1
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Liu J, Yu M, Ge Y, Tian Y, Hu B, Zhao Y. The RsmA RNA-Binding Proteins in Pseudomonas syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637595. [PMID: 33719314 PMCID: PMC7952654 DOI: 10.3389/fpls.2021.637595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King's B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Kravchenko U, Gogoleva N, Kalubaka N, Kruk A, Diubo Y, Gogolev Y, Nikolaichik Y. The PhoPQ Two-Component System Is the Major Regulator of Cell Surface Properties, Stress Responses and Plant-Derived Substrate Utilisation During Development of Pectobacterium versatile-Host Plant Pathosystems. Front Microbiol 2021; 11:621391. [PMID: 33519782 PMCID: PMC7843439 DOI: 10.3389/fmicb.2020.621391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
Pectobacterium versatile (formerly P. carotovorum) is a recently defined species of soft rot enterobacteria capable of infecting many plant hosts and damaging different tissues. Complex transcriptional regulation of virulence properties can be expected for such a versatile pathogen. However, the relevant information is available only for related species and is rather limited. The PhoPQ two-component system, originally described in pectobacteria as PehRS, was previously shown to regulate a single gene, pehA. Using an insertional phoP mutant of Pectobacterium versatile (earlier-P. carotovorum), we demonstrate that PhoP regulates at least 115 genes with a majority of them specific for pectobacteria. The functions performed by PhoP-controlled genes include degradation, transport and metabolism of plant-derived carbon sources (polygalacturonate, arabinose-containing polysaccharides and citrate), modification of bacterial cell envelope and stress resistance. We also demonstrated PhoP involvement in establishing the order of plant cell wall decomposition and utilisation of the corresponding breakdown products. Based on experimental data and in silico analysis, we defined a PhoP binding site motif and provided proof for its universality in enteric bacteria. Scanning P. versatile genome for the locations of this motif suggested a much larger PhoP regulon enriched with the genes important for a plant pathogen, which makes PhoP a global virulence regulator. Potential PhoP targets include many regulatory genes and PhoP control over one of them, expI, was confirmed experimentally, highlighting the link between the PhoPQ two-component and quorum sensing systems. High concentrations of calcium and magnesium ions were found to abolish the PhoPQ-dependent transcription activation but did not relieve repression. Reduced PhoP expression and minimisation of PhoP dependence of regulon members' expression in P. versatile cells isolated from potato tuber tissues suggest that PhoPQ system is a key switch of expression levels of multiple virulence-related genes fine-tuned to control the development of P. versatile-host plant pathosystem.
Collapse
Affiliation(s)
- Uljana Kravchenko
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Natalia Gogoleva
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Laboratory of Extreme Biology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Nastassia Kalubaka
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Alla Kruk
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuliya Diubo
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuri Gogolev
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
4
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Sengoda VG, Shi X, Krugner R, Backus EA, Lin H. Targeted Mutations in Xylella fastidiosa Affect Acquisition and Retention by the Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:612-621. [PMID: 31903491 DOI: 10.1093/jee/toz352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Xylella fastidiosa (Wells) is a xylem-limited bacterium that causes Pierce's disease of grapevines. The bacterium is transmitted by insect vectors such as the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experiments were conducted to compare the role of selected X. fastidiosa genes on 1) bacterial acquisition and retention in GWSS foreguts, and 2) transmission to grapevines by GWSS. Bacterial genotypes used were: mutants Xf-ΔpilG, Xf-ΔpilH, Xf-ΔgacA, and Xf-ΔpopP; plus wild type (WT) as control. Results showed that Xf-ΔpilG had enhanced colonization rate and larger numbers in GWSS compared with WT. Yet, Xf-ΔpilG exhibited the same transmission efficiency as WT. The Xf-ΔpilH exhibited poor acquisition and retention. Although initial adhesion, multiplication, and retention of Xf-ΔpilH in GWSS were almost eliminated compared with WT, the mutation did not reduce transmission success in grapevines. Overall, Xf-ΔgacA showed colonization rates and numbers in foreguts similar to WT. The Xf-ΔgacA mutation did not affect initial adhesion, multiplication, and long-term retention compared with WT, and was not significantly diminished in transmission efficiency. In contrast, numbers of Xf-ΔpopP were variable over time, displaying greatest fluctuation from highest to lowest levels. Thus, Xf-ΔpopP had a strong, negative effect on initial adhesion, but adhered and slowly multiplied in the foregut. Again, transmission was not diminished compared to WT. Despite reductions in acquisition and retention by GWSS, transmission efficiency of genotypes to grapevines was not affected. Therefore, in order to stop the spread of X. fastidiosa by GWSS using gene-level targets, complete disruption of bacterial colonization mechanisms is required.
Collapse
Affiliation(s)
- Venkatesan G Sengoda
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Xiangyang Shi
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Rodrigo Krugner
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Elaine A Backus
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Hong Lin
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| |
Collapse
|
6
|
The Bacterial Soft Rot Pathogens, Pectobacterium carotovorum and P. atrosepticum, Respond to Different Classes of Virulence-Inducing Host Chemical Signals. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soft rot bacteria of the Pectobacterium and Dickeya genera are Gram-negative phytopathogens that produce and secrete plant cell wall-degrading enzymes (PCWDE), the actions of which lead to rotting and decay of their hosts in the field and in storage. Host chemical signals are among the factors that induce the bacteria into extracellular enzyme production and virulence. A class of compounds (Class I) made up of intermediate products of cell wall (pectin) degradation induce exoenzyme synthesis through KdgR, a global negative regulator of exoenzyme production. While the KdgR− mutant of P. carotovorum is no longer inducible by Class I inducers, we demonstrated that exoenzyme production is induced in this strain in the presence of extracts from hosts including celery, potato, carrot, and tomato, suggesting that host plants contain another class of compounds (Class II inducers) different from the plant cell wall-degradative products that work through KdgR. The Class II inducers are thermostable, water-soluble, diffusible, and dialysable through 1 kDa molecular weight cut off pore size membranes, and could be a target for soft rot disease management strategies.
