1
|
Adhab M, Schoelz JE. Influence of the P6 effector protein of Cauliflower mosaic virus (CaMV) on the sustained expression and subcellular localization of the CaMV movement protein. Virology 2024; 600:110240. [PMID: 39278104 DOI: 10.1016/j.virol.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The P6 protein of cauliflower mosaic virus (CaMV) is a multifunctional protein that forms the electron dense, amorphous inclusion bodies that accumulate in the cytoplasm and has been shown to physically interact with all other CaMV proteins, including the CaMV movement protein (P1). In this study, we have investigated the subcellular localization of the P6 and P1 proteins in transient expression assays in Nicotiana benthamiana, as well as the influence of P6 on the expression and subcellular localization of P1. A version of P6 tagged with RFP was shown to envelop the endoplasmic reticulum (ER), whereas P1 tagged with RFP was shown to induce the fragmentation of the ER. Co-expression of P6 with P1 led to an enhancement of the spatial and temporal expression of P1, with a shift from expression through the plasma membrane and interior of the cell to punctate spots associated with the cell wall.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - James E Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Wu J, Zhang J, Hao X, Lv K, Xie Y, Xu W. Establishment of an efficient callus transient transformation system for Vitis vinifera cv. 'Chardonnay'. PROTOPLASMA 2024; 261:351-366. [PMID: 37906315 DOI: 10.1007/s00709-023-01901-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Grape (Vitis L.), a highly valued fruit crop, poses significant challenges in genetic transformation and functional characterization of genes. Therefore, there is an urgent need for the development of a rapid and effective method for grape transformation and gene function identification. Here, we introduce a streamlined Agrobacterium-mediated transient transformation system for grape calli. Optimal conditions were established with a leaf-derived callus induction medium; chiefly B5 medium supplemented with 0.05 mg/L NAA, 0.5 mg/L 2,4-D, and 2.0 mg/L KT; and a callus proliferation medium (B5 medium supplemented with 0.5 mg/L NAA and 2.0 mg/L 6-BA), respectively. Notably, GUS enzyme activity peaked (352.96 ± 33.95 mol 4-MU/mg/min) by sonication with Agrobacterium tumefaciens EHA105 and 100 μM AS for 4 min, followed by vacuum infection for 5 min, and co-culture at 25 °C in the dark for 1 day using callus as explants at an optical density (OD600) of 0.8. VaCIPK18 gene was transiently transformed into calli, and transcripts of the gene (endogenous and exogenous) were detected at higher levels than in non-transformed calli (endogenous). Moreover, after 10 days of treatment at 4 °C or -4 °C, the callus net weight of transformed callus was significantly higher than that of the untransformed callus, indicating that the VaCIPK18-overexpressing grape callus could improve cold tolerance. Overall, we establish a simple but effective transient transformation approach for grape callus, which could serve as a useful tool for the rapid assessment of gene function in this important crop.
Collapse
Affiliation(s)
- Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China
| | - Xinyi Hao
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China
| | - Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, China.
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Adhab M, Zhang Y, Schoelz J. Transient expression of cauliflower mosaic virus (CaMV) P6-GFP complements a defective CaMV replicon to facilitate viral gene expression, replication and virion formation. Virology 2023; 587:109854. [PMID: 37556874 DOI: 10.1016/j.virol.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Over the past decades, several studies have examined the subcellular localization of the cauliflower mosaic virus (CaMV) P6 protein by tagging it with GFP (P6-GFP). These investigations have been essential in the development of models for inclusion body formation, nuclear transport, and microfilament-associated intracellular movement of P6 inclusion bodies for delivery of virions to plasmodesmata. Although it was shown early on that the translational transactivation function of P6-GFP was comparable to wild type P6, it has not been possible to incorporate a P6-GFP gene into an infectious clone of CaMV. Consequently, it has not been possible to formally prove that a P6-GFP fusion is comparable in function to the unmodified P6 protein. Here we show that transient expression of P6-GFP can complement a defective CaMV replicon through gene expression, replication and encapsidation, which validates the relevance of P6-GFP subcellular localization studies for understanding the development of CaMV infections.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yu Zhang
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| | - James Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Adhab M, Zhang Y, Schoelz J. Transient expression of cauliflower mosaic virus (CaMV) P6-GFP complements a defective CaMV replicon to facilitate viral gene expression, replication and virion formation. Virology 2023; 587:109854. [DOI: https:/doi.org/10.1016/j.virol.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
5
|
Piau M, Schmitt-Keichinger C. The Hypersensitive Response to Plant Viruses. Viruses 2023; 15:2000. [PMID: 37896777 PMCID: PMC10612061 DOI: 10.3390/v15102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Plant proteins with domains rich in leucine repeats play important roles in detecting pathogens and triggering defense reactions, both at the cellular surface for pattern-triggered immunity and in the cell to ensure effector-triggered immunity. As intracellular parasites, viruses are mostly detected intracellularly by proteins with a nucleotide binding site and leucine-rich repeats but receptor-like kinases with leucine-rich repeats, known to localize at the cell surface, have also been involved in response to viruses. In the present review we report on the progress that has been achieved in the last decade on the role of these leucine-rich proteins in antiviral immunity, with a special focus on our current understanding of the hypersensitive response.
