, Wallwork M, Smith SE, Smith FA, Dickson S. Different arbuscular mycorrhizal fungi induce differences in cellular responses and fungal activity in a mycorrhiza-defective mutant of tomato (rmc). FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:86-96. [PMID: 32688630 DOI: 10.1071/fp08032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 10/23/2008] [Indexed: 06/11/2023]
Abstract
The reduced mycorrhizal colonisation (rmc) mutant of tomato forms different phenotypes with different arbuscular mycorrhizal (AM) fungi. Our aim was to characterise microscopically the cellular responses in plant and fungus in order to reveal how these varied when colonisation was blocked at different stages. Synchronised colonisation coupled with vital staining, autofluorescence and laser scanning confocal microscopy (LSCM) were used to determine how long the AM fungi stay alive during the interactions with rmc, whether nuclear repositioning occurred in the same way as in wild-type interactions and whether there was evidence for deployment of defence responses. The results showed that (1) all the AM fungi tested were attracted to roots of rmc, on which they developed active external mycelium and appressoria, the latter sometimes in higher numbers than on the wild type; (2) plant cellular responses, such as nuclear movement, occurred only when the AM fungus was able to penetrate the epidermal cells of rmc; and (3) plant defence responses such as autofluorescence were observed only transiently and callose deposition was not involved in blocking AM fungi in rmc. The results demonstrate that multi-step AM colonisation is not only an outcome of cellular processes influenced by both plant and fungus, but is also modified by the capacity of different AM fungi to respond to the plant phenotype induced by the rmc mutation.
Collapse
Affiliation(s)
- Maria Manjarrez
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Meredith Wallwork
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sally E Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| | - F Andrew Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sandy Dickson
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
27
|
Chen C, Fan C, Gao M, Zhu H. Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. PLANT PHYSIOLOGY 2009; 149:306-17. [PMID: 18978069 PMCID: PMC2613720 DOI: 10.1104/pp.108.131540] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 05/18/2023]
Abstract
Root symbioses with arbuscular mycorrhizal fungi and rhizobial bacteria share a common signaling pathway in legumes. Among the common symbiosis genes are CASTOR and POLLUX, the twin homologous genes in Lotus japonicus that encode putative ion channel proteins. Here, we show that the orthologs of CASTOR and POLLUX are ubiquitously present and highly conserved in both legumes and nonlegumes. Using rice (Oryza sativa) as a study system, we employ reverse genetic tools (knockout mutants and RNA interference) to demonstrate that Os-CASTOR and Os-POLLUX are indispensable for mycorrhizal symbiosis in rice. Furthermore, a cross-species complementation test indicates that Os-POLLUX can restore nodulation, but not rhizobial infection, to a Medicago truncatula dmi1 mutant.
Collapse
MESH Headings
- Amino Acid Sequence
- DNA, Bacterial/genetics
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Gene Knockout Techniques
- Genes, Plant
- Genetic Complementation Test
- Medicago truncatula/genetics
- Medicago truncatula/metabolism
- Medicago truncatula/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mycorrhizae/physiology
- Oryza/genetics
- Oryza/metabolism
- Oryza/microbiology
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- RNA Interference
- RNA, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Alignment
- Symbiosis/genetics
Collapse
Affiliation(s)
- Caiyan Chen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|
28
|
Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. THE NEW PHYTOLOGIST 2009; 182:200-212. [PMID: 19192192 DOI: 10.1111/j.1469-8137.2008.02725.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
* Arbuscular mycorrhizas (AMs) contribute significantly to soil nutrient uptake in plants. As a consequence of the fungal colonization and of the deep reorganization shown by arbusculated cells, important impacts on root transcriptome are expected. * An Affymetrix GeneChip with 50,000 probe-sets and real-time RT-PCR allowed us to detect transcriptional changes triggered in Lotus japonicus by the AM fungus Gigaspora margarita, when arbuscules are at their maximum (28 d postinoculation (dpi)). An early time (4 dpi) was selected to differentiate genes potentially involved in signaling and/or in colonization of outer tissues. * A large number (75 out of 558) of mycorrhiza-induced genes code for proteins involved in protein turnover, membrane dynamics and cell wall synthesis, while many others are involved in transport (47) or transcription (24). Induction of a subset (24 genes) of these was tested and confirmed by qRT-PCR, and transcript location in arbusculated cells was demonstrated for seven genes using laser-dissected cells. * When compared with previously published papers, the transcript profiles indicate the presence of a core set of responsive genes (25) that seem to be conserved irrespective of the symbiotic partner identity.