Collapse
|
7
|
Zúñiga A, Aravena P, Pulgar R, Travisany D, Ortiz-Severín J, Chávez FP, Maass A, González M, Cambiazo V. Transcriptomic Changes of Piscirickettsia salmonis During Intracellular Growth in a Salmon Macrophage-Like Cell Line. Front Cell Infect Microbiol 2020; 9:426. [PMID: 31998656 PMCID: PMC6964531 DOI: 10.3389/fcimb.2019.00426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, a systemic infection of salmonid fish species. P. salmonis infects and survives in its host cell, a process that correlates with the expression of virulence factors including components of the type IVB secretion system. To gain further insights into the cellular and molecular mechanism behind the adaptive response of P. salmonis during host infection, we established an in vitro model of infection using the SHK-1 cell line from Atlantic salmon head kidney. The results indicated that in comparison to uninfected SHK-1 cells, infection significantly decreased cell viability after 10 days along with a significant increment of P. salmonis genome equivalents. At that time, the intracellular bacteria were localized within a spacious cytoplasmic vacuole. By using a whole-genome microarray of P. salmonis LF-89, the transcriptome of this bacterium was examined during intracellular growth in the SHK-1 cell line and exponential growth in broth. Transcriptome analysis revealed a global shutdown of translation during P. salmonis intracellular growth and suggested an induction of the stringent response. Accordingly, key genes of the stringent response pathway were up-regulated during intracellular growth as well as at stationary phase bacteria, suggesting a role of the stringent response on bacterial virulence. Our results also reinforce the participation of the Dot/Icm type IVB secretion system during P. salmonis infection and reveals many unexplored genes with potential roles in the adaptation to intracellular growth. Finally, we proposed that intracellular P. salmonis alternates between a replicative phase and a stationary phase in which the stringent response is activated.
Collapse
Affiliation(s)
- Alejandro Zúñiga
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,Blue Genomics Chile, Puerto Varas, Chile
| | - Pamela Aravena
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- FONDAP Center for Genome Regulation, Santiago, Chile.,Center for Mathematical Modeling (PIA AFB17001) and Department of Mathematical Engineering, Universidad de Chile - UMI CNRS 2807, Santiago, Chile
| | - Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,Laboratorio de Microbiología de Sistemas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Center for Mathematical Modeling (PIA AFB17001) and Department of Mathematical Engineering, Universidad de Chile - UMI CNRS 2807, Santiago, Chile
| | - Alejandro Maass
- FONDAP Center for Genome Regulation, Santiago, Chile.,Center for Mathematical Modeling (PIA AFB17001) and Department of Mathematical Engineering, Universidad de Chile - UMI CNRS 2807, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
8
|
Zhang B, Zhang Y, Liang F, Ma Y, Wu X. An Extract Produced by Bacillus sp. BR3 Influences the Function of the GacS/GacA Two-Component System in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2019; 10:2005. [PMID: 31572307 PMCID: PMC6749012 DOI: 10.3389/fmicb.2019.02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
The GacS/GacA two-component system is essential for virulence in many plant pathogenic bacteria, and thus represents a promising anti-virulence target. In the present study, we isolated and screened rhizobacteria that were capable of inhibiting the expression of the gacS gene in the phytopathogenic bacterium Pseudomonas syringae pv. tomato (Pto) DC3000. One candidate inhibitor bacterium, BR3 was obtained and identified as a Bacillus sp. strain based on 16s rRNA gene sequence analysis. Besides the gacS gene, the GacA-dependent small RNA genes rsmZ and rsmY were repressed transcriptionally when DC3000 was treated with an extract from strain BR3. Importantly, the extract also influenced bacterial motility, the expression of type three secretion system effector AvrPto, and the plant hypersensitive response triggered by strain DC3000. The results suggested that the extract from strain BR3 might offer an alternative method to control bacterial diseases in plants by targeting the GacS/GacA system.
Collapse
Affiliation(s)
- Bo Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Fei Liang
- College of Agriculture, Guangxi University, Nanning, China
| | - Yinan Ma
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Ge Y, Lee JH, Liu J, Yang H, Tian Y, Hu B, Zhao Y. Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non-coding small RNAs and have distinct roles in virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:1217-1236. [PMID: 31218814 PMCID: PMC6715622 DOI: 10.1111/mpp.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities to non-coding small RNAs (ncsRNAs), whereas RsmA2 and RsmA3 exhibited similar, but much higher, binding affinities to ncsRNAs. Our results showed that both RsmA2 and RsmA3 were required for disease symptom development and bacterial growth in planta by significantly affecting virulence gene expression. All four RsmA proteins, especially RsmA2 and RsmA3, influenced γ-amino butyric acid utilization and pyoverdine production to some degree, whereas RsmA2, RsmA3 and RsmA4 influenced protease activities. A single RsmA, RsmA3, played a dominant role in regulating motility. Furthermore, reverse transcription quantitative real-time PCR and western blot results showed that RsmA proteins, especially RsmA2 and RsmA3, regulated target genes and possibly other RsmA proteins at both transcriptional and translational levels. These results indicate that RsmA proteins in PstDC3000 exhibit distinct binding affinities to ncsRNAs and have distinct roles in virulence. Our results also suggest that RsmA proteins in PstDC3000 interact with each other, where RsmA2 and RsmA3 play a major role in regulating various functions in a complex manner.
Collapse
Affiliation(s)
- Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ho‐wen Yang
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Youfu Zhao
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
10
|
Islam R, Brown S, Taheri A, Dumenyo CK. The Gene Encoding NAD-Dependent Epimerase/Dehydratase, wcaG, Affects Cell Surface Properties, Virulence, and Extracellular Enzyme Production in the Soft Rot Phytopathogen, Pectobacterium carotovorum. Microorganisms 2019; 7:microorganisms7060172. [PMID: 31200539 PMCID: PMC6616942 DOI: 10.3390/microorganisms7060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023] Open
Abstract
Pectobacterium carotovorum is a gram-negative bacterium that, together with other soft rot Enterobacteriaceae causes soft rot disease in vegetables, fruits, and ornamental plants through the action of exoproteins including plant cell wall-degrading enzymes (PCWDEs). Although pathogenicity in these bacteria is complex, virulence levels are proportional to the levels of plant cell wall-degrading exoenzymes (PCWDEs) secreted. Two low enzyme-producing transposon Tn5 mutants were isolated, and compared to their parent KD100, the mutants were less virulent on celery petioles and carrot disks. The inactivated gene responsible for the reduced virulence phenotype in both mutants was identified as wcaG. The gene, wcaG (previously denoted fcl) encodes NAD-dependent epimerase/dehydratase, a homologue of GDP-fucose synthetase of Escherichia coli. In Escherichia coli, GDP-fucose synthetase is involved in the biosynthesis of the exopolysaccharide, colanic acid (CA). The wcaG mutants of P. carotovorum formed an enhanced level of biofilm in comparison to their parent. In the hydrophobicity test the mutants showed more hydrophobicity than the parent in hexane and hexadecane as solvents. Complementation of the mutants with extrachromosomal copies of the wild type gene restored these functions to parental levels. These data indicate that NAD-dependent epimerase/dehydratase plays a vital rule in cell surface properties, exoenzyme production, and virulence in P. carotovorum.