Collapse
|
6
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
7
|
Shang X, Zhu L, Duan Y, He Q, Zhao M, Yu Y, Guo W. An Easy and Rapid Transformation Protocol for Transient Expression in Cotton Fiber. FRONTIERS IN PLANT SCIENCE 2022; 13:837994. [PMID: 35392510 PMCID: PMC8980934 DOI: 10.3389/fpls.2022.837994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/08/2022] [Indexed: 05/08/2023]
Abstract
Cotton fiber is the most important natural textile material in the world. Identification and functional characterization of genes regulating fiber development are fundamental for improving fiber quality and yield. However, stable cotton transformation is time-consuming, low in efficiency, and technically complex. Moreover, heterologous systems, such as Arabidopsis and tobacco, did not always work to elucidate the function of cotton fiber specifically expressed genes or their promoters. For these reasons, constructing a rapid transformation system using cotton fibers is necessary to study fiber's specifically expressed genes. In this study, we developed an easy and rapid Agrobacterium-mediated method for the transient transformation of genes and promoters in cotton fibers. First, we found that exogenous genes could be expressed in cotton fibers via using β-glucuronidase (GUS) and green fluorescence protein (GFP) as reporters. Second, parameters affecting transformation efficiency, including LBA4404 Agrobacterium strain, 3 h infection time, and 2-day incubation time, were determined. Third, four different cotton genes that are specifically expressed in fibers were transiently transformed in cotton fibers, and the transcripts of these genes were detected ten to thousand times increase over the control. Fourth, GUS staining and activity analysis demonstrated that the activity profiles of GhMYB212 and GhFSN1 promoters in transformed fibers are similar to their native activity in developmental fibers. Furthermore, the transient transformation method was confirmed to be suitable for subcellular localization studies. In summary, the presented Agrobacterium-mediated transient transformation method is a fast, simple, and effective system for promoter characterization and protein expression in cotton fibers.
Collapse
|
8
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
9
|
Adhab M, Angel C, Rodriguez A, Fereidouni M, Király L, Scheets K, Schoelz JE. Tracing the Lineage of Two Traits Associated with the Coat Protein of the Tombusviridae: Silencing Suppression and HR Elicitation in Nicotiana Species. Viruses 2019; 11:588. [PMID: 31261652 PMCID: PMC6669612 DOI: 10.3390/v11070588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper we have characterized the lineage of two traits associated with the coat proteins (CPs) of the tombusvirids: Silencing suppression and HR elicitation in Nicotiana species. We considered that the tombusvirid CPs might collectively be considered an effector, with the CP of each CP-encoding species comprising a structural variant within the family. Thus, a phylogenetic analysis of the CP could provide insight into the evolution of a pathogen effector. The phylogeny of the CP of tombusvirids indicated that CP representatives of the family could be divided into four clades. In two separate clades the CP triggered a hypersensitive response (HR) in Nicotiana species of section Alatae but did not have silencing suppressor activity. In a third clade the CP had a silencing suppressor activity but did not have the capacity to trigger HR in Nicotiana species. In the fourth clade, the CP did not carry either function. Our analysis illustrates how structural changes that likely occurred in the CP effector of progenitors of the current genera led to either silencing suppressor activity, HR elicitation in select Nicotiana species, or neither trait.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Department of Plant Protection, University of Baghdad, 10071 Baghdad, Iraq
| | - Carlos Angel
- National Coffee Research Center-Cenicafe, Planalto, km. 4, Vía antigua Chinchiná-Manizales, Manizales (Caldes), Colombia
| | - Andres Rodriguez
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Lóránt Király
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Kay Scheets
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Moon JY, Park JM. Cross-Talk in Viral Defense Signaling in Plants. Front Microbiol 2016; 7:2068. [PMID: 28066385 PMCID: PMC5174109 DOI: 10.3389/fmicb.2016.02068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Viruses are obligate intracellular parasites that have small genomes with limited coding capacity; therefore, they extensively use host intracellular machinery for their replication and infection in host cells. In recent years, it was elucidated that plants have evolved intricate defense mechanisms to prevent or limit damage from such pathogens. Plants employ two major strategies to counteract virus infections: resistance (R) gene-mediated and RNA silencing-based defenses. In this review, plant defenses and viral counter defenses are described, as are recent studies examining the cross-talk between different plant defense mechanisms.