Collapse
Affiliation(s)
- Mike Guether
- Department of Plant Biology, University of Torino and IPP-CNR, Viale Mattioli, 25 - 10125 Torino, Italy
| | - Raffaella Balestrini
- Department of Plant Biology, University of Torino and IPP-CNR, Viale Mattioli, 25 - 10125 Torino, Italy
| | - Matthew Hannah
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Postdam-Golm, Germany
| | - Ji He
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Michael K Udvardi
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Paola Bonfante
- Department of Plant Biology, University of Torino and IPP-CNR, Viale Mattioli, 25 - 10125 Torino, Italy
| |
Collapse
|
29
|
|
30
|
Genre A, Bonfante P. Check-in procedures for plant cell entry by biotrophic microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1023-30. [PMID: 17849704 DOI: 10.1094/mpmi-20-9-1023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Significant advances in the cell biology of plant-microbe interactions have been achieved recently, to a large extent based on new technical approaches such as the use of fluorescent protein tags in model plants exploited in conjunction with available genetic resources. They have highlighted the pivotal role played by epidermal cells as the first site at which direct cell-to-cell contact takes place between the plant and microbes it may host. Here, we compare the cellular aspects of early biotrophic interactions with symbiotic and pathogenic microbes and evaluate the hypothesis that their hosting by plant cells share common traits related to the necessity of preserving host-cell integrity. The cellular events that accompany cell entry by the different biotrophs are divided into three categories, depending on whether the cellular changes are triggered by diffusible molecules, direct contact, or cell lumen penetration. Similarities and differences mirror the nutritional and developmental strategies of each plant-interacting organism, underlining the fact that plant cell entry represents a key aspect in the establishment of biotrophy.
Collapse
Affiliation(s)
- Andrea Genre
- Dipartimento di Biologia Vegetale, Università di Torino, Italy.
| | | |
Collapse
|
31
|
Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJGM, Bonfante P. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. PLANT PHYSIOLOGY 2007; 144:1455-66. [PMID: 17468219 PMCID: PMC1914140 DOI: 10.1104/pp.107.097980] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/13/2007] [Indexed: 05/15/2023]
Abstract
Information on changes in the plant transcriptome during early interaction with arbuscular mycorrhizal (AM) fungi is still limited since infections are usually not synchronized and plant markers for early stages of colonization are not yet available. A prepenetration apparatus (PPA), organized in epidermal cells during appressorium development, has been reported to be responsible for assembling a trans-cellular tunnel to accommodate the invading fungus. Here, we used PPAs as markers for cell responsiveness to fungal contact to investigate gene expression at this early stage of infection with minimal transcript dilution. PPAs were identified by confocal microscopy in transformed roots of Medicago truncatula expressing green fluorescent protein-HDEL, colonized by the AM fungus Gigaspora margarita. A PPA-targeted suppressive-subtractive cDNA library was built, the cDNAs were cloned and sequenced, and, consequently, 107 putative interaction-specific genes were identified. The expression of a subset of 15 genes, selected by reverse northern dot blot screening, and five additional genes, potentially involved in PPA formation, was analyzed by real-time reverse transcription-polymerase chain reaction and compared with an infection stage, 48 h after the onset of the PPA. Comparison of the expression profile of G. margarita-inoculated wild type and the mycorrhiza-defective dmi3-1 mutant of M. truncatula revealed that an expansin-like gene, expressed in wild-type epidermis during PPA development, can be regarded as an early host marker for successful mycorrhization. A putative Avr9/Cf-9 rapidly elicited gene, found to be up-regulated in the mutant, suggests novel regulatory roles for the DMI3 protein in the early mycorrhization process.