Collapse
Affiliation(s)
- Rabiul Islam
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Shyretha Brown
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - C Korsi Dumenyo
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| |
Collapse
|
11
|
Mei L, Xu S, Lu P, Lin H, Guo Y, Wang Y. CsrB, a noncoding regulatory RNA, is required for BarA-dependent expression of biocontrol traits in Rahnella aquatilis HX2. PLoS One 2017; 12:e0187492. [PMID: 29091941 PMCID: PMC5665550 DOI: 10.1371/journal.pone.0187492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. METHODOLOGY/PRINCIPAL FINDINGS In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. CONCLUSION/SIGNIFICANCE The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis.
Collapse
Affiliation(s)
- Li Mei
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Sanger Xu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Peng Lu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Haiping Lin
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Yanbin Guo
- Department of Ecological Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
- National and Provincial Joint Engineering Laboratory of Bio-pesticide Preparation, Lin’An, China
| |
Collapse
|
12
|
Fakhry CT, Kulkarni P, Chen P, Kulkarni R, Zarringhalam K. Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach. BMC Genomics 2017; 18:645. [PMID: 28830349 PMCID: PMC5568370 DOI: 10.1186/s12864-017-4057-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. METHODS In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. RESULTS We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. CONCLUSION The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.
Collapse
Affiliation(s)
- Carl Tony Fakhry
- Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Prajna Kulkarni
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Ping Chen
- Department of Engineering, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Rahul Kulkarni
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| |
Collapse
|
13
|
Haque MM, Oliver MMH, Nahar K, Alam MZ, Hirata H, Tsuyumu S. CytR Homolog of Pectobacterium carotovorum subsp. carotovorum Controls Air-Liquid Biofilm Formation by Regulating Multiple Genes Involved in Cellulose Production, c-di-GMP Signaling, Motility, and Type III Secretion System in Response to Nutritional and Environmental Signals. Front Microbiol 2017; 8:972. [PMID: 28620360 PMCID: PMC5449439 DOI: 10.3389/fmicb.2017.00972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 01/22/2023] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum [Pcc (formerly Erwinia carotovora subsp. carotovora)] PC1 causes soft-rot disease in a wide variety of plant species by secreting multiple pathogenicity-related traits. In this study, regulatory mechanism of air-liquid (AL) biofilm formation was studied using a cytR homolog gene deletion mutant (ΔcytR) of Pcc PC1. Compared to the wild type (Pcc PC1), the ΔcytR mutant produced fragile and significantly (P < 0.001) lower amounts of AL biofilm on salt-optimized broth plus 2% glycerol (SOBG), yeast peptone dextrose adenine, and also on King’s B at 27°C after 72 h incubation in static condition. The wild type also produced significantly higher quantities of AL biofilm on SOBGMg– (magnesium deprived) containing Cupper (Cu2+), Zinc (Zn2+), Manganese (Mn2+), Magnesium (Mg2+), and Calcium (Ca2+) compared to the ΔcytR mutant. Moreover, the wild type was produced higher amounts of biofilms compared to the mutant while responding to pH and osmotic stresses. The ΔfliC (encoding flagellin), flhD::Tn5 (encoding a master regulator) and ΔmotA (a membrane protein essential for flagellar rotation) mutants produced a lighter and more fragile AL biofilm on SOBG compared to their wild counterpart. All these mutants resulted in having weak bonds with the cellulose specific dye (Calcofluor) producing lower quantities of cellulose compared to the wild type. Gene expression analysis using mRNA collected from the AL biofilms showed that ΔcytR mutant significantly (P < 0.001) reduced the expressions of multiple genes responsible for cellulose production (bcsA, bcsE, and adrA), motility (flhD, fliA, fliC, and motA) and type III secretion system (hrpX, hrpL, hrpA, and hrpN) compared to the wild type. The CytR homolog was therefore, argued to be able to regulate the AL biofilm formation by controlling cellulose production, motility and T3SS in Pcc PC1. In addition, all the mutants exhibited poorer attachment to radish sprouts and AL biofilm cells of the wild type was resistant than stationary-phase and planktonic cells to acidity and oxidative stress compared to the same cells of the ΔcytR mutant. The results of this study therefore suggest that CytR homolog is a major determinant of Pcc PC1’s virulence, attachment and its survival mechanism.
Collapse
Affiliation(s)
- M M Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - M M H Oliver
- Department of Agricultural Engineering, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Kamrun Nahar
- Plant Breeding Division, Bangladesh Agricultural Research InstituteGazipur, Bangladesh
| | - Mohammad Z Alam
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
| | - Hisae Hirata
- Faculty of Agriculture, Shizuoka UniversityShizuoka, Japan
| | - Shinji Tsuyumu
- Faculty of Agriculture, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
14
|
Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae. mBio 2017; 8:mBio.00398-17. [PMID: 28536283 PMCID: PMC5442451 DOI: 10.1128/mbio.00398-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.
Collapse
|
15
|
Ancona V, Lee JH, Zhao Y. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci Rep 2016; 6:37195. [PMID: 27845410 PMCID: PMC5109040 DOI: 10.1038/srep37195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| |
Collapse
|
16
|
Hugouvieux-Cotte-Pattat N. Metabolism and Virulence Strategies in Dickeya-Host Interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:93-129. [PMID: 27571693 DOI: 10.1016/bs.pmbts.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dickeya, a genus of the Enterobacteriaceae family, all cause plant diseases. They are aggressive necrotrophs that have both a wide geographic distribution and a wide host range. As a plant pathogen, Dickeya has had to adapt to a vegetarian diet. Plants constitute a large storage of carbohydrates; they contain substantial amounts of soluble sugars and the plant cell wall is composed of long polysaccharides. Metabolic functions used by Dickeya in order to multiply during infection are essential aspects of pathogenesis. Dickeya is able to catabolize a large range of oligosaccharides and glycosides of plant origin. Glucose, fructose, and sucrose are all efficiently metabolized by the bacteria. To avoid the formation of acidic products, their final catabolism involves the butanediol pathway, a nonacidifying fermentative pathway. The assimilation of plant polysaccharides necessitates their prior cleavage into oligomers. Notably, the Dickeya virulence strategy is based on its capacity to dissociate the plant cell wall and, for this, the bacteria secrete an extensive set of polysaccharide degrading enzymes, composed mostly of pectinases. Since pectic polymers have a major role in plant tissue cohesion, pectinase action results in plant rot. The pectate lyases secreted by Dickeya play a double role as virulence factors and as nutrient providers. This dual function implies that the pel gene expression is regulated by both metabolic and virulence regulators. The control of sugar assimilation by specific or global regulators enables Dickeya to link its nutritional status to virulence, a coupling that optimizes the different phases of infection.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| |
Collapse
|
17
|
Joyce SA, Lango L, Clarke DJ. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:1-25. [PMID: 21924970 DOI: 10.1016/b978-0-12-387048-3.00001-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photorhabdus is a genus of insect-pathogenic Gram-negative bacteria that also maintain a mutualistic interaction with nematodes from the family Heterorhabditis. This complex life cycle, involving different interactions with different invertebrate hosts, coupled with the amenability of the system to laboratory culture has resulted in the development of Photorhabdus as a model system for studying bacterial-host interactions. Photorhabdus is predicted to have an extensive secondary metabolism with the genetic potential to produce >20 different small secondary metabolites. Therefore, this system also presents us with a unique opportunity to study the contribution of secondary metabolism to the environmental fitness of the producing organism in its natural habitat (i.e., the insect and/or the nematode). In vivo and in vitro studies have revealed that the vast majority of the genetic loci in Photorhabdus predicted to be involved in the production of secondary metabolites appear to be cryptic and, to date, although several have been characterized, only three compounds have been studied in any great detail: 3,5-dihydroxy-4-isopropylstilbene, the β-lactam antibiotic carbapenem, and an anthraquinone pigment. In this chapter, we describe how these compounds are made and the role (if any) that they have during the interactions between Photorhabdus and its invertebrate hosts. We will also outline recent work on the regulation of secondary metabolism in Photorhabdus and comment on how this has led to an increased understanding of mutualism in this bacterium.
Collapse
Affiliation(s)
- Susan A Joyce
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
18
|
Identification of an Extracellular Endoglucanase That Is Required for Full Virulence in Xanthomonas citri subsp. citri. PLoS One 2016; 11:e0151017. [PMID: 26950296 PMCID: PMC4780785 DOI: 10.1371/journal.pone.0151017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Xanthomonas citri subsp. citri causes citrus canker disease, which is characterized by the formation of water-soaked lesions, white or yellow spongy pustules and brown corky canker. In this work, we report the contribution of extracellular endoglucanase to canker development during infection. The ectopic expression of nine putative cellulases in Escherichia coli indicated that two endoglucanases, BglC3 and EngXCA, show carboxymethyl cellulase activity. Both bglC3 and engXCA genes were transcribed in X. citri subsp. citri, however, only BglC3 protein was detected outside the cell in western blot analysis. The deletion of bglC3 gene resulted in complete loss of extracellular carboxymethyl cellulase activity and delayed the onset of canker symptoms in both infiltration- and wound-inoculation assays. When growing in plant tissue, the cell density of bglC3 mutant was lower than that of the wild type. Our data demonstrated that BglC3 is an extracellular endoglucanase required for the full virulence of X. citri subsp. citri.
Collapse
|
19
|
Kwenda S, Gorshkov V, Ramesh AM, Naidoo S, Rubagotti E, Birch PRJ, Moleleki LN. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics 2016; 17:47. [PMID: 26753530 PMCID: PMC4710047 DOI: 10.1186/s12864-016-2376-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. Results In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. Conclusions Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2376-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stanford Kwenda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia. .,Department of Botany and Plant Physiology, Kazan Federal University, Kazan, Russia.
| | - Aadi Moolam Ramesh
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology (FABI), University of Pretoria, Pretoria, South Africa.
| | - Enrico Rubagotti
- Genomics Research Institute, Centre for Microbial Ecology and Genomics (CMEG), University of Pretoria, Pretoria, South Africa.
| | - Paul R J Birch
- Division of Plant Sciences, College of Life Sciences, University of Dundee (at The James Hutton Institute), Errol Road, Invergowrie, Dundee, DD25DA, Scotland, UK.
| | - Lucy N Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
20
|
EL CIRCUITO REGULATORIO BARA/UVRY-CSRA EN ESCHERICHIA COLI Y SUS HOMÓLOGOS EN LAS γ-PROTEOBACTERIAS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Foxall RL, Ballok AE, Avitabile A, Whistler CA. Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA. BMC Microbiol 2015; 15:180. [PMID: 26376921 PMCID: PMC4573307 DOI: 10.1186/s12866-015-0509-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022] Open
Abstract
Background Symbiosis defective GacA-mutant derivatives of Vibrio fischeri are growth impaired thereby creating a selective advantage for growth-enhanced spontaneous suppressors. Suppressors were isolated and characterized for effects of the mutations on gacA-mutant defects of growth, siderophore activity and luminescence. The mutations were identified by targeted and whole genome sequencing. Results Most mutations that restored multiple phenotypes were non-null mutations that mapped to conserved domains in or altered expression of CsrA, a post-transcriptional regulator that mediates GacA effects in a number of bacterial species. These represent an array of unique mutations compared to those that have been described previously. Different substitutions at the same amino acid residue were identified allowing comparisons of effects such as at the R6 residue, which conferred relative differences in luminescence and siderophore levels. The screen revealed residues not previously identified as critical for function including a single native alanine. Most csrA mutations enhanced luminescence more than siderophore activity, which was especially evident for mutations predicted to reduce the amount of CsrA. Although CsrA mutations compensate for many known GacA mutant defects, not all CsrA suppressors restore symbiotic colonization. Phenotypes of a suppressor allele of ihfA that encodes one subunit of the integration host factor (IHF) heteroduplex indicated the protein represses siderophore and activates luminescence in a GacA-independent manner. Conclusions In addition to its established role in regulation of central metabolism, the CsrA regulator represses luminescence and siderophore as an intermediate of the GacA regulatory hierachy. Siderophore regulation was less sensitive to stoichiometry of CsrA consistent with higher affinity for the targets of this trait. The lack of CsrA null-mutant recovery implied these mutations do not enhance fitness of gacA mutants and alluded to this gene being conditionally essential. This study also suggests a role for IHF in the GacA-CsrB-CsrA regulatory cascade by potentially assisting with the binding of repressors of siderohphore and activators of luminescence. As many phosphorelay proteins reduce fitness when mutated, the documented instability used in this screen also highlights a potentially universal and underappreciated problem that, if not identified and strategically avoided, could introduce confounding variability during experimental study of these regulatory pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0509-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA. .,Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, USA.
| | - Alicia E Ballok
- Gradaute Program in Genetics, University of New Hampshire, Durham, USA. .,Current address: Department of Surgery, Massachusetts General Hospital and Department of Microbiology and Immunobiology, Harvard Medical School, Durham, USA.
| | - Ashley Avitabile
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA.
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA. .,Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, USA.
| |
Collapse
|
22
|
Zhang S, Chakrabarty PK, Fleites LA, Rayside PA, Hopkins DL, Gabriel DW. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1. PLoS One 2015; 10:e0133796. [PMID: 26218423 PMCID: PMC4517913 DOI: 10.1371/journal.pone.0133796] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.
Collapse
Affiliation(s)
- Shujian Zhang
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Pranjib K. Chakrabarty
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Laura A. Fleites
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Patricia A. Rayside
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Donald L. Hopkins
- Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, United States of America
| | - Dean W. Gabriel
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 2015; 79:193-224. [PMID: 25833324 PMCID: PMC4394879 DOI: 10.1128/mmbr.00052-14] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Li Y, Hutchins W, Wu X, Liang C, Zhang C, Yuan X, Khokhani D, Chen X, Che Y, Wang Q, Yang CH. Derivative of plant phenolic compound inhibits the type III secretion system of Dickeya dadantii via HrpX/HrpY two-component signal transduction and Rsm systems. MOLECULAR PLANT PATHOLOGY 2015; 16:150-63. [PMID: 24986378 PMCID: PMC6638520 DOI: 10.1111/mpp.12168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The type III secretion system (T3SS) is a major virulence factor in many Gram-negative bacterial pathogens and represents a particularly appealing target for antimicrobial agents. Previous studies have shown that the plant phenolic compound p-coumaric acid (PCA) plays a role in the inhibition of T3SS expression of the phytopathogen Dickeya dadantii 3937. This study screened a series of derivatives of plant phenolic compounds and identified that trans-4-hydroxycinnamohydroxamic acid (TS103) has an eight-fold higher inhibitory potency than PCA on the T3SS of D. dadantii. The effect of TS103 on regulatory components of the T3SS was further elucidated. Our results suggest that TS103 inhibits HrpY phosphorylation and leads to reduced levels of hrpS and hrpL transcripts. In addition, through a reduction in the RNA levels of the regulatory small RNA RsmB, TS103 also inhibits hrpL at the post-transcriptional level via the rsmB-RsmA regulatory pathway. Finally, TS103 inhibits hrpL transcription and mRNA stability, which leads to reduced expression of HrpL regulon genes, such as hrpA and hrpN. To our knowledge, this is the first inhibitor to affect the T3SS through both the transcriptional and post-transcriptional pathways in the soft-rot phytopathogen D. dadantii 3937.
Collapse
Affiliation(s)
- Yan Li
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Heroven AK, Böhme K, Dersch P. The Csr/Rsm system of Yersinia and related pathogens. RNA Biol 2014; 9:379-91. [DOI: 10.4161/rna.19333] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Wu X, Zeng Q, Koestler BJ, Waters CM, Sundin GW, Hutchins W, Yang CH. Deciphering the components that coordinately regulate virulence factors of the soft rot pathogen Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1119-1131. [PMID: 25180688 DOI: 10.1094/mpmi-01-14-0026-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The bacterial soft rot pathogen Dickeya dadantii utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to disintegrate the plant cell wall. A transposon mutagenesis fluorescence-activated cell sorting screen was used to identify mutants with altered promoter activities of the T3SS pilus gene hrpA. Several insertion mutations, resulting in changes in hrpA expression, were mapped to a new locus, opgGH, which encodes the gene cluster responsible for osmoregulated periplasmic glucan (OPG) synthesis proteins. Our data showed that OPG was involved in T3SS and Pel regulation by altering the expression of the regulatory small RNA RsmB. Through genome searching, the mechanism of two novel regulatory components, the RcsCD-RcsB phosphorelay and CsrD on OPG and the rsmB gene, was further investigated. The Rcs phosphorelay and OPG inversely regulated rsmB at transcriptional and post-transcriptional levels, respectively. CsrD exhibited dual functionality in T3SS and Pel regulation by manipulating levels of RsmB RNA and cyclic diguanylate monophosphate (c-di-GMP). CsrD positively regulated the promoter activity of the rsmB gene but negatively controlled RsmB RNA at the post-transcriptional level via OpgGH. In addition, CsrD contains both GGDEF and EAL domains but acted as a c-di-GMP phosphodiesterase. When the expression of the csrD gene was induced, CsrD regulated T3SS expression and Pel production through controlling intracellular c-di-GMP levels.
Collapse
|
27
|
The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol 2014; 80:1972-84. [PMID: 24441162 DOI: 10.1128/aem.03829-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA.
Collapse
|
28
|
Laasik E, Põllumaa L, Pasanen M, Mattinen L, Pirhonen M, Mäe A. Expression of nipP.w of Pectobacterium wasabiae is dependent on functional flgKL flagellar genes. MICROBIOLOGY (READING, ENGLAND) 2014; 160:179-186. [PMID: 24173527 DOI: 10.1099/mic.0.071092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While flagellum-driven motility is hypothesized to play a role in the virulence of Pectobacterium species, there is no direct evidence that genes involved in flagellum assembly regulate the synthesis of virulence factors. The purpose of this study was to identify genes that affect the production or secretion of necrosis-inducing protein (Nip) in the strain SCC3193. Transposon mutagenesis of an RpoS strain overexpressing NipP.w was performed, and a mutant associated with decreased necrosis of tobacco leaves was detected. The mutant contained a transposon in the regulatory region upstream of the flagellar genes flgK and flgL. Additional mutants were generated related to the flagellar genes fliC and fliA. The mutation in flgKL, but not those in fliC and fliA, inhibited nipP.w transcription. Moreover, the regulatory effect of the flgKL mutation on nipP.w transcription was partially dependent on the Rcs phosphorelay. Secretion of NipP.w was also dependent on a type II secretion mechanism. Overall, the results of this study indicate that the flgKL mutation is responsible for reduced motility and lower levels of nipP.w expression.
Collapse
Affiliation(s)
- Eve Laasik
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Lee Põllumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Miia Pasanen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Finland
| | - Laura Mattinen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Finland
| | - Andres Mäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
29
|
Li W, Ancona V, Zhao Y. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol Genet Genomics 2013; 289:63-75. [PMID: 24218204 DOI: 10.1007/s00438-013-0790-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.
Collapse
Affiliation(s)
- Wenting Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL, 61801, USA
| | | | | |
Collapse
|
30
|
Bowden SD, Eyres A, Chung JCS, Monson RE, Thompson A, Salmond GPC, Spring DR, Welch M. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Mol Microbiol 2013; 90:457-71. [PMID: 23957692 DOI: 10.1111/mmi.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.
Collapse
Affiliation(s)
- Steven D Bowden
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge, CB2 1QW, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Panijel M, Chalupowicz L, Sessa G, Manulis-Sasson S, Barash I. Global regulatory networks control the hrp regulon of the gall-forming bacterium Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1031-1043. [PMID: 23745675 DOI: 10.1094/mpmi-04-13-0097-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gall formation by Pantoea agglomerans pv. gypsophilae is dependent on the hypersensitive response and pathogenicity (hrp) system. Previous studies demonstrated that PagR and PagI, regulators of the quorum-sensing system, induce expression of the hrp regulatory cascade (i.e., hrpXY, hrpS, and hrpL) that activates the HrpL regulon. Here, we isolated the genes of the Gac/Rsm global regulatory pathway (i.e., gacS, gacA, rsmB, and csrD) and of the post-transcriptional regulator rsmA. Our results demonstrate that PagR and PagI also upregulate expression of the Gac/Rsm pathway. PagR acts as a transcriptional activator of each of the hrp regulatory genes and gacA in a N-butanoyl-L-homoserine lactone-dependent manner as shown by gel shift experiments. Mutants of the Gac/Rsm genes or overexpression of rsmA significantly reduced Pantoea agglomerans virulence and colonization of gypsophila. Overexpression of rsmB sRNA abolished gall formation, colonization, and hypersensitive reaction on nonhost plants and prevented transcription of the hrp regulatory cascade, indicating a lack of functional type III secretion system. Expression of rsmB sRNA in the background of the csrD null mutant suggests that CsrD may act as a safeguard for preventing excessive production of rsmB sRNA. Results presented indicate that the hrp regulatory cascade is controlled directly by PagR and indirectly by RsmA, whereas deficiency in RsmA activity is epistatic to PagR induction.
Collapse
Affiliation(s)
- Mary Panijel
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
32
|
Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q, Yamazaki A, Hutchins W, Zhou SS, Chen X, Yang CH. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 2013; 79:5424-36. [PMID: 23770912 PMCID: PMC3754148 DOI: 10.1128/aem.00845-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022] Open
Abstract
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - Chengfang Zhang
- School of Pharmaceutical & Life Sciences, Changzhou University, Jiangsu, China
| | - Yan Li
- Department of Plant Pathology, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Quan Zeng
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - Akihiro Yamazaki
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - William Hutchins
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| | - Shan-Shan Zhou
- School of Pharmaceutical & Life Sciences, Changzhou University, Jiangsu, China
| | - Xin Chen
- School of Pharmaceutical & Life Sciences, Changzhou University, Jiangsu, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
33
|
Kong HS, Roberts DP, Patterson CD, Kuehne SA, Heeb S, Lakshman DK, Lydon J. Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. PHYTOPATHOLOGY 2012; 102:575-587. [PMID: 22568815 DOI: 10.1094/phyto-09-11-0267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The GacS/GacA two-component system functions mechanistically in conjunction with global post-transcriptional regulators of the RsmA family to allow pseudomonads and other bacteria to adapt to changing environmental stimuli. Analysis of this Gac/Rsm signal transduction pathway in phytotoxin-producing pathovars of Pseudmonas syringae is incomplete, particularly with regard to rsmA. Our approach in studying it was to overexpress rsmA in P. syringae strains through introduction of pSK61, a plasmid constitutively expressing this gene. Disease and colonization of plant leaf tissue were consistently diminished in all P. syringae strains tested (pv. phaseolicola NPS3121, pv. syringae B728a, and BR2R) when harboring pSK61 relative to these isolates harboring the empty vector pME6031. Phaseolotoxin, syringomycin, and tabtoxin were not produced in any of these strains when transformed with pSK61. Production of protease and pyoverdin as well as swarming were also diminished in all of these strains when harboring pSK61. In contrast, alginate production, biofilm formation, and the hypersensitive response were diminished in some but not all of these isolates under the same growth conditions. These results indicate that rsmA is consistently important in the overarching phenotypes disease and endophtyic colonization but that its role varies with pathovar in certain underpinning phenotypes in the phytotoxin-producing strains of P. syringae.
Collapse
Affiliation(s)
- Hye Suk Kong
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Manzo J, Cocotl-Yañez M, Tzontecomani T, Martínez VM, Bustillos R, Velásquez C, Goiz Y, Solís Y, López L, Fuentes LE, Nuñez C, Segura D, Espín G, Castañeda M. Post-Transcriptional Regulation of the Alginate Biosynthetic Gene algD by the Gac/Rsm System in Azotobacter vinelandii. J Mol Microbiol Biotechnol 2012; 21:147-59. [DOI: 10.1159/000334244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, López Solanilla E, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Rodríguez Palenzuela P, San Francisco M, Toth I, Tsuyumu S, van der Waals J, van der Wolf J, Van Gijsegem F, Yang CH, Yedidia I. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:425-49. [PMID: 22702350 DOI: 10.1146/annurev-phyto-081211-173013] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.
Collapse
Affiliation(s)
- Amy Charkowski
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Binnenkade L, Lassak J, Thormann KM. Analysis of the BarA/UvrY two-component system in Shewanella oneidensis MR-1. PLoS One 2011; 6:e23440. [PMID: 21931597 PMCID: PMC3171408 DOI: 10.1371/journal.pone.0023440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022] Open
Abstract
The BarA/UvrY two-component system is well conserved in species of the γ-proteobacteria and regulates numerous processes predominantly by controlling the expression of a subset of noncoding small RNAs. In this study, we identified and characterized the BarA/UvrY two-component system in the gammaproteobacterium Shewanella oneidensis MR-1. Functional interaction of sensor kinase BarA and the cognate response regulator UvrY was indicated by in vitro phosphotransfer studies. The expression of two predicted small regulatory RNAs (sRNAs), CsrB1 and CsrB2, was dependent on UvrY. Transcriptomic analysis by microarrays revealed that UvrY is a global regulator and directly or indirectly affects transcript levels of more than 200 genes in S. oneidensis. Among these are genes encoding key enzymes of central carbon metabolism such as ackA, aceAB, and pflAB. As predicted of a signal transduction pathway that controls aspects of central metabolism, mutants lacking UvrY reach a significantly higher OD than the wild type during aerobic growth on N-acetylglucosamine (NAG) while under anaerobic conditions the mutant grew more slowly. A shorter lag phase occurred with lactate as carbon source. In contrast, significant growth phenotypes were absent in complex medium. Based on these studies we hypothesize that, in S. oneidensis MR-1, the global BarA/UvrY/Csr regulatory pathway is involved in central carbon metabolism processes.
Collapse
Affiliation(s)
- Lucas Binnenkade
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Jürgen Lassak
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Kai M. Thormann
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
- * E-mail:
| |
Collapse
|
37
|
Sun L, Wang X, Qu S, Liu H, Jia Z, Dong H. HrpN Ea Induces Chinese Cabbage Resistance to Bacterial Soft Rot by Inhibiting the Bacterial Attachment to Root Surfaces. PLANT DISEASE 2010; 94:1441-1447. [PMID: 30743395 DOI: 10.1094/pdis-02-10-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
HrpNEa is a harpin protein produced by the bacterial plant pathogen Erwinia amylovora. When applied to aerial parts of plants, the protein induces systemic acquired resistance in a variety of plant species. Here, we report that treating Chinese cabbage roots with HrpNEa induces resistance of the plant to Pectobacterium carotovora subsp. carotovora, the pathogen that invades roots and causes bacterial soft rot in cruciferous plants. Treating Chinese cabbage roots with HrpNEa significantly decreased severities of soft rot symptoms on the plant. The root treatment decreased the number of P. carotovora subsp. carotovora cells attached to root surfaces and inhibited the ability of P. carotovora subsp. carotovora to produce quorum-sensing signals, which regulate pathogenicity in a bacterial population-dependent manner. The inhibitory effects of HrpNEa on the root attachment and quorum-sensing signals accompanied the induced expression of several defense response genes. These results suggest that HrpNEa induces Chinese cabbage resistance to bacterial soft rot by inhibiting the bacterial attachment to root surfaces.
Collapse
Affiliation(s)
- Lijun Sun
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, and Nanjing Institute for Comprehensive Utilization of Wild Plant, Nanjing, 210042
| | - Xiaomeng Wang
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shuping Qu
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huimin Liu
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhenhua Jia
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hansong Dong
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
38
|
A cis-encoded antisense small RNA regulated by the HP0165-HP0166 two-component system controls expression of ureB in Helicobacter pylori. J Bacteriol 2010; 193:40-51. [PMID: 20971914 DOI: 10.1128/jb.00800-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of urease is essential for gastric colonization by Helicobacter pylori. The increased level of urease in gastric acidity is due, in part, to acid activation of the two-component system (TCS) consisting of the membrane sensor HP0165 and its response regulator, HP0166, which regulates transcription of the seven genes of the urease gene cluster. We now find that there are two major ureAB transcripts: a 2.7-kb full-length ureAB transcript and a 1.4-kb truncated transcript lacking 3' ureB. Acidic pH (pH 4.5) results in a significant increase in transcription of ureAB, while neutral pH (pH 7.4) increases the truncated 1.4-kb transcript. Northern blot analysis with sense RNA and strand-specific oligonucleotide probes followed by 5' rapid amplification of cDNA ends detects an antisense small RNA (sRNA) encoded by the 5' ureB noncoding strand consisting of ∼290 nucleotides (5'ureB-sRNA). Deletion of HP0165 elevates the level of the truncated 1.4-kb transcript along with that of the 5'ureB-sRNA at both pH 7.4 and pH 4.5. Overexpression of 5'ureB-sRNA increases the 1.4-kb transcript, decreases the 2.7-kb transcript, and decreases urease activity. Electrophoretic mobility shift assay shows that unphosphorylated HP0166 binds specifically to the 5'ureB-sRNA promoter. The ability of the HP0165-HP0166 TCS to both increase and decrease ureB expression at low and high pHs, respectively, facilitates gastric habitation and colonization over the wide range of intragastric pHs experienced by the organism.
Collapse
|
39
|
Chatterjee A, Cui Y, Chakrabarty P, Chatterjee AK. Regulation of motility in Erwinia carotovora subsp. carotovora: quorum-sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1316-1323. [PMID: 20831410 DOI: 10.1094/mpmi-01-10-0017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Erwinia carotovora subsp. carotovora causes soft-rotting (tissue-macerating) disease in many plants and plant organs. Although pectinases are the primary determinants of virulence, several ancillary factors that augment bacterial virulence have also been identified. One such factor is bacterial motility. Flagellum formation and bacterial movement are regulated in many enterobacteria, including E. carotovora subsp. carotovora, by FlhDC, the master regulator of flagellar genes and FliA, a flagellum-specific σ factor. We document here that motility of E. carotovora subsp. carotovora is positively regulated by the quorum-sensing signal, N-acylhomoserine lactone (AHL), and negatively regulated by RsmA, a post-transcriptional regulator. RsmA, an RNA-binding protein, causes translational repression and promotes RNA decay. Our data show that RsmA negatively regulates flhDC and fliA expression. Moreover, the chemical stabilities of transcripts of these genes are greater in an RsmA- mutant than in RsmA+ bacteria. These observations contrast with positive regulation of flhDC and motility by CsrA (=RsmA) in Escherichia coli. In the absence of AHL, the AHL receptors ExpR1/ExpR2 (=AhlR) in Erwinia carotovora subsp. carotovora negatively regulate motility and expression of flhDC and fliA by activating RsmA production. In the presence of AHL, regulatory effects of ExpR1/ExpR2 are neutralized, resulting in reduced levels of rsmA expression and enhanced motility.
Collapse
|
40
|
Zaitseva JV, Voloshina PV, Liu X, Ovadis MI, Berg G, Chernin LS, Khmel IA. Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410050054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production. Mol Genet Genomics 2010; 283:541-9. [PMID: 20386924 DOI: 10.1007/s00438-010-0540-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239-246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.
Collapse
|
42
|
Andresen L, Sala E, Kõiv V, Mäe A. A role for the Rcs phosphorelay in regulating expression of plant cell wall degrading enzymes in Pectobacterium carotovorum subsp. carotovorum. MICROBIOLOGY-SGM 2010; 156:1323-1334. [PMID: 20110299 DOI: 10.1099/mic.0.033936-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Rcs phosphorelay is a signal transduction system that influences the virulence phenotype of several pathogenic bacteria. In the plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) the response regulator of the Rcs phosphorelay, RcsB, represses expression of plant cell wall degrading enzymes (PCWDE) and motility. The focus of this study was to identify genes directly regulated by the binding of RcsB that also regulate expression of PCWDE genes in Pcc. RcsB-binding sites within the regulatory regions of the flhDC operon and the rprA and rsmB genes were identified using DNase I protection assays, while in vivo studies using flhDC : : gusA, rsmB : : gusA and rprA : : gusA gene fusions revealed gene regulation. These experiments demonstrated that the operon flhDC, a flagellar master regulator, was repressed by RcsB, and transcription of rprA was activated by RcsB. Regulation of the rsmB promoter by RcsB is more complicated. Our results show that RcsB represses rsmB expression mainly through modulating flhDC transcription. Neverthless, direct binding of RcsB on the rsmB promoter region is possible in certain conditions. Using an rprA-negative mutant, it was further demonstrated that RprA RNA is not essential for regulating expression of PCWDE under the conditions tested, whereas overexpression of rprA increased protease expression in wild-type cells. Stationary-phase sigma factor, RpoS, is the only known target gene for RprA RNA in Escherichia coli; however, in Pcc the effect of RprA RNA was found to be rpoS-independent. Overall, our results show that the Rcs phosphorelay negatively affects expression of PCWDE by inhibiting expression of flhDC and rsmB.
Collapse
Affiliation(s)
- Liis Andresen
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Erki Sala
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Viia Kõiv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Andres Mäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
43
|
RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol 2009; 191:4582-93. [PMID: 19447906 DOI: 10.1128/jb.00154-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RsmC and FlhDC are global regulators controlling extracellular proteins/enzymes, rsmB RNA, motility, and virulence of Erwinia carotovora subsp. carotovora. FlhDC, the master regulator of flagellar genes, controls these traits by positively regulating gacA, fliA, and rsmC and negatively regulating hexA. RsmC, on the other hand, is a negative regulator of extracellular proteins/enzymes, motility, and virulence since the deficiency of RsmC in FlhDC(+) strain results in overproduction of extracellular proteins/enzymes, hypermotility, and hypervirulence. These phenotypes are abolished in an RsmC(-) FlhDC(-) double mutant. We show that RsmC interferes with FlhDC action. Indeed, the expression of all three targets (i.e., gacA, rsmC, and fliA) positively regulated in E. carotovora subsp. carotovora by FlhDC is inhibited by RsmC. RsmC also partly relieves the inhibition of hexA expression by FlhDC. The results of yeast two-hybrid analysis revealed that RsmC binds FlhD and FlhDC, but not FlhC. We propose that binding of RsmC with FlhD/FlhDC interferes with its regulatory functions and that RsmC acts as an anti-FlhD(4)FlhC(2) factor. We document here for the first time that RsmC interferes with activation of fliA and motility in several members of the Enterobacteriaceae family. The extent of E. carotovora subsp. carotovora RsmC-mediated inhibition of FlhDC-dependent expression of fliA and motility varies depending upon enterobacterial species. The data presented here support the idea that differences in structural features in enterobacterial FlhD are responsible for differential susceptibility to E. carotovora subsp. carotovora RsmC action.
Collapse
|
44
|
Sahr T, Brüggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 2009; 72:741-62. [PMID: 19400772 PMCID: PMC2888818 DOI: 10.1111/j.1365-2958.2009.06677.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To transit from intra- to extracellular environments, Legionella pneumophila differentiates from a replicative/non-virulent to a transmissive/virulent form using the two-component system LetA/LetS and the global repressor protein CsrA. While investigating how both regulators act co-ordinately we characterized two ncRNAs, RsmY and RsmZ, that link the LetA/LetS and CsrA regulatory networks. We demonstrate that LetA directly regulates their expression and show that RsmY and RsmZ are functional in Escherichia coli and are able to bind CsrA in vitro. Single mutants have no (ΔrsmY) or a little (ΔrsmZ) impact on virulence, but the ΔrsmYZ strain shows a drastic defect in intracellular growth in Acanthamoeba castellanii and THP-1 monocyte-derived macrophages. Analysis of the transcriptional programmes of the ΔletA, ΔletS and ΔrsmYZ strains revealed that the switch to the transmissive phase is partially blocked. One major difference between the ΔletA, ΔletS and ΔrsmYZ strains was that the latter synthesizes flagella. Taken together, LetA activates transcription of RsmY and RsmZ, which sequester CsrA and abolish its post-transcriptional repressive activity. However, the RsmYZ-CsrA pathway appears not to be the main or only regulatory circuit governing flagella synthesis. We suggest that rather RpoS and LetA, by influencing LetE and probably cyclic-di-GMP levels, regulate motility in L. pneumophila.
Collapse
Affiliation(s)
| | | | | | - Mariella Lomma
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | | | | | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
45
|
Decaying signals: will understanding bacterial–plant communications lead to control of soft rot? Curr Opin Biotechnol 2009; 20:178-84. [DOI: 10.1016/j.copbio.2009.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 11/22/2022]
|
46
|
Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA. Appl Environ Microbiol 2009; 75:2275-83. [PMID: 19218414 PMCID: PMC2675201 DOI: 10.1128/aem.01964-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.
Collapse
Affiliation(s)
- Xiang Yang Shi
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
47
|
The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl Environ Microbiol 2008; 75:1223-8. [PMID: 19114532 DOI: 10.1128/aem.02015-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The type III secretion system (T3SS) is a major virulence factor in many gram-negative bacterial pathogens. This secretion system translocates effectors directly into the cytosol of eukaryotic host cells, where the effector proteins facilitate bacterial pathogenesis by interfering with host cell signal transduction and other cellular processes. Plants defend themselves against bacterial pathogens by recognizing either the type 3 effectors or their actions and initiating a cascade of defense responses that often results in programmed cell death of the plant cell being attacked. Here we show that a plant phenolic compound, p-coumaric acid (PCA), represses the expression of T3SS genes of the plant pathogen Dickeya dadantii, suggesting that plants can also defend against bacterial pathogens by manipulating the expression of the T3SS. PCA repressed the expression of T3SS regulatory genes through the HrpX/Y two-component system, a core regulator of the T3SS, rather than through the global regulator GacS/A, which indirectly regulates the T3SS. A further analysis of several PCA analogs suggests that the para positioning of the hydroxyl group in the phenyl ring and the double bond of PCA may be important for its biological activity.
Collapse
|
48
|
Valverde C, Haas D. Small RNAs Controlled by Two-Component Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:54-79. [DOI: 10.1007/978-0-387-78885-2_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Shedova E, Lipasova V, Velikodvorskaya G, Ovadis M, Chernin L, Khmel I. Phytase activity and its regulation in a rhizospheric strain of Serratia plymuthica. Folia Microbiol (Praha) 2008; 53:110-4. [DOI: 10.1007/s12223-008-0016-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/10/2007] [Indexed: 11/24/2022]
|
50
|
Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol 2008; 190:4610-23. [PMID: 18441056 DOI: 10.1128/jb.01828-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA(-) FlhDC(-) double mutant and multiple copies of rsmB(+) DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora.
Collapse
|