Collapse
Affiliation(s)
- Ju Y. Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| | - Jeong M. Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
11
|
Schoelz JE, Angel CA, Nelson RS, Leisner SM. A model for intracellular movement of Cauliflower mosaic virus: the concept of the mobile virion factory. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2039-48. [PMID: 26687180 DOI: 10.1093/jxb/erv520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genomes of many plant viruses have a coding capacity limited to <10 proteins, yet it is becoming increasingly clear that individual plant virus proteins may interact with several targets in the host for establishment of infection. As new functions are uncovered for individual viral proteins, virologists have realized that the apparent simplicity of the virus genome is an illusion that belies the true impact that plant viruses have on host physiology. In this review, we discuss our evolving understanding of the function of the P6 protein of Cauliflower mosaic virus (CaMV), a process that was initiated nearly 35 years ago when the CaMV P6 protein was first described as the 'major inclusion body protein' (IB) present in infected plants. P6 is now referred to in most articles as the transactivator (TAV)/viroplasmin protein, because the first viral function to be characterized for the Caulimovirus P6 protein beyond its role as an inclusion body protein (the viroplasmin) was its role in translational transactivation (the TAV function). This review will discuss the currently accepted functions for P6 and then present the evidence for an entirely new function for P6 in intracellular movement.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Richard S Nelson
- The Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
12
|
Nakahara KS, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:88-95. [PMID: 24875766 DOI: 10.1016/j.pbi.2014.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Chikara Masuta
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
13
|
Lim HS, Nam J, Seo EY, Nam M, Vaira AM, Bae H, Jang CY, Lee CH, Kim HG, Roh M, Hammond J. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein. Virology 2014; 452-453:264-78. [PMID: 24606704 DOI: 10.1016/j.virol.2014.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/01/2013] [Accepted: 01/25/2014] [Indexed: 11/15/2022]
Abstract
Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CPSP) with that from AltMV-Po (CP(Po)) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP(Po) [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CPSP but not CP(Po) interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CPSP than CP(Po) in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Jiryun Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Eun-Young Seo
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Moon Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Anna Maria Vaira
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA; Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135, Italy.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Geongsan 712-749, Republic of Korea.
| | - Chan-Yong Jang
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Cheol Ho Lee
- Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704, Republic of Korea.
| | - Hong Gi Kim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Mark Roh
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA; Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714, Republic of Korea.
| | - John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705, USA.
| |
Collapse
|
14
|
Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ. Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 2013; 94:2777-2789. [PMID: 24088344 PMCID: PMC3836500 DOI: 10.1099/vir.0.057729-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.
Collapse
Affiliation(s)
- Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carol McInally
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sowjanya Doddiah
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gary Yates
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elina Chrysanthou
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ahmed Khattab
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Chiara Geri
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy.,Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Brian O Smith
- Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kappei Kobayashi
- Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Ehime 790-8566, Japan
| | - Joel J Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Omarov RT, Scholthof HB. Biological chemistry of virus-encoded suppressors of RNA silencing: an overview. Methods Mol Biol 2012; 894:39-56. [PMID: 22678571 DOI: 10.1007/978-1-61779-882-5_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
RNA interference (RNAi) plays multiple biological roles in eukaryotic organisms to regulate gene expression. RNAi also operates as a conserved adaptive molecular immune mechanism against invading viruses. The antiviral RNAi pathway is initiated with the generation of virus-derived short-interfering RNAs (siRNAs) that are used for subsequent sequence-specific recognition and degradation of the cognate viral RNA molecules. As an efficient counter-defensive strategy, most plant viruses evolved the ability to encode specific proteins capable of interfering with RNAi, and this process is commonly known as RNA silencing suppression. Virus-encoded suppressors of RNAi (VSRs) operate at different steps in the RNAi pathway and display distinct biochemical properties that enable these proteins to efficiently interfere with the host-defense system. Recent molecular and biochemical studies of several VSRs significantly expanded our understanding of the complex nature of silencing suppression, and also remarkably advanced our overall knowledge on complex host-virus interactions. In this review, we describe the current knowledge on activities and biochemical mechanisms of selected VSRs with regard to their biological role of suppressing RNAi in plants.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
16
|
Liu W, Mazarei M, Rudis MR, Fethe MH, Stewart CN. Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol 2011; 11:108. [PMID: 22093754 PMCID: PMC3247077 DOI: 10.1186/1472-6750-11-108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We aimed to engineer transgenic plants for the purpose of early detection of plant pathogen infection, which was accomplished by employing synthetic pathogen inducible promoters fused to reporter genes for altered phenotypes in response to the pathogen infection. Toward this end, a number of synthetic promoters consisting of inducible regulatory elements fused to a red fluorescent protein (RFP) reporter were constructed for use in phytosensing. RESULTS For rapid analysis, an Agrobacterium-mediated transient expression assay was evaluated, then utilized to assess the inducibility of each synthetic promoter construct in vivo. Tobacco (Nicotiana tabacum cv. Xanthi) leaves were infiltrated with Agrobacterium harboring the individual synthetic promoter-reporter constructs. The infiltrated tobacco leaves were re-infiltrated with biotic (bacterial pathogens) or abiotic (plant defense signal molecules salicylic acid, ethylene and methyl jasmonate) agents 24 and 48 hours after initial agroinfiltration, followed by RFP measurements at relevant time points after treatment. These analyses indicated that the synthetic promoter constructs were capable of conferring the inducibility of the RFP reporter in response to appropriate phytohormones and bacterial pathogens, accordingly. CONCLUSIONS These observations demonstrate that the Agrobacterium-mediated transient expression is an efficient method for in vivo assays of promoter constructs in less than one week. Our results provide the opportunity to gain further insights into the versatility of the expression system as a potential tool for high-throughput in planta expression screening prior to generating stably transgenic plants for pathogen phytosensing. This system could also be utilized for temporary phytosensing; e.g., not requiring stably transgenic plants.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | - Mitra Mazarei
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | - Mary R Rudis
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | - Michael H Fethe
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| |
Collapse
|
17
|
Nasir W, Munawar MA, Ahmed E, Sharif A, Ahmed S, Ayub A, Khan MA, Nasim FH. Synthesis of novel quinoxalinone derivatives by conventional and microwave methods and assessing their biological activity. Arch Pharm Res 2011; 34:1605-14. [DOI: 10.1007/s12272-011-1004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
|
18
|
Komatsu K, Hashimoto M, Maejima K, Shiraishi T, Neriya Y, Miura C, Minato N, Okano Y, Sugawara K, Yamaji Y, Namba S. A necrosis-inducing elicitor domain encoded by both symptomatic and asymptomatic Plantago asiatica mosaic virus isolates, whose expression is modulated by virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:408-20. [PMID: 21190438 DOI: 10.1094/mpmi-12-10-0279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS. The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. PLANT PHYSIOLOGY 2009; 4:454-6. [PMID: 19028879 PMCID: PMC2633818 DOI: 10.1104/pp.108.131755] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/19/2008] [Indexed: 05/19/2023]
Abstract
The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV.
Collapse
Affiliation(s)
- Phillip A Harries
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | | | | | |
Collapse
|
20
|
Annamalai P, Rao ALN. Delivery and expression of functional viral RNA genomes in planta by agroinfiltration. ACTA ACUST UNITED AC 2008; Chapter 16:16B.2.1-16B.2.15. [PMID: 18770582 DOI: 10.1002/9780471729259.mc16b02s01] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Agroinfiltration is a simple, efficient, and powerful approach for transient expression of viral genes as well as DNA-based expression of full-length RNA genomes of plant viruses for studies leading to understanding of replication, movement, and assembly. Most importantly, it results in synchronous delivery of Agrobacterium transformants to a majority of cells encompassing the infiltrated area and is therefore ideal for examining the biological activities of viruses having multipartite genomes. Because of the high transformation rate and efficient accumulation of mRNAs, the method is also ideal for analyzing biological activities of viral genomes with defective replication and cell-to-cell movement characteristics.
Collapse
Affiliation(s)
| | - A L N Rao
- University of California, Riverside, Riverside, California
| |
Collapse
|
21
|
Jia H, Liao M, Verbelen JP, Vissenberg K. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. PLANT CELL REPORTS 2007; 26:1961-5. [PMID: 17637995 DOI: 10.1007/s00299-007-0403-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 06/06/2007] [Accepted: 06/23/2007] [Indexed: 05/16/2023]
Abstract
Agroinfiltration is employed as a fast way to directly create marker-free transgenic tobacco plants. As an example for the efficiency of the method, Agrobacterium cells harboring a marker-free vector coding for beta-glucuronidase (GUS) were infiltrated into the leaf discs of Nicotiana tabacum, which were then used as explants for marker-free plant regeneration by tissue culture. Through GUS staining, a large number of small calli were shown to be stably transformed on the treated leaf discs at 17 days after agroinfiltration. Most importantly, after continuous culture of the leaf discs until shoot regeneration, about 15% of the regenerants were proven to be transformants by polymerase chain reaction (PCR) analysis.
Collapse
Affiliation(s)
- Hongge Jia
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | |
Collapse
|
22
|
Kopertekh L, Schiemann J. Agroinfiltration as a tool for transient expression of cre recombinase in vivo. Transgenic Res 2005; 14:793-8. [PMID: 16245170 DOI: 10.1007/s11248-005-8293-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2005] [Indexed: 12/01/2022]
Abstract
Agroinfiltration was used to express transiently cre recombinase from bacteriophage P1 in planta. Activation of gfp expression after cre-mediated excision of a bar intervening sequence served as a marker to monitor site-specific recombination events in lox-target N. benthamiana plants. Gfp expressing regenerants from A. tumefaciens infiltrated leaves were obtained with an efficiency of about 34%. In 20% of the regenerants bar gene excision was due to the expression of stably integrated cre gene, whereas in 14% of plants site-specific recombination was a consequence of transient cre expression. Phenotypic and molecular data indicated that the recombined state has been transferred to the T(1 )generation. These results demonstrate the suitability of agroinfiltration for the expression of cre recombinase in vivo.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Biological Research Centre for Agriculture and Forestry, Institute for Plant Virology, Microbiology and Biosafety, Messeweg 11-12, D-38104 Braunschweig, Germany
| | | |
Collapse
|
23
|
Cawly J, Cole AB, Király L, Qiu W, Schoelz JE. The plant gene CCD1 selectively blocks cell death during the hypersensitive response to Cauliflower mosaic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:212-9. [PMID: 15782635 DOI: 10.1094/mpmi-18-0212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.
Collapse
Affiliation(s)
- John Cawly
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
24
|
Haas M, Geldreich A, Bureau M, Dupuis L, Leh V, Vetter G, Kobayashi K, Hohn T, Ryabova L, Yot P, Keller M. The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. THE PLANT CELL 2005; 17:927-43. [PMID: 15746075 PMCID: PMC1069709 DOI: 10.1105/tpc.104.029017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 12/09/2004] [Indexed: 05/20/2023]
Abstract
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal alpha-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the alpha-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche, Centre National de la Recherche Scientifique 2357, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hajimorad MR, Eggenberger AL, Hill JH. Loss and gain of elicitor function of soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. J Virol 2005; 79:1215-22. [PMID: 15613348 PMCID: PMC538562 DOI: 10.1128/jvi.79.2.1215-1222.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 08/13/2004] [Indexed: 01/06/2023] Open
Abstract
Rsv1, a single dominant resistance gene in soybean PI 96983 (Rsv1), confers extreme resistance against all known American strains of Soybean mosaic virus (SMV), except G7 and G7d. SMV-G7 provokes a lethal systemic hypersensitive response (LSHR), whereas SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. To identify the elicitor of Rsv1-mediated LSHR, chimeras were constructed by exchanging fragments between the molecularly cloned SMV-G7 (pSMV-G7) and SMV-G7d (pSMV-G7d), and their elicitor functions were assessed on PI 96983 (Rsv1). pSMV-G7-derived chimeras containing only P3 of SMV-G7d lost the elicitor function, while the reciprocal chimera of pSMV-G7d gained the function. The P3 regions of the two viruses differ by six nucleotides, of which two are translationally silent. The four amino acid differences are located at positions 823, 915, 953, and 1112 of the precursor polypeptide. Analyses of the site-directed point mutants of both the viruses revealed that nucleotide substitutions leading to translationally silent mutations as well as reciprocal amino acid substitution at position 915 did not influence the loss or gain of the elicitor function. pSMV-G7-derived mutants with amino acid substitutions at any of the other three positions lost the ability to provoke LSHR but induced SHR instead. Two concomitant amino acid substitutions at positions 823 (V to M) and 953 (K to E) abolished pSMV-G7 elicitor function, provoking Rsv1-mediated SHR. Conversely, pSMV-G7d gained the elicitor function of Rsv1-mediated LSHR by a single amino acid substitution at position 823 (M to V), and mutants with amino acid substitutions at position 953 or 1112 induced SHR instead of mosaic. Taken together, the data suggest that strain-specific P3 of SMV is the elicitor of Rsv1-mediated LSHR.
Collapse
Affiliation(s)
- M R Hajimorad
- Department of Entomology and Plant Pathology, The University of Tennessee, 2431 Center Dr., 205 Ellington Plant Sciences Bldg., Knoxville, TN 37996-4560, USA.
| | | | | |
Collapse
|
26
|
Geri C, Love AJ, Cecchini E, Barrett SJ, Laird J, Covey SN, Milner JJ. Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. PLANT MOLECULAR BIOLOGY 2004; 56:111-124. [PMID: 15604731 DOI: 10.1007/s11103-004-2649-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein P6 is the main symptom determinant of cauliflower mosaic virus (CaMV), and transgene-mediated expression in Arabidopsis induces a symptom-like phenotype in the absence of infection. Seeds of a P6-transgenic line, A7, were mutagenized by gamma-irradiation and M2 seedlings were screened for mutants that suppressed the phenotype of chlorosis and stunting. We identified four mutants that were larger and less chlorotic than the A7 parent but which contained an intact and transcriptionally active transgene. The two mutants with the strongest suppression phenotype, were recessive and allelic. The transgene was eliminated by back-crossing with wild-type Arabidopsis. In progeny lines that were homozygous for the putative suppressor mutation the proportion of plants becoming infected following inoculation with CaMV was 40% that of wild-type, although in plants that did become infected, levels of virus DNA in mutants and wild-type did not differ significantly. Symptoms in the mutants were milder and delayed although this was somewhat dependent on the virus isolate. This phenotype was inherited stably. Both mutant alleles showed a partially ethylene-insensitive phenotype in an ethylene triple response assay. P6-transgenic plants were also almost completely insensitive to ethylene in the triple response assay. We suggest that the chlorosis and stunting in P6-transgenic and CaMV-infected plants are dependent on interactions between P6 and components involved in ethylene signalling, and that the suppressor gene product may function to augment these interactions.
Collapse
Affiliation(s)
- Chiara Geri
- Plant Science Group, Division of Biochemistry and Molecular Biology, Glasgow University, Glasgow, G12 8QQ, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Ryabova L, Park HS, Hohn T. Control of translation reinitiation on the cauliflower mosaic virus (CaMV) polycistronic RNA. Biochem Soc Trans 2004; 32:592-6. [PMID: 15270684 DOI: 10.1042/bst0320592] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Translation of the polycistronic 35S RNA of CaMV (cauliflower mosaic virus) occurs via a reinitiation mechanism, which requires TAV (transactivator/viroplasmin). To allow translation reinitiation of the major open reading frames on the polycistronic RNA, TAV interacts with the host translational machinery via eIF3 (eukaryotic initiation factor 3) and the 60S ribosome. Accumulation of TAV and eIF3 in the polysomal fraction isolated from CaMV-infected cells suggested that TAV prevents loss of eIF3 from the translating ribosomes during the first initiation event. The TAV–eIF3–80S complex could be detected in vitro by sucrose-gradient-sedimentation analysis. The question is whether TAV interacts directly with the 48S preinitiation complex or enters polysomes after the first initiation event. eIF4B, a component of the 48S initiation complex, can preclude formation of the TAV–eIF3 complex via competition with TAV for eIF3 binding; the eIF4B- and TAV-binding sites on eIF3g overlap. eIF4B out-competes TAV for binding to eIF3 and to the eIF3–40S complex. Transient overexpression of eIF4B in plant protoplasts specifically inhibits TAV-mediated transactivation of polycistronic translation. Our results thus indicate that eIF4B precludes TAV–eIF3–40S complex formation during the first initiation event. Consequently, overexpression of TAV in plant protoplasts affects only the second and subsequent initiation events. We propose a model in which TAV enters the host translational machinery at the eIF4B-removal step to stabilize eIF3 within polysomes.
Collapse
Affiliation(s)
- L Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Strasbourg, France.
| | | | | |
Collapse
|
28
|
Kobayashi K, Hohn T. The avirulence domain of Cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:475-83. [PMID: 15141951 DOI: 10.1094/mpmi.2004.17.5.475] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is a multifunctional protein essential for basic replication of CaMV. It also plays a role in viral pathogenesis in crucifer and solanaceous host plants. Deletion mutagenesis revealed that N- and C-terminal parts of Tav are not essential for CaMV replication in transfected protoplasts. Two deletion mutants having only minimal defects in basic replication were infectious in turnips but only with highly attenuated virulence. This was shown to be due to delayed virus spread within the inoculated leaves and to the upper leaves. Unlike the wild-type virus, the mutant viruses successfully spread locally without inducing a host defense response in inoculated Datura stramonium leaves, but did not spread systemically. These results provide the first evidence that a Tav domain required for avirulence function in solanaceous plants is not essential for CaMV infectivity but has a role in viral virulence in susceptible hosts.
Collapse
|
29
|
Kobayashi K, Hohn T. Dissection of cauliflower mosaic virus transactivator/viroplasmin reveals distinct essential functions in basic virus replication. J Virol 2003; 77:8577-83. [PMID: 12857928 PMCID: PMC165242 DOI: 10.1128/jvi.77.15.8577-8583.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 05/16/2003] [Indexed: 12/24/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is an essential multifunctional viral protein. Dissection of Tav by deletion mutagenesis revealed that the central region is essential for CaMV replication in single cells but that the N- and C-terminal parts are not. Strains with mutations in the central region were defective in the translational transactivator function and could be complemented by coexpressing Gag (capsid protein precursor) and Pol (polyprotein with protease, reverse transcriptase, and RNase H activity) from separate monocistronic plasmids. In contrast, total omission of Tav was only partially complemented by Gag and Pol overexpression from separate plasmids. These results indicate that CaMV basic replication requires both Tav-activated polycistronic translation and some posttranslational function(s) of Tav that is not affected by the deletions in the central region of Tav.
Collapse
|
30
|
Yu W, Murfett J, Schoelz JE. Differential induction of symptoms in Arabidopsis by P6 of Cauliflower mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:35-42. [PMID: 12580280 DOI: 10.1094/mpmi.2003.16.1.35] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The gene VI protein (P6) of Cauliflower mosaic virus (CaMV) functions as a virulence factor in crucifers by eliciting chlorotic symptoms in infected plants. The ability to induce chlorosis has been associated previously with P6 through gene-swapping experiments between strains and through the development of transgenic plants that express P6. The primary role that has been identified for P6 in the CaMV infection cycle is to modify the host translation machinery to facilitate the translation of the polycistronic CaMV 35S RNA. This function for P6 has been designated as the translational transactivator (TAV) function. In the present study, we have characterized an unusual variant of P6, derived from CaMV strain D4, that does not induce chlorosis upon transformation into Arabidopsis thaliana. The level of D4 P6 produced in transgenic Arabidopsis line D4-2 was comparable to the amount found in transgenic plants homozygous for W260 and CM1841 P6, two versions of P6 that induce strong chlorotic symptoms and stunting in Arabidopsis. A complementation assay proved that P6 expressed in the D4-2 line was functional, as it could support the systemic infection of a CM1841 mutant that contained a lethal frame-shift mutation within gene VI. This complementation assay allowed us to separately assess the contribution of CM1841 gene VI to symptom development versus the contribution of other CM1841 genes. Furthermore, a previous study had shown that the TAV activity of D4 P6 was comparable to that of W260 P6. That comparative analysis of TAV function, coupled with the characterization of the D4-2 transgenic line in the present paper, indicates that the TAV function of P6 may play only a minor role in the development of chlorotic symptoms.
Collapse
Affiliation(s)
- Weichang Yu
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
31
|
Haas M, Bureau M, Geldreich A, Yot P, Keller M. Cauliflower mosaic virus: still in the news. MOLECULAR PLANT PATHOLOGY 2002; 3:419-29. [PMID: 20569349 DOI: 10.1046/j.1364-3703.2002.00136.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
SUMMARY Taxonomic relationship: Cauliflower mosaic virus (CaMV) is the type member of the Caulimovirus genus in the Caulimoviridae family, which comprises five other genera. CaMV replicates its DNA genome by reverse transcription of a pregenomic RNA and thus belongs to the pararetrovirus supergroup, which includes the Hepadnaviridae family infecting vertebrates. Physical properties: Virions are non-enveloped isometric particles, 53 nm in diameter (Fig. 1). They are constituted by 420 capsid protein subunits organized following T= 7 icosahedral symmetry (Cheng, R.H., Olson, N.H. and Baker, T.S. (1992) Cauliflower mosaic virus: a 420 subunit (T= 7), multilayer structure. Virology, 16, 655-668). The genome consists of a double-stranded circular DNA of approximately 8000 bp that is embedded in the inner surface of the capsid. Viral proteins: The CaMV genome encodes six proteins, a cell-to-cell movement protein (P1), two aphid transmission factors (P2 and P3), the precursor of the capsid proteins (P4), a polyprotein precursor of proteinase, reverse transcriptase and ribonuclease H (P5) and an inclusion body protein/translation transactivator (P6). Hosts: The host range of CaMV is limited to plants of the Cruciferae family, i.e. Brassicae species and Arabidopsis thaliana, but some viral strains can also infect solanaceous plants. In nature, CaMV is transmitted by aphids in a non-circulative manner.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
32
|
Li Y, Leisner SM. Multiple domains within the Cauliflower mosaic virus gene VI product interact with the full-length protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1050-1057. [PMID: 12437303 DOI: 10.1094/mpmi.2002.15.10.1050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral propagation. It is likely that at least some of these functions require P6 self-association. The work described here was performed to confirm that P6 self-associates and to identify domains involved in this interaction. Yeast two-hybrid analyses indicated that full-length P6 self-associates and that this interaction is specific. Additional analyses indicated that at least four independent domains bind to full-length P6. When a central domain (termed domain D3) was removed, these interactions were abolished. However, this deleted P6 was able to bind to the full-length wild-type protein and to isolated domain D3. Viruses lacking domain D3 were incapable of producing a systemic infection. Isolated domain D3 was capable of binding to at least two of the other domains but was unable to self-associate. This suggests that domain D3 facilitates P6 self-association by binding to the other domains but not itself. The presence of multiple domains involved in P6 self-association may help explain the ability of this protein to form the intracellular inclusions characteristic of caulimoviruses.
Collapse
Affiliation(s)
- Yongzhong Li
- Department of Biological Sciences, The University of Toledo, OH 43606, USA
| | | |
Collapse
|
33
|
Palanichelvam K, Schoelz JE. A comparative analysis of the avirulence and translational transactivator functions of gene VI of Cauliflower mosaic virus. Virology 2002; 293:225-33. [PMID: 11886242 DOI: 10.1006/viro.2001.1293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary function associated at present with the gene VI product of Cauliflower mosaic virus (CaMV) is that of a translational transactivator (TAV). In this capacity, it alters the host translational machinery to allow reinitiation of translation of other CaMV genes on the polycistronic 35S RNA of CaMV. In addition, the gene VI protein can elicit a specific type of plant defense response called the hypersensitive response (HR) in Nicotiana edwardsonii. In this study, we have adapted the agroinfiltration technique to compare the sequences of CaMV gene VI required for TAV function and elicitation of HR. To measure the activity of the TAV, we coagroinfiltrated gene VI of CaMV strain W260 with a bicistronic GUS reporter plasmid. TAV function could be assayed 4 days postinfiltration, before the onset of HR in N. edwardsonii. Through the use of the TAV and HR assays, we could show that the TAV functions of gene VI of CaMV strains W260 and D4 were equivalent, but only W260 gene VI elicited HR. A mutational analysis of W260 gene VI showed that the structural requirements for elicitation of HR were much more stringent than those for TAV function. Small deletions from either the 5' or 3' end of W260 gene VI abolished its ability to elicit HR, although the TAV function was retained in the mutant. The TAV function could also tolerate a small insertion within gene VI; this insertion abolished the elicitor function. This study provides direct evidence that the TAV function of gene VI is separate from its role as an elicitor of HR.
Collapse
Affiliation(s)
- Karuppaiah Palanichelvam
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
34
|
Agama K, Beach S, Schoelz J, Leisner SM. The 5' Third of Cauliflower mosaic virus Gene VI Conditions Resistance Breakage in Arabidopsis Ecotype Tsu-0. PHYTOPATHOLOGY 2002; 92:190-6. [PMID: 18943093 DOI: 10.1094/phyto.2002.92.2.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
ABSTRACT Arabidopsis thaliana ecotypes vary in their responses to viruses. In this study, we analyzed the variation in response of A. thaliana ecotype Tsu-0 to Cauliflower mosaic virus (CaMV). This ecotype was previously reported to be resistant to two CaMV isolates (CM1841 and CM4-184), but susceptible to W260. In this study, we show that Tsu-0 is resistant to four additional CaMV isolates. CaMV propagated within the rosette leaves of Tsu-0 plants, but did not appear to spread systemically into the inflorescence. However, virus viability in rosette leaves of Tsu-0 plants apparently was not compromised because infectious CaMV could be recovered from these organs. W260 overcomes Tsu-0 resistance by a passive mechanism (i.e., this virus avoids activating plant defenses). The portion of the viral genome responsible for W260 resistance breakage was mapped to the 5' third of gene VI, which we have termed RBR-1. This region is also responsible for controlling the ability of CaMV to infect different types of solanaceous plants. Hence, the pathways by which plants of different families interact with CaMV may be conserved through evolution.
Collapse
|
35
|
Cole AB, Király L, Ross K, Schoelz JE. Uncoupling resistance from cell death in the hypersensitive response of Nicotiana species to cauliflower mosaic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:31-41. [PMID: 11194869 DOI: 10.1094/mpmi.2001.14.1.31] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cauliflower mosaic virus strain W260 elicits a hypersensitive response (HR) in leaves of Nicotiana edwardsonii, an interspecific hybrid derived from a cross between N. glutinosa and N. clevelandii. Interestingly, we found that N. glutinosa is resistant to W260, but responds with local chlorotic lesions rather than necrotic lesions. In contrast, N. clevelandii responds to W260 with systemic cell death. The reactions of the progenitors of N. edwardsonii to W260 infection indicated that each contributed a factor toward the development of HR. In this study, we present two lines of evidence to show that the resistance and cell death that comprise the HR elicited by W260 can indeed be uncoupled. First, we showed that the non-necrotic resistance response of N. glutinosa could be converted to HR when these plants were crossed with N. clevelandii. Second, we found that cell death and resistance segregated independently in the F2 population of a cross between N. edwardsonii and N. clevelandii. We concluded that the resistance of N. edwardsonii to W260 infection was conditioned by a gene derived from N. glutinosa, whereas cell death was conditioned by a gene derived from N. clevelandii. An analysis of pathogenesis-related (PR) protein expression in response to W260 infection revealed that elicitation of PR proteins was associated with resistance rather than with the onset of cell death.
Collapse
Affiliation(s)
- A B Cole
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia 65211, USA
| | | | | | | |
Collapse
|