Collapse
Affiliation(s)
- Valeria Siciliano
- Dipartimento di Biologia Vegetale, Università di Torino and Istituto Protezione Piante-CNR, Torino, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Combier JP, Vernié T, de Billy F, El Yahyaoui F, Mathis R, Gamas P. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. PLANT PHYSIOLOGY 2007; 144:703-16. [PMID: 17293436 PMCID: PMC1914174 DOI: 10.1104/pp.106.092585] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/20/2007] [Indexed: 05/13/2023]
Abstract
We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcriptomics, represents a novel and specific marker for root and nodule infection by Sinorhizobium meliloti. This was established by determining the spatial pattern of MtMMPL1 expression and evaluating gene activation in the context of various plant and bacterial symbiotic mutant interactions. The MtMMPL1 protein is the first nodulin shown to belong to the large matrix metalloendoproteinase (MMP) family. While plant MMPs are poorly documented, they are well characterized in animals as playing a key role in a number of normal and pathological processes involving the remodeling of the extracellular matrix. MtMMPL1 represents a novel MMP variant, with a substitution of a key amino acid residue within the predicted active site, found exclusively in expressed sequence tags corresponding to legume MMP homologs. An RNA interference approach revealed that decreasing MtMMPL1 expression leads to an accumulation of rhizobia within infection threads, whose diameter is often significantly enlarged. Conversely, MtMMPL1 ectopic overexpression under the control of a constitutive (35S) promoter led to numerous abortive infections and an overall decrease in the number of nodules. We discuss possible roles of MtMMPL1 during Rhizobium infection.
Collapse
Affiliation(s)
- Jean-Philippe Combier
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, 31326 Castanet Tolosan cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Lee A, Lum MR, Hirsch AM. ENOD40 Gene Expression and Cytokinin Responses in the Nonnodulating, Nonmycorrhizal (NodMyc) Mutant, Masym3, of Melilotus alba Desr. PLANT SIGNALING & BEHAVIOR 2007; 2:33-42. [PMID: 19516966 PMCID: PMC2633896 DOI: 10.4161/psb.2.1.3734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 12/20/2006] [Indexed: 05/16/2023]
Abstract
Several nonnodulating, nonmycorrhizal (Nod(-)Myc(-)) mutants of Melilotus alba Desr. (white sweetclover) have been described. However, the details of their responses to Sinorhizobium meliloti have not been fully elucidated. We investigated rhizobial entry and colonization using Confocal Scanning Laser Microscopy on the Masym1-5 mutants and isolated an early nodulin (ENOD40) gene from wild-type M. alba. We focused on Masym3, the least responsive of the mutants to S. meliloti and VA-fungi, to determine its response to cytokinin. Cytokinin appears to be a downstream signal in the nodule developmental pathway based not only on our previous observations whereby Nod(-)Myc(-) alfalfa roots treated with cytokinin accumulated several ENOD gene transcripts, but also on recent reports showing the importance of cytokinin receptors for nodulation. Here we show that applying 10(-6) M 6-benzylaminopurine to uninoculated Masym3 roots elicited ENOD40 transcript accumulation. In addition, Masym3 root hairs inoculated with either wild-type S. meliloti or Nod(-)S. meliloti expressing the trans-zeatin synthase gene of Agrobacterium tumefaciens exhibited tip swelling, suggesting that cytokinin mediated this response. However, Masym3 root hair tips swelled following inoculation with Nod(-)S. meliloti or after mock-inoculation, a response resembling the phenotype of root hairs, after handling, of the Medicago truncatula mutant, dmi2. Mtdmi2 is Nod(-)Myc(-) due to a defect in a gene encoding a Nodule Receptor Kinase (NORK). Like Mtdmi2, the root hair swelling response appears in part to be mediated by touch because Masym3 root hairs not contacted by either bacteria or drops of water or buffer remain elongated and do not exhibit tip swelling.
Collapse
Affiliation(s)
- Angie Lee
- Department of Molecular, Cellular and Developmental Biology; University of California, Los Angeles; Los Angeles, California USA
| | | | | |
Collapse
|
34
|
Balestrini R, Lanfranco L. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. MYCORRHIZA 2006; 16:509-524. [PMID: 17004063 DOI: 10.1007/s00572-006-0069-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 07/05/2006] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Istituto per la Protezione delle Piante-Sezione di Torino-CNR, Viale Mattioli 25, 10125, Turin, Italy.
| | - Luisa Lanfranco
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
35
|
Murray J, Geil R, Wagg C, Karas B, Szczyglowski K, Peterson RL. Genetic supressors of Lotus japonicus har1-1 hypernodulation show altered interactions with Glomus intraradices. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:749-755. [PMID: 32689285 DOI: 10.1071/fp06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/19/2006] [Indexed: 06/11/2023]
Abstract
Mutant lines of Lotus japonicus (Regel) Larsen that show defects in nodulation as well as in mycorrhiza formation are valuable resources for studying the events required for the establishment of functional symbioses. In this study, 11 mutant lines derived from a screen for genetic suppressors of har1-1 hypernodulation were assessed quantitatively for their ability to form arbuscular mycorrhizal (AM) symbiosis. The presence of extraradical mycelia, appressoria, intraradical hyphae, arbuscules and vesicles were scored. Roots of the har1-1 parental line were heavily colonised by six weeks after inoculation with the AM fungus Glomus intraradices showing the typical Arum-type colonisation pattern. Five mutants lacked internal root colonisation with blocks either at the surface of epidermal cells or at the outer tangential wall of cortical cells. These AM- lines showed some differences in relation to the amount of extraradical hyphae, the number of appressoria, and the degree of abnormal appressorium morphology. Four mutants had internal root colonisation but at a lower level than the parental line. Two mutants showed no difference from the parental line. Results of this study provide additional genetic resources for studying the mechanism of root colonisation by AM fungi.
Collapse
Affiliation(s)
- Jeremy Murray
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Ryan Geil
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cameron Wagg
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bogumil Karas
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | - R Larry Peterson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
36
|
Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. Knockdown of an Arbuscular Mycorrhiza-inducible Phosphate Transporter Gene of Lotus japonicus Suppresses Mutualistic Symbiosis. ACTA ACUST UNITED AC 2006; 47:807-17. [PMID: 16774930 DOI: 10.1093/pcp/pcj069] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
cDNA for a major arbuscular mycorrhiza (AM)-inducible phosphate (Pi) transporter of Lotus japonicus, LjPT3, was isolated from Glomus mosseae-colonized roots. The LjPT3 transcript was expressed in arbuscule-containing cells of the inner cortex. The transport activity of the gene product was confirmed by the complementation of a yeast mutant that lacks high-affinity Pi transporters. In contrast to most AM-inducible Pi transporters thus far reported, LjPT3 has an amino acid sequence that has much in common with those of other members of the Pht1 family of plant Pi transporters, such as StPT3 of potato. To understand better the physiological role of this AM-inducible Pi transporter, knockdown transformants of the gene were prepared through hairy root transformation and RNA interference. Under Pi-limiting conditions, the transformants showed a reduction of Pi uptake via AM and growth retardation. The transformants also exhibited a decrease in G. mosseae arbuscules. Additionally, when Mesorhizobium loti was inoculated into the knockdown transformants in combination with G. mosseae, necrotic root nodules were observed. Based on these findings, we consider that the genetically engineered host plants had monitored insufficient Pi uptake via AM or low expression of LjPT3, excluding the existing fungi and rhizobia and/or preventing further development of the fungal and nodule structures.
Collapse
Affiliation(s)
- Daisuke Maeda
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cárdenas L, Alemán E, Nava N, Santana O, Sánchez F, Quinto C. Early responses to Nod factors and mycorrhizal colonization in a non-nodulating Phaseolus vulgaris mutant. PLANTA 2006; 223:746-54. [PMID: 16244867 DOI: 10.1007/s00425-005-0132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Accepted: 09/05/2005] [Indexed: 05/05/2023]
Abstract
Legumes can acquire nitrogen through a symbiotic interaction with rhizobial bacteria. The initiation of this process is determined by a molecular dialogue between the two partners. Legume roots exude flavonoids that induce the expression of the bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of signals called Nod factors (NFs). NFs signal back to the plant root and trigger several responses, leading to bacterial invasion and nodule formation. Here, we describe the molecular and cellular characterization of a Phaseolus vulgaris non-nodulating mutant (NN-mutant). Root hair cells of the NN-mutant plant respond with swelling and branching when inoculated with Rhizobium etli, albeit without curling induction. Furthermore, neither initiation of cell division in the outer cortex, nor entrapment of bacteria nor infection thread formation was observed. Both the bean wild-type and the NN-mutant responded with elevated intracellular calcium changes in the root hairs. Although the NN-mutant is deficient in early nodulin gene expression when inoculated with R. etli, it can be effectively colonized by arbuscular mycorrhizal fungi (Glomus intraradices). Our data indicate that the P. vulgaris NN-mutant is not blocked at the NFs early perception stage, but at later downstream stages between Ca(2+) signaling and early nodulin induction. This supports the idea that both microsymbionts are perceived and trigger different downstream pathways in the host plant.
Collapse
Affiliation(s)
- Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Many microorganisms form symbioses with plants that range, on a continuous scale, from parasitic to mutualistic. Among these, the most widespread mutualistic symbiosis is the arbuscular mycorrhiza, formed between arbuscular mycorrhizal (AM) fungi and vascular flowering plants. These associations occur in terrestrial ecosystems throughout the world and have a global impact on plant phosphorus nutrition. The arbuscular mycorrhiza is an endosymbiosis in which the fungus inhabits the root cortical cells and obtains carbon provided by the plant while it transfers mineral nutrients from the soil to the cortical cells. Development of the symbiosis involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells. The aim of this review is to explore the current understanding of the signals and signaling pathways used by the symbionts for the development of the AM symbiosis. Although the signal molecules used for initial communication are not yet known, recent studies point to their existence. Within the plant, there is evidence of arbuscular mycorrhiza-specific signals and of systemic signaling that influences phosphate-starvation responses and root development. The landmark cloning of three plant signaling proteins required for the development of the symbiosis has provided the first insights into a signaling pathway that is used by AM fungi and by rhizobia for their symbiotic associations with legumes.
Collapse
Affiliation(s)
- Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| |
Collapse
|
39
|
Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses 2006. THE NEW PHYTOLOGIST 2006; 172:35-46. [PMID: 16945087 DOI: 10.1111/j.1469-8137.2006.01840.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent years have seen fascinating contributions to our understanding of the molecular dialogue between fungi and plants entering into arbuscular mycorrhizal (AM) symbioses. Attention has shifted from descriptions of physiological and cellular events to molecular genetics and modern chemical diagnostics. Genes, signal transduction pathways and the chemical structures of components relevant to the symbiosis have been defined. This review examines our current knowledge of signals and mechanisms involved in the establishment of AM symbioses.
Collapse
Affiliation(s)
- Uta Paszkowski
- University of Geneva, Department of Plant Biology, 1211 Geneva, Switzerland.
| |
Collapse
|
40
|
Mellersh D, Parniske M. Common symbiosis genes of Lotus japonicus are not required for intracellular accommodation of the rust fungus Uromyces loti. THE NEW PHYTOLOGIST 2006; 170:641-4. [PMID: 16684226 DOI: 10.1111/j.1469-8137.2006.01747.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
41
|
Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. THE PLANT CELL 2005; 17:3489-99. [PMID: 16284314 PMCID: PMC1315383 DOI: 10.1105/tpc.105.035410] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant-fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Plant Biology, University of Turin and Istituto per la Protezione delle Piante-Consiglio Nazionale delle Richerche, Italy
| | | | | | | | | |
Collapse
|
42
|
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. THE PLANT CELL 2005; 17:2217-29. [PMID: 15980262 PMCID: PMC1182484 DOI: 10.1105/tpc.105.032714] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/19/2005] [Accepted: 05/31/2005] [Indexed: 05/03/2023]
Abstract
A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both fungal and bacterial entry into root epidermal or cortical cells. To describe the phenotype of these mutants at the molecular level, we screened for differentiating transcriptional responses of mutant and wild-type roots by large-scale gene expression profiling using cDNA-amplified fragment length polymorphism. Two percent of root transcripts was found to increase in abundance during AM development, from which a set of AM-regulated marker genes was established. A Ser-protease (SbtS) and a Cys-protease (CysS) were also activated during root nodule development. AM-induced transcriptional activation was abolished in roots carrying mutations in common symbiosis genes, suggesting a central position of these genes in a pathway leading to the transcriptional activation of downstream genes. By contrast, AM fungus-induced gene repression appeared to be unaffected in mutant backgrounds, which indicates the presence of additional independent signaling pathways.
Collapse
Affiliation(s)
| | - Thilo Winzer
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | | | - Shusei Sato
- Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | | | | | - Niels Sandal
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - K. Judith Webb
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | |
Collapse
|
43
|
Neumann E, George E. Does the presence of arbuscular mycorrhizal fungi influence growth and nutrient uptake of a wild-type tomato cultivar and a mycorrhiza-defective mutant, cultivated with roots sharing the same soil volume? THE NEW PHYTOLOGIST 2005; 166:601-609. [PMID: 15819922 DOI: 10.1111/j.1469-8137.2005.01351.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the growth and nutrient uptake of the Lycopersicon esculentum symbiosis mycorrhiza-defective plant mutant rmc, challenged with arbuscular mycorrhiza (AM) fungal propagules, in the presence or absence of roots of the commercial wild-type tomato cv. Golden Queen (GQ). Two plants shared the middle (combi) compartment of a horizontal three-compartment split-root pot with one part of their root system; the other part was grown separately in an outer (solo) pot. Combinations of rmc and GQ plants were grown together in soil that was either mycorrhiza-free (-M) or prepared with AM fungal inoculum (+M). Surface colonization of rmc roots was strongly increased in the presence of (+M) GQ roots. AM fungal inoculation increased phosphorus uptake of GQ plants, but decreased growth and P uptake of rmc plants. Growth and P uptake of (+M) GQ plants were reduced when plants were grown in combination with rmc rather than another GQ plant. AM fungi in the (combi) compartment may have preferentially formed hyphae spreading infection rather than functioning in P uptake in (+M) GQ plants grown in combination with rmc. Surface colonization of (+M) rmc roots, in the presence of GQ roots, was probably established at the expense of carbohydrates from associated GQ plants. Possible reasons for a decreased P uptake of rmc plants in response to AM fungal inoculation are proposed.
Collapse
Affiliation(s)
- Elke Neumann
- Institute of Plant Nutrition (330), Hohenheim University, 70593 Stuttgart, Germany.
| | | |
Collapse
|
44
|
Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Saeki K, Hayashi M, Kawaguchi M, Izui K, Hata S. Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes. PLANT PHYSIOLOGY 2005; 137:1261-71. [PMID: 15793069 PMCID: PMC1088319 DOI: 10.1104/pp.104.056630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/17/2005] [Accepted: 01/31/2005] [Indexed: 05/18/2023]
Abstract
We isolated a recessive symbiotic mutant of Lotus japonicus that defines a genetic locus, LOT1 (for low nodulation and trichome distortion). The nodule number per plant of the mutant was about one-fifth of that of the wild type. The lot1 mutant showed a moderate dwarf phenotype and distorted trichomes, but its root hairs showed no apparent differences to those of the wild type. Infection thread formation after inoculation of Mesorhizobium loti was repressed in lot1 compared to that in the wild type. The nodule primordia of lot1 did not result in any aborted nodule-like structure, all nodules becoming mature and exhibiting high nitrogen fixation activity. The mutant was normally colonized by mycorrhizal fungi. lot1 also showed higher sensitivity to nitrate than the wild type. The grown-up seedlings of lot1 were insensitive to any ethylene treatments with regard to nodulation, although the mutant showed normal triple response on germination. It is conceivable that a nodulation-specific ethylene signaling pathway is constitutively activated in the mutant. Grafting experiments with lot1 and wild-type seedlings suggested that the root genotype mainly determines the low nodulation phenotype of the mutant, while the trichome distortion is regulated by the shoot genotype. Grafting of har1-4 shoots to lot1 roots resulted in an intermediate nodule number, i.e. more than that of lot1 and less than that of har1-4. Putative double mutants of lot1 and har1 also showed intermediate nodulation. Thus, it was indicated that LOT1 is involved in a distinct signal transduction pathway independent of HAR1.
Collapse
Affiliation(s)
- Yasuhiro Ooki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lanfranco L, Novero M, Bonfante P. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. PLANT PHYSIOLOGY 2005; 137:1319-30. [PMID: 15749992 PMCID: PMC1088323 DOI: 10.1104/pp.104.050435] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/01/2004] [Accepted: 12/20/2004] [Indexed: 05/21/2023]
Abstract
A full-length cDNA showing high similarity to previously described CuZn superoxide dismutases (SODs) was identified in an expressed sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG 34). The corresponding gene sequence, named GmarCuZnSOD, is composed of four exons. As revealed by heterologous complementation assays in a yeast mutant, GmarCuZnSOD encodes a functional polypeptide able to confer increased tolerance to oxidative stress. The GmarCuZnSOD RNA was differentially expressed during the fungal life cycle; highest transcript levels were found in fungal structures inside the roots as observed on two host plants, Lotus japonicus and Medicago truncatula. These structures also reacted positively to 3,3'-diaminobenzidine, used to localize H2O2 accumulation. This H2O2 is likely to be produced by CuZnSOD activity since treatment with a chelator of copper ions, generally used to inhibit CuZnSODs, strongly reduced the 3,3'-diaminobenzidine deposits. A slight induction of GmarCuZnSOD gene expression was also observed in germinated spores exposed to L. japonicus root exudates, although the response showed variation in independent samples. These results provide evidence of the occurrence, in an arbuscular mycorrhizal fungus, of a functional SOD gene that is modulated during the life cycle and may offer protection as a reactive oxygen species-inactivating system against localized host defense responses raised in arbuscule-containing cells.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Dipartimento di Biologia Vegetale, Università di Torino, 10125 Turin, Italy
| | | | | |
Collapse
|
46
|
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 2004; 433:527-31. [PMID: 15616514 DOI: 10.1038/nature03237] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/29/2004] [Indexed: 11/09/2022]
Abstract
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.
Collapse
Affiliation(s)
- Haruko Imaizumi-Anraku
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gao LL, Knogge W, Delp G, Smith FA, Smith SE. Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1103-13. [PMID: 15497403 DOI: 10.1094/mpmi.2004.17.10.1103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The expression of defense-related genes was analyzed in the interactions of six arbuscular mycorrhizal (AM) fungi with the roots of wild-type tomato (Lycopersicon esculentum Mill.) cv. 76R and of the near-isogenic mycorrhiza-defective mutant rmc. Depending on the fungal species, wild-type tomato forms both major morphological AM types, Arum and Paris. The mutant rmc blocks the penetration of the root surface or invasion of the root cortex by most species of AM fungi, but one fungus has been shown to develop normal mycorrhizas. In the wild-type tomato, accumulation of mRNA representing a number of defense-related genes was low in Arum-type interactions, consistent with findings for this AM morphotype in other plant species. In contrast, Paris-type colonization, particularly by members of the family Gigasporaceae, was accompanied by a substantial transient increase in expression of some defense-related genes. However, the extent of root colonization did not differ significantly in the two wild-type AM morphotypes, suggesting that accumulation of defense gene products per se does not limit mycorrhiza development. In the mutant, interactions in which the fungus failed to penetrate the root lacked significant accumulation of defense gene mRNAs. However, phenotypes in which the fungus penetrated epidermal or hypodermal cells were associated with an enhanced and more prolonged gene expression. These results are discussed in relation to the mechanisms that may underlie the specificity of the interactions between AM fungi and the rmc mutant.
Collapse
|
48
|
Combier JP, Melayah D, Raffier C, Pépin R, Marmeisse R, Gay G. Nonmycorrhizal (myc-) mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1029-1038. [PMID: 15384493 DOI: 10.1094/mpmi.2004.17.9.1029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyethylene glycol-mediated transformation of protoplasts was used as a method for insertional mutagenesis to obtain mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum impaired in symbiotic ability. Following restriction enzyme-mediated integration or conventional plasmid insertion, a library of 1,725 hygromycin-resistant monokaryotic transformants was generated and screened for the symbiotic defect, using Pinus pinaster seedlings as host plants. A total of 51 transformants displaying a dramatically reduced mycorrhizal ability were identified. Among them, 29 were nonmycorrhizal (myc-), but only 10 of them had integrated one or several copies of the transforming plasmid in their genome. Light and scanning electron microscopy observations of pine roots inoculated with myc- mutants suggested that we selected mutants blocked at early stages of interaction between partners or at the stage of Hartig net formation. Myc- mutants with plasmid insertions were crossed with a compatible wild-type monokaryon and allowed to fruit. Monokaryotic progenies were obtained in three independent crosses and were analyzed for symbiotic activity and plasmid insertion. In all three progenies, a 1:1 myc-:myc+ segregation ratio was observed, suggesting that each myc- phenotype resulted from a single gene mutation. However, for none of the three mutants, the myc- phenotype segregated with any of the plasmid insertions. Our results support the idea that master genes, the products of which are essential for symbiosis establishment, do exist in ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Jean-Philippe Combier
- Université Lyon 1, UMR CNRS 5557 d'Ecologie Microbienne Bât. A. Lwoff, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Oldroyd GED, Downie JA. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 2004; 5:566-76. [PMID: 15232574 DOI: 10.1038/nrm1424] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giles E D Oldroyd
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
50
|
Breuninger M, Requena N. Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genet Biol 2004; 41:794-804. [PMID: 15219563 DOI: 10.1016/j.fgb.2004.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Arbuscular mycorrhizal symbiosis is induced upon a series of recognition events involving the reorganization of both plant and fungal cellular programs culminating in the formation of appressoria on the epidermal root cells. In this work we monitored for the first time the genetic changes occurring in the fungal partner during early appressorium development. We established an in vitro system of Glomus mosseae and Petroselinum crispum for studying appressorium formation and found that after 120 h first appressoria developed in the root epidermis. We have constructed a fungal subtractive suppressive library enriched in genes up-regulated at this stage. Our aim was to identify early signaling events during plant recognition leading to appressoria formation. The library contains 375 clones with an average size of 500 bp. From these, 200 clones were sequenced and most of them represent gene fragments with no known homologues (63%) and therefore putative new genes specific to the mycorrhiza symbiosis. Reverse-Northern blot and RT-PCR analyses confirmed that ca. 30% of the genes present in the library were up-regulated upon plant induction after 120 h. Among the genes with homologues in other organisms we found several genes common to other plant-microbe interactions including some genes related to Ca2+-dependent signaling. The up-regulation of these genes opens the possibility that Ca2+ plays a role in the early stages of mycorrhiza formation as it has been found in other plant-microbe interactions such as the Rhizobium symbiosis or the Magnaporthe grisea/rice pathogenic interaction.
Collapse
Affiliation(s)
- Magadalene Breuninger
- Physiological Ecology of Plant Department, Faculty of Biology, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | |
Collapse
|