1
|
Zhou N, Li X, Zheng Z, Liu J, Downie JA, Xie F. RinRK1 enhances NF receptors accumulation in nanodomain-like structures at root-hair tip. Nat Commun 2024; 15:3568. [PMID: 38670968 PMCID: PMC11053012 DOI: 10.1038/s41467-024-47794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Legume-rhizobia root-nodule symbioses involve the recognition of rhizobial Nod factor (NF) signals by NF receptors, triggering both nodule organogenesis and rhizobial infection. RinRK1 is induced by NF signaling and is essential for infection thread (IT) formation in Lotus japonicus. However, the precise mechanism underlying this process remains unknown. Here, we show that RinRK1 interacts with the extracellular domains of NF receptors (NFR1 and NFR5) to promote their accumulation at root hair tips in response to rhizobia or NFs. Furthermore, Flotillin 1 (Flot1), a nanodomain-organizing protein, associates with the kinase domains of NFR1, NFR5 and RinRK1. RinRK1 promotes the interactions between Flot1 and NF receptors and both RinRK1 and Flot1 are necessary for the accumulation of NF receptors at root hair tips upon NF stimulation. Our study shows that RinRK1 and Flot1 play a crucial role in NF receptor complex assembly within localized plasma membrane signaling centers to promote symbiotic infection.
Collapse
Affiliation(s)
- Ning Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiqiong Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Low KE, Tingley JP, Klassen L, King ML, Xing X, Watt C, Hoover SER, Gorzelak M, Abbott DW. Carbohydrate flow through agricultural ecosystems: Implications for synthesis and microbial conversion of carbohydrates. Biotechnol Adv 2023; 69:108245. [PMID: 37652144 DOI: 10.1016/j.biotechadv.2023.108245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Carbohydrates are chemically and structurally diverse biomolecules, serving numerous and varied roles in agricultural ecosystems. Crops and horticulture products are inherent sources of carbohydrates that are consumed by humans and non-human animals alike; however carbohydrates are also present in other agricultural materials, such as soil and compost, human and animal tissues, milk and dairy products, and honey. The biosynthesis, modification, and flow of carbohydrates within and between agricultural ecosystems is intimately related with microbial communities that colonize and thrive within these environments. Recent advances in -omics techniques have ushered in a new era for microbial ecology by illuminating the functional potential for carbohydrate metabolism encoded within microbial genomes, while agricultural glycomics is providing fresh perspective on carbohydrate-microbe interactions and how they influence the flow of functionalized carbon. Indeed, carbohydrates and carbohydrate-active enzymes are interventions with unrealized potential for improving carbon sequestration, soil fertility and stability, developing alternatives to antimicrobials, and circular production systems. In this manner, glycomics represents a new frontier for carbohydrate-based biotechnological solutions for agricultural systems facing escalating challenges, such as the changing climate.
Collapse
Affiliation(s)
- Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Caitlin Watt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Monika Gorzelak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
3
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
4
|
Yamazaki A, Battenberg K, Shimoda Y, Hayashi M. NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:845-856. [PMID: 36107197 DOI: 10.1094/mpmi-11-21-0263-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysin-motif receptor-like kinases (LysM-RLKs) are involved in the recognition of microbe-associated molecular patterns to initiate pattern-triggered immunity (PTI). LysM-RLKs are also required for recognition of microbe-derived symbiotic signal molecules upon establishing mutualistic interactions between plants and microsymbionts. A LysM-RLK CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) plays central roles both in chitin-mediated PTI and in arbuscular mycorrhizal symbiosis, suggesting the overlap between immunity and symbiosis, at least in the signal perception and the activation of downstream signal cascades. In this study, we screened for the interacting proteins of Nod factor Receptor1 (NFR1), a CERK1 homolog in the model legume Lotus japonicus, and obtained a protein orthologous to NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13), a protein involved in the activation of innate immunity in Arabidopsis thaliana, which we named LjNHL13a. LjNHL13a interacted with NFR1 and with the symbiosis receptor kinase SymRK. LjNHL13a also displayed positive effects in nodulation. Our results suggest that NHL13 plays a role both in plant immunity and symbiosis, possibly where they overlap. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Akihiro Yamazaki
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kai Battenberg
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
5
|
The PTS
Ntr
-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii. mBio 2022; 13:e0372121. [PMID: 35491828 PMCID: PMC9239096 DOI: 10.1128/mbio.03721-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In all ecological niches, potassium is actively consumed by diverse prokaryotes and their interacting eukaryote hosts. It is only just emerging that potassium is a key player in host-pathogen interactions, and the role of potassium in mutualistic interactions remains largely unknown.
Collapse
|
6
|
Metallothionein1A Regulates Rhizobial Infection and Nodulation in Phaseolus vulgaris. Int J Mol Sci 2022; 23:ijms23031491. [PMID: 35163415 PMCID: PMC8836284 DOI: 10.3390/ijms23031491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Metallothioneins (MTs) constitute a heterogeneous family of ubiquitous metal ion-binding proteins. In plants, MTs participate in the regulation of cell growth and proliferation, protection against heavy metal stress, oxidative stress responses, and responses to pathogen attack. Despite their wide variety of functions, the role of MTs in symbiotic associations, specifically nodule-fabacean symbiosis, is poorly understood. Here, we analyzed the role of the PvMT1A gene in Phaseolus vulgaris-Rhizobium tropici symbiosis using bioinformatics and reverse genetics approaches. Using in silico analysis, we identified six genes encoding MTs in P. vulgaris, which were clustered into three of the four classes described in plants. PvMT1A transcript levels were significantly higher in roots inoculated with R. tropici at 7 and 30 days post inoculation (dpi) than in non-inoculated roots. Functional analysis showed that downregulating PvMT1A by RNA interference (RNAi) reduced the number of infection events at 7 and 10 dpi and the number of nodules at 14 and 21 dpi. In addition, nodule development was negatively affected in PvMT1A:RNAi transgenic roots, and these nodules displayed a reduced nitrogen fixation rate at 21 dpi. These results strongly suggest that PvMT1A plays an important role in the infection process and nodule development in P. vulgaris during rhizobial symbiosis.
Collapse
|
7
|
Shimamura M, Kumaki T, Hashimoto S, Saeki K, Ayabe SI, Higashitani A, Akashi T, Sato S, Aoki T. Phenolic Acids Induce Nod Factor Production in <i>Lotus japonicus</i>–<i>Mesorhizobium</i> Symbiosis. Microbes Environ 2022; 37. [PMID: 35283370 PMCID: PMC8958295 DOI: 10.1264/jsme2.me21094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In legume–rhizobia symbiosis, partner recognition and the initiation of symbiosis processes require the mutual exchange of chemical signals. Chemicals, generally (iso)flavonoids, in the root exudates of the host plant induce the expression of nod genes in rhizobia, and, thus, are called nod gene inducers. The expression of nod genes leads to the production of lipochitooligosaccharides (LCOs) called Nod factors. Natural nod gene inducer(s) in Lotus japonicus–Mesorhizobium symbiosis remain unknown. Therefore, we developed an LCO detection method based on ultra-high-performance liquid chromatography–tandem-quadrupole mass spectrometry (UPLC-TQMS) to identify these inducers and used it herein to screen 40 phenolic compounds and aldonic acids for their ability to induce LCOs in Mesorhizobium japonicum MAFF303099. We identified five phenolic acids with LCO-inducing activities, including p-coumaric, caffeic, and ferulic acids. The induced LCOs caused root hair deformation, and nodule numbers in L. japonicus inoculated with M. japonicum were increased by these phenolic acids. The three phenolic acids listed above induced the expression of the nodA, nodB, and ttsI genes in a strain harboring a multicopy plasmid encoding NodD1, but not that encoding NodD2. The presence of p-coumaric and ferulic acids in the root exudates of L. japonicus was confirmed by UPLC-TQMS, and the induction of ttsI::lacZ in the strain harboring the nodD1 plasmid was detected in the rhizosphere of L. japonicus. Based on these results, we propose that phenolic acids are a novel type of nod gene inducer in L. japonicus–Mesorhizobium symbiosis.
Collapse
Affiliation(s)
| | | | | | - Kazuhiko Saeki
- Department of Biological Sciences and Kyousei Science Center for Life and Nature, Nara Women’s University
| | | | | | | | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University
| |
Collapse
|
8
|
Kusakabe S, Higasitani N, Kaneko T, Yasuda M, Miwa H, Okazaki S, Saeki K, Higashitani A, Sato S. Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 2020; 35. [PMID: 32074548 PMCID: PMC7104275 DOI: 10.1264/jsme2.me19141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bradyrhizobium elkanii, a rhizobium with a relatively wide host range, possesses a functional type III secretion system (T3SS) that is involved in symbiotic incompatibility against Rj4-genotype soybean (Glycine max) and some accessions of mung bean (Vigna radiata). To expand our knowledge on the T3SS-mediated partner selection mechanism in the symbiotic legume-rhizobia association, we inoculated three Lotus experimental accessions with wild-type and T3SS-mutant strains of B. elkanii USDA61. Different responses were induced by T3SS in a host genotype-dependent manner. Lotus japonicus Gifu inhibited infection; L. burttii allowed infection, but inhibited nodule maturation at the post-infection stage; and L. burttii and L. japonicus MG-20 both displayed a nodule early senescence-like response. By conducting inoculation tests with mutants of previously reported and newly identified effector protein genes of B. elkanii USDA61, we identified NopF as the effector protein triggering the inhibition of infection, and NopM as the effector protein triggering the nodule early senescence–like response. Consistent with these results, the B. elkanii USDA61 gene for NopF introduced into the Lotus symbiont Mesorhizobium japonicum induced infection inhibition in L. japonicus Gifu, but did not induce any response in L. burttii or L. japonicus MG-20. These results suggest that Lotus accessions possess at least three checkpoints to eliminate unfavorable symbionts, including the post-infection stage, by recognizing different T3SS effector proteins at each checkpoint.
Collapse
Affiliation(s)
| | | | | | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuhiko Saeki
- Department of Biological Sciences and Kyousei Science Center for Life and Nature, Nara Women's University
| | | | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
9
|
Wong JEMM, Nadzieja M, Madsen LH, Bücherl CA, Dam S, Sandal NN, Couto D, Derbyshire P, Uldum-Berentsen M, Schroeder S, Schwämmle V, Nogueira FCS, Asmussen MH, Thirup S, Radutoiu S, Blaise M, Andersen KR, Menke FLH, Zipfel C, Stougaard J. A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A 2019; 116:14339-14348. [PMID: 31239345 PMCID: PMC6628658 DOI: 10.1073/pnas.1815425116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The establishment of nitrogen-fixing root nodules in legume-rhizobia symbiosis requires an intricate communication between the host plant and its symbiont. We are, however, limited in our understanding of the symbiosis signaling process. In particular, how membrane-localized receptors of legumes activate signal transduction following perception of rhizobial signaling molecules has mostly remained elusive. To address this, we performed a coimmunoprecipitation-based proteomics screen to identify proteins associated with Nod factor receptor 5 (NFR5) in Lotus japonicus. Out of 51 NFR5-associated proteins, we focused on a receptor-like cytoplasmic kinase (RLCK), which we named NFR5-interacting cytoplasmic kinase 4 (NiCK4). NiCK4 associates with heterologously expressed NFR5 in Nicotiana benthamiana, and directly binds and phosphorylates the cytoplasmic domains of NFR5 and NFR1 in vitro. At the cellular level, Nick4 is coexpressed with Nfr5 in root hairs and nodule cells, and the NiCK4 protein relocates to the nucleus in an NFR5/NFR1-dependent manner upon Nod factor treatment. Phenotyping of retrotransposon insertion mutants revealed that NiCK4 promotes nodule organogenesis. Together, these results suggest that the identified RLCK, NiCK4, acts as a component of the Nod factor signaling pathway downstream of NFR5.
Collapse
Affiliation(s)
- Jaslyn E M M Wong
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Lene H Madsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Christoph A Bücherl
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Svend Dam
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Niels N Sandal
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Daniel Couto
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Mette Uldum-Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Sina Schroeder
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Fábio C S Nogueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Mette H Asmussen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Søren Thirup
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Mickaël Blaise
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark;
| |
Collapse
|
10
|
Liang J, Klingl A, Lin YY, Boul E, Thomas-Oates J, Marín M. A subcompatible rhizobium strain reveals infection duality in Lotus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1903-1913. [PMID: 30775775 PMCID: PMC6436148 DOI: 10.1093/jxb/erz057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Lotus species develop infection threads to guide rhizobia into nodule cells. However, there is evidence that some species have a genetic repertoire to allow other modes of infection. By conducting confocal and electron microscopy, quantification of marker gene expression, and phenotypic analysis of transgenic roots infected with mutant rhizobia, we elucidated the infection mechanism used by Rhizobium leguminosarum Norway to colonize Lotus burttii. Rhizobium leguminosarum Norway induces a distinct host transcriptional response compared with Mesorhizobium loti. It infects L. burttii utilizing an epidermal and transcellular infection thread-independent mechanism at high frequency. The entry into plant cells occurs directly from the apoplast and is primarily mediated by 'peg'-like structures, the formation of which is dependent on the production of Nod factor by the rhizobia. These results demonstrate that Lotus species can exhibit duality in their infection mechanisms depending on the rhizobial strain that they encounter. This is especially relevant in the context of interactions in the rhizosphere where legumes do not encounter single strains, but complex rhizobial communities. Additionally, our findings support a perception mechanism at the nodule cell entry interface, reinforcing the idea that there are successive checkpoints during rhizobial infection.
Collapse
Affiliation(s)
- Juan Liang
- Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Andreas Klingl
- Botany, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Yen-Yu Lin
- Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Emily Boul
- Department of Chemistry, University of York, UK
| | | | - Macarena Marín
- Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
11
|
Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, Videira e Castro IM, Monza J, Sanjuán J, León-Barrios M. The Rhizobia- Lotus Symbioses: Deeply Specific and Widely Diverse. Front Microbiol 2018; 9:2055. [PMID: 30258414 PMCID: PMC6144797 DOI: 10.3389/fmicb.2018.02055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between Lotus and rhizobia has been long considered very specific and only two bacterial species were recognized as the microsymbionts of Lotus: Mesorhizobium loti was considered the typical rhizobia for the L. corniculatus complex, whereas Bradyrhizobium sp. (Lotus) was the symbiont for L. uliginosus and related species. As discussed in this review, this situation has dramatically changed during the last 15 years, with the characterization of nodule bacteria from worldwide geographical locations and from previously unexplored Lotus spp. Current data support that the Lotus rhizobia are dispersed amongst nearly 20 species in five genera (Mesorhizobium, Bradyrhizobium, Rhizobium, Ensifer, and Aminobacter). As a consequence, M. loti could be regarded an infrequent symbiont of Lotus, and several plant-bacteria compatibility groups can be envisaged. Despite the great progress achieved with the model L. japonicus in understanding the establishment and functionality of the symbiosis, the genetic and biochemical bases governing the stringent host-bacteria compatibility pairships within the genus Lotus await to be uncovered. Several Lotus spp. are grown for forage, and inoculation with rhizobia is a common practice in various countries. However, the great diversity of the Lotus rhizobia is likely squandered, as only few bacterial strains are used as inoculants for Lotus pastures in very different geographical locations, with a great variety of edaphic and climatic conditions. The agroecological potential of the genus Lotus can not be fully harnessed without acknowledging the great diversity of rhizobia-Lotus interactions, along with a better understanding of the specific plant and bacterial requirements for optimal symbiotic nitrogen fixation under increasingly constrained environmental conditions.
Collapse
Affiliation(s)
- María J. Lorite
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J. Estrella
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Francisco J. Escaray
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | | | - Jorge Monza
- Facultad de Agronomia, Universidad de la República, Montevideo, Uruguay
| | - Juan Sanjuán
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
12
|
Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K. Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus. PLANT & CELL PHYSIOLOGY 2017; 58:298-306. [PMID: 28007966 DOI: 10.1093/pcp/pcw190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Symbiotic nitrogen fixation in legumes contributes greatly to the global nitrogen cycle on the earth. In nodules, resident rhizobia supply nitrogen nutrient fixed from atmospheric N2 to the host plant; in turn, the plant provides photosynthetic metabolites to bacteroids as a carbon source. In this process, various transporters are involved at different membrane systems; however, little is known at the molecular level about the flow of carbon from the host cells to the symbiotic bacteria. We have been studying transporters functioning in nodules of Lotus japonicus, and found that out of 13 SWEET genes in the L. japonicus genome LjSWEET3, a member of the SWEET transporter family, is highly expressed in nodules. The SWEET family was first identified in Arabidopsis, where members of the family are involved in phloem loading, nectar secretion, pollen nutrition and seed filling. The expression of LjSWEET3 strongly increased during nodule development and reached the highest level in mature nodules. Histochemical analysis using L. japonicus plants transformed with LjSWEET3 promoter:GUS (β-glucuronidase) showed strong expression in the vascular systems of nodules. Analysis of an LjSWEET3-green fluorescent protein (GFP) fusion expressed in Nicotiana banthamiana and Coptis japonica indicates that LjSWEET3 localizes to the plasma membrane. Together these data are consistent with a role for LjSWEET3 in sugar translocation towards nodules and also suggest the possible existence of multiple routes of carbon supply into nodules.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Yuka Saida
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Mayuko Yoshimizu
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Kojiro Takanashi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
- Institute of Mountain Science, Shinshu University, Matsumoto, Japan
| | - Davide Sosso
- Department of Plant Biology, Carnegie Institution of Science, Stanford, CA , USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution of Science, Stanford, CA , USA
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| |
Collapse
|
13
|
Sugiyama A, Fukuda S, Takanashi K, Yoshioka M, Yoshioka H, Narusaka Y, Narusaka M, Kojima M, Sakakibara H, Shitan N, Sato S, Tabata S, Kawaguchi M, Yazaki K. Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus. PLoS One 2015; 10:e0139127. [PMID: 26418593 PMCID: PMC4587964 DOI: 10.1371/journal.pone.0139127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
LjABCG1, a full-size ABCG subfamily of ATP-binding cassette proteins of a model legume, Lotus japonicus, was reported as a gene highly expressed during the early stages of nodulation, but have not been characterized in detail. In this study we showed that the induction of LjABCG1 expression was remarkable by methyl jasmonate treatment, and reporter gene experiments indicated that LjABCG1 was strongly expressed in the nodule parenchyma and cell layers adjacent to the root vascular tissue toward the nodule. LjABCG1 was suggested to be localized at the plasma membrane based on the fractionation of microsomal membranes as well as separation via aqueous two-phase partitioning. The physiological functions of LjABCG1 in symbiosis and pathogenesis were analyzed in homologous and heterologous systems. LjABCG1 knock-down L. japonicus plants did not show clear phenotypic differences in nodule formation, and not in defense against Pseudomonas syringae, either. In contrast, when LjABCG1 was expressed in the Arabidopsis pdr8-1 mutant, the penetration frequency of Phytophthora infestans, a potato late blight pathogen, was significantly reduced in LjABCG1/pdr8-1 than in pdr8-1 plants. This finding indicated that LjABCG1, at least partially, complemented the phenotype of pdr8 in Arabidopsis, suggesting the multiple roles of this protein in plant-microbe interactions.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Shoju Fukuda
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kojiro Takanashi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Miki Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama, 7549-1, Yoshikawa, Kaga-gun, Okayama, 716-1241, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences, Okayama, 7549-1, Yoshikawa, Kaga-gun, Okayama, 716-1241, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan; Kazusa DNA Research Institute, 2-6-7, Kazusa-Kamatari, Kisarazu, Chiba, 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7, Kazusa-Kamatari, Kisarazu, Chiba, 292-0812, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| |
Collapse
|
14
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
15
|
Saeki K, Ronson CW. Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-662-44270-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Perrine-Walker FM, Lartaud M, Kouchi H, Ridge RW. Microtubule array formation during root hair infection thread initiation and elongation in the Mesorhizobium-Lotus symbiosis. PROTOPLASMA 2014; 251:1099-1111. [PMID: 24488109 DOI: 10.1007/s00709-014-0618-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Nuclear migration during infection thread (IT) development in root hairs is essential for legume-Rhizobium symbiosis. However, little is known about the relationships between IT formation, nuclear migration, and microtubule dynamics. To this aim, we used transgenic Lotus japonicus expressing a fusion of the green fluorescent protein and tubulin-α6 from Arabidopsis thaliana to visualize in vivo dynamics of cortical microtubules (CMT) and endoplasmic microtubules (EMTs) in root hairs in the presence or absence of Mesorhizobium loti inoculation. We also examined the effect of microtubule-depolymerizing herbicide, cremart, on IT initiation and growth, since cremart is known to inhibit nuclear migration. In live imaging studies of M. loti-treated L. japonicus root hairs, EMTs were found in deformed, curled, and infected root hairs. The continuous reorganization of the EMT array linked to the nucleus appeared to be essential for the reorientation, curling, and IT initiation and the growth of zone II root hairs which are susceptible to rhizobial infection. During IT initiation, the EMTs appeared to be linked to the root hair surface surrounding the M. loti microcolonies. During IT growth, EMTs dissociated from the curled root hair tip, remained linked to the nucleus, and appeared to surround the IT tip. Lack or disorganized EMT arrays that were no longer linked to the nucleus were observed only in infection-aborted root hairs. Cremart affected IT formation and nodulation in a concentration-dependent manner, suggesting that the microtubule (MT) organization and successive nuclear migration are essential for successful nodulation in L. japonicus by M. loti.
Collapse
Affiliation(s)
- F M Perrine-Walker
- Department of Life Science, International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo, 181-8585, Japan,
| | | | | | | |
Collapse
|
17
|
Discriminative phytoalexin accumulation in Lotus japonicus against symbiotic and non-symbiotic microorganisms and related chemical signals. Biosci Biotechnol Biochem 2013; 77:1773-5. [PMID: 23924712 DOI: 10.1271/bbb.130209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phytoalexin response of Lotus japonicus seedlings to selected microbes and chemical signals was analyzed. The symbiotic rhizobium induced vestitol production weakly, while non-symbiotic rhizobia and potential pathogens led to increases in its accumulation. Whereas chitin-related molecules were ineffective, a flagellin-derived peptide not of symbiont origin induced phytoalexin production, indicating discriminative antibiotic production by the plant host.
Collapse
|
18
|
Soyano T, Kouchi H, Hirota A, Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 2013; 9:e1003352. [PMID: 23555278 PMCID: PMC3605141 DOI: 10.1371/journal.pgen.1003352] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of factors needed for root nodule organogenesis are largely unknown. NODULE INCEPTION (NIN) is a nodulation-specific gene that encodes a putative transcription factor and acts downstream of the common SYM genes. Here, we identified two Nuclear Factor-Y (NF-Y) subunit genes, LjNF-YA1 and LjNF-YB1, as transcriptional targets of NIN in Lotus japonicus. These genes are expressed in root nodule primordia and their translational products interact in plant cells, indicating that they form an NF-Y complex in root nodule primordia. The knockdown of LjNF-YA1 inhibited root nodule organogenesis, as did the loss of function of NIN. Furthermore, we found that NIN overexpression induced root nodule primordium-like structures that originated from cortical cells in the absence of bacterial symbionts. Thus, NIN is a crucial factor responsible for initiating nodulation-specific symbiotic processes. In addition, ectopic expression of either NIN or the NF-Y subunit genes caused abnormal cell division during lateral root development. This indicated that the Lotus NF-Y subunits can function to stimulate cell division. Thus, transcriptional regulation by NIN, including the activation of the NF-Y subunit genes, induces cortical cell division, which is an initial step in root nodule organogenesis. Unlike the legume-specific NIN protein, NF-Y is a major CCAAT box binding protein complex that is widespread among eukaryotes. We propose that the evolution of root nodules in legume plants was associated with changes in the function of NIN. NIN has acquired functions that allow it to divert pathways involved in the regulation of cell division to root nodule organogenesis. Legumes produce nodules in roots as the endosymbiotic organs for nitrogen-fixing bacteria, collectively called rhizobia. The symbiotic relationship enables legumes to survive on soil with poor nitrogen sources. The rhizobial infection triggers cell division in the cortex to generate root nodule primordia. The root nodule symbiosis has been thought to be recruited factors for the early signaling pathway from the ancestral mycorrhizal symbiosis, which usually does not accompany the root nodule formation. However, how the root nodule symbiosis-specific pathway inputs nodulation signals to molecular networks, by which cortical cell division is initiated, has not yet been elucidated. We found that NIN, a nodulation specific factor, induced cortical cell division without the rhizobial infection. NIN acted as a transcriptional activator and targeted two genes that encode different subunits of a NF-Y CCAAT box binding protein complex, LjNF-YA1 and LjNF-YB1. Inhibition of the LjNF-YA1 function prevented root nodule formation. Ectopic expression of the NF-Y subunit genes enhanced cell division in lateral root primordia that is not related to root nodule organogenesis. The NF-Y genes are thought to regulate cell division downstream of NIN. NF-Y is a general factor widespread in eukaryotes. We propose that NIN is a mediator between nodulation-specific signals and general regulatory mechanisms associated with cell proliferation.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Atsuko Hirota
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Makoto Hayashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
19
|
Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 2012; 139:3997-4006. [PMID: 23048184 DOI: 10.1242/dev.084079] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nodulation is a form of de novo organogenesis that occurs mainly in legumes. During early nodule development, the host plant root is infected by rhizobia that induce dedifferentiation of some cortical cells, which then proliferate to form the symbiotic root nodule primordium. Two classic phytohormones, cytokinin and auxin, play essential roles in diverse aspects of cell proliferation and differentiation. Although recent genetic studies have established how activation of cytokinin signaling is crucial to the control of cortical cell differentiation, the physiological pathways through which auxin might act in nodule development are poorly characterized. Here, we report the detailed patterns of auxin accumulation during nodule development in Lotus japonicus. Our analyses showed that auxin predominantly accumulates in dividing cortical cells and that NODULE INCEPTION, a key transcription factor in nodule development, positively regulates this accumulation. Additionally, we found that auxin accumulation is inhibited by a systemic negative regulatory mechanism termed autoregulation of nodulation (AON). Analysis of the constitutive activation of LjCLE-RS genes, which encode putative root-derived signals that function in AON, in combination with the determination of auxin accumulation patterns in proliferating cortical cells, indicated that activation of LjCLE-RS genes blocks the progress of further cortical cell division, probably through controlling auxin accumulation. Our data provide evidence for the existence of a novel fine-tuning mechanism that controls nodule development in a cortical cell stage-dependent manner.
Collapse
Affiliation(s)
- Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Kang H, Ma L, Hong Z, Zhang Z. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. PLANT PHYSIOLOGY 2012; 159:131-43. [PMID: 22434040 PMCID: PMC3375957 DOI: 10.1104/pp.112.197269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 05/02/2023]
Abstract
Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Arabidopsis thaliana) ROP6 and Medicago truncatula ROP6 and was designated as LjROP6. The interaction between Rop6 and NFR5 occurred both in vitro and in planta. No interaction between Rop6 and NFR1 was observed. Green fluorescent protein-tagged ROP6 was localized at the plasma membrane and cytoplasm. The interaction between ROP6 and NFR5 appeared to take place at the plasma membrane. The expression of the ROP6 gene could be detected in vascular tissues of Lotus roots. After inoculation with Mesorhizobium loti, elevated levels of ROP6 expression were found in the root hairs, root tips, vascular bundles of roots, nodule primordia, and young nodules. In transgenic hairy roots expressing ROP6 RNA interference constructs, Rhizobium entry into the root hairs did not appear to be affected, but infection thread growth through the root cortex were severely inhibited, resulting in the development of fewer nodules per plant. These data demonstrate a role of ROP6 as a positive regulator of infection thread formation and nodulation in L. japonicus.
Collapse
Affiliation(s)
| | | | - Chunfen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Xiaojun Chang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Heng Kang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | | | - Zonglie Hong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (D.K., Q.F., C.C., H.Z., T.C., X.C., S.Y., H.K., L.M., Z.Z.); and Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–2339 (Z.H.)
| |
Collapse
|
21
|
Lopez-Gomez M, Sandal N, Stougaard J, Boller T. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:393-401. [PMID: 21934117 PMCID: PMC3245478 DOI: 10.1093/jxb/err291] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/04/2011] [Accepted: 08/12/2011] [Indexed: 05/18/2023]
Abstract
In this study the interplay between the symbiotic and defence signalling pathways in Lotus japonicus was investigated by comparing the responses to Mesorhizobium loti, the symbiotic partner of L. japonicus, and the elicitor flg22, a conserved peptide motif present in flagellar protein of a wide range of bacteria. It was found that defence and symbiotic pathways overlap in the interaction between L. japonicus and M. loti since similar responses were induced by the mutualistic bacteria and flg22. However, purified flagellin from M. loti did not induce any response in L. japonicus, which suggests the production of other elicitors by the symbiotic bacteria. Defence responses induced by flg22 caused inhibition of rhizobial infection and delay in nodule organogenesis, as demonstrated by the negative effect of flg22 in the formation of spontaneous nodules in the snf1 L. japonicus mutant, and the inhibition of NSP1 and NSP2 genes. This indicates the antagonistic effect of the defence pathway on the nodule formation in the initial rhizobium-legume interaction. However, the fact that flg22 did not affect the formation of new nodules once the symbiosis was established indicates that after the colonization of the host plant by the symbiotic partner, the symbiotic pathway has prevalence over the defensive response. This result is also supported by the down-regulation of the expression levels of the flg22 receptor FLS2 in the nodular tissue.
Collapse
Affiliation(s)
- Miguel Lopez-Gomez
- Zürich-Basel Plant Science Center, Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:181-92. [PMID: 21910770 DOI: 10.1111/j.1365-313x.2011.04780.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temporally and spatially defined calcium signatures are integral parts of numerous signalling pathways. Monitoring calcium dynamics with high spatial and temporal resolution is therefore critically important to understand how this ubiquitous second messenger can control diverse cellular responses. Yellow cameleons (YCs) are fluorescence resonance energy transfer (FRET)-based genetically encoded Ca(2+) -sensors that provide a powerful tool to monitor the spatio-temporal dynamics of Ca(2+) fluxes. Here we present an advanced set of vectors and transgenic lines for live cell Ca(2+) imaging in plants. Transgene silencing mediated by the cauliflower mosaic virus (CaMV) 35S promoter has severely limited the application of nanosensors for ions and metabolites and we have thus used the UBQ10 promoter from Arabidopsis and show here that this results in constitutive and stable expression of YCs in transgenic plants. To improve the spatial resolution, our vector repertoire includes versions of YCs that can be targeted to defined locations. Using this toolkit, we identified temporally distinct responses to external ATP at the plasma membrane, in the cytosol and in the nucleus of neighbouring root cells. Moreover analysis of Ca(2+) dynamics in Lotus japonicus revealed distinct Nod factor induced Ca(2+) spiking patterns in the nucleus and the cytosol. Consequently, the constructs and transgenic lines introduced here enable a detailed analysis of Ca(2+) dynamics in different cellular compartments and in different plant species and will foster novel approaches to decipher the temporal and spatial characteristics of calcium signatures.
Collapse
Affiliation(s)
- Melanie Krebs
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Clemow SR, Clairmont L, Madsen LH, Guinel FC. Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea. PLANT METHODS 2011; 7:46. [PMID: 22172023 PMCID: PMC3264533 DOI: 10.1186/1746-4811-7-46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/15/2011] [Indexed: 05/04/2023]
Abstract
Pea has lagged behind other model legumes in the molecular study of nodulation and mycorrhizae-formation because of the difficulty to transform its roots and its poor growth on agar plates. Here we describe for pea 1) a transformation technique which permits the complementation of two known non-nodulating pea mutants, 2) a rhizobial inoculation method which allows the study of early cellular events giving rise to nodule primordia, and 3) a targeted fungal inoculation method which allows us to study short segments of mycorrhizal roots assured to be infected. These tools are certain to advance our knowledge of pea root symbioses.
Collapse
Affiliation(s)
- Scott R Clemow
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W., Waterloo, N2L 3C5, Ontario, Canada
| | - Lindsey Clairmont
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W., Waterloo, N2L 3C5, Ontario, Canada
| | - Lene H Madsen
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wields Vej 10, Aarhus C -8000 Denmark
| | - Frédérique C Guinel
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W., Waterloo, N2L 3C5, Ontario, Canada
| |
Collapse
|
24
|
Murray JD. Invasion by invitation: rhizobial infection in legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:631-9. [PMID: 21542766 DOI: 10.1094/mpmi-08-10-0181] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nodulation of legume roots typically begins with rhizobia attaching to the tip of a growing root-hair cell. The attached rhizobia secrete Nod factors (NF), which are perceived by the plant. This initiates a series of preinfection events that include cytoskeletal rearrangements, curling at the root-hair tip, and formation of radially aligned cytoplasmic bridges called preinfection threads (PIT) in outer cortical cells. Within the root-hair curl, an infection pocket filled with bacteria forms, from which originates a tubular invagination of cell wall and membrane called an infection thread (IT). IT formation is coordinated with nodule development in the underlying root cortex tissues. The IT extends from the infection pocket down through the root hair and into the root cortex, where it passes through PIT and eventually reaches the nascent nodule. As the IT grows, it is colonized by rhizobia that are eventually released into cells within the nodule, where they fix nitrogen. NF can also induce cortical root hairs that appear to originate from PIT and can become infected like normal root hairs. Several genes involved in NF signaling and some of the downstream transcription factors required for infection have been characterized. More recently, several genes with direct roles in infection have been identified, some with roles in actin rearrangement and others with possible roles in protein turnover and secretion. This article provides an overview of the infection process, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.
Collapse
|
25
|
Delis C, Krokida A, Georgiou S, Peña-Rodríguez LM, Kavroulakis N, Ioannou E, Roussis V, Osbourn AE, Papadopoulou KK. Role of lupeol synthase in Lotus japonicus nodule formation. THE NEW PHYTOLOGIST 2011; 189:335-46. [PMID: 20868395 DOI: 10.1111/j.1469-8137.2010.03463.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Triterpenes are plant secondary metabolites, derived from the cyclization of 2,3-oxidosqualene by oxidosqualene cyclases (OSCs). Here, we investigated the role of lupeol synthase, encoded by OSC3, and its product, lupeol, in developing roots and nodules of the model legume Lotus japonicus. • The expression patterns of OSC3 in different developmental stages of uninfected roots and in roots infected with Mesorhizobium loti were determined. The tissue specificity of OSC3 expression was analysed by in situ hybridization. Functional analysis, in which transgenic L. japonicus roots silenced for OSC3 were generated, was performed. The absence of lupeol in the silenced plant lines was determined by GC-MS. • The expression of ENOD40, a marker gene for nodule primordia initiation, was increased significantly in the OSC3-silenced plant lines, suggesting that lupeol influences nodule formation. Silenced plants also showed a more rapid nodulation phenotype, consistent with this. Exogenous application of lupeol to M. loti-infected wild-type plants provided further evidence for a negative regulatory effect of lupeol on the expression of ENOD40. • The synthesis of lupeol in L. japonicus roots and nodules can be solely attributed to OSC3. Taken together, our data suggest a role for lupeol biosynthesis in nodule formation through the regulation of ENOD40 gene expression.
Collapse
Affiliation(s)
- Costas Delis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:169-80. [PMID: 21223383 DOI: 10.1111/j.1365-313x.2010.04411.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitrogen-fixing symbiosis between legumes and rhizobia is initiated by the recognition of rhizobial Nod factors (NFs) by host plants. NFs are diversely modified derivatives of chitin oligosaccharide, a fungal elicitor that induces defense responses in plants. Recent evidence has shown that both NFs and chitin elicitors are recognized by structurally related LysM receptor kinases. Transcriptome analyses of Lotus japonicus roots indicated that NFs not only activate symbiosis genes but also transiently activate defense-related genes through NF receptors. Conversely, chitin oligosaccharides were able to activate symbiosis genes independently of NF receptors. Analyses using chimeric genes consisting of the LysM receptor domain of a Lotus japonicus NF receptor, NFR1, and the kinase domain of an Arabidopsis chitin receptor, CERK1, demonstrated that substitution of a portion of the αEF helix in CERK1 with the amino acid sequence YAQ from the corresponding region of NFR1 enables L. japonicus nfr1 mutants to establish symbiosis with Mesorhizobium loti. We also showed that the kinase domains of two Lotus japonicus LysM receptor kinases, Lys6 and Lys7, which also possess the YAQ sequence, suppress the symbiotic defect of nfr1. These results strongly suggest that, in addition to adaptation of extracellular LysM domains to NFs, limited alterations in the kinase domain of chitin receptors have played a crucial role in shifting the intracellular signaling to symbiosis from defense responses, thus constituting one of the key genetic events in the evolution of root nodule symbiosis in legume plants.
Collapse
Affiliation(s)
- Tomomi Nakagawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayashi T, Banba M, Shimoda Y, Kouchi H, Hayashi M, Imaizumi-Anraku H. A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:141-54. [PMID: 20409002 PMCID: PMC2916219 DOI: 10.1111/j.1365-313x.2010.04228.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 05/17/2023]
Abstract
In legumes, Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is a component of the common symbiosis genes that are required for both root nodule (RN) and arbuscular mycorrhiza (AM) symbioses and is thought to be a decoder of Ca(2+) spiking, one of the earliest cellular responses to microbial signals. A gain-of-function mutation of CCaMK has been shown to induce spontaneous nodulation without rhizobia, but the significance of CCaMK activation in bacterial and/or fungal infection processes is not fully understood. Here we show that a gain-of-function CCaMK(T265D) suppresses loss-of-function mutations of common symbiosis genes required for the generation of Ca(2+) spiking, not only for nodule organogenesis but also for successful infection of rhizobia and AM fungi, demonstrating that the common symbiosis genes upstream of Ca(2+) spiking are required solely to activate CCaMK. In RN symbiosis, however, CCaMK(T265D) induced nodule organogenesis, but not rhizobial infection, on Nod factor receptor (NFRs) mutants. We propose a model of symbiotic signaling in host legume plants, in which CCaMK plays a key role in the coordinated induction of infection thread formation and nodule organogenesis.
Collapse
Affiliation(s)
| | | | - Yoshikazu Shimoda
- National Institute of Agrobiological SciencesTsukuba, Ibaraki 305–8602, Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological SciencesTsukuba, Ibaraki 305–8602, Japan
| | - Makoto Hayashi
- National Institute of Agrobiological SciencesTsukuba, Ibaraki 305–8602, Japan
| | | |
Collapse
|
28
|
Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. THE PLANT CELL 2010; 22:2509-26. [PMID: 20675572 PMCID: PMC2929109 DOI: 10.1105/tpc.109.069807] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 05/07/2023]
Abstract
Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant's common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK.
Collapse
Affiliation(s)
- Martin Groth
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Naoya Takeda
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Jillian Perry
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Hisaki Uchida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Stephan Dräxl
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Andreas Brachmann
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masayoshi Kawaguchi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Trevor L. Wang
- Department of Metabolic Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Martin Parniske
- Biocenter University of Munich (LMU), Genetics, 82152 Martinsried, Germany
| |
Collapse
|
29
|
Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:223-34. [PMID: 20064065 DOI: 10.1094/mpmi-23-2-0223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KWJT, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW. Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1546-54. [PMID: 19888820 DOI: 10.1094/mpmi-22-12-1546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rhizobial Nod factors induce plant responses and facilitate bacterial infection, leading to the development of nitrogen-fixing root nodules on host legumes. Nodule initiation is highly dependent on Nod-factor structure and, hence, on at least some of the nodulation genes that encode Nod-factor production. Here, we report the effects of mutations in Mesorhizobium loti R7A nodulation genes on nodulation of four Lotus spp. and on Nod-factor structure. Most mutants, including a DeltanodSDeltanolO double mutant that produced Nod factors lacking the carbamoyl and possibly N-methyl groups on the nonreducing terminal residue, were unaffected for nodulation. R7ADeltanodZ and R7ADeltanolL mutants that produced Nod factors without the (acetyl)fucose on the reducing terminal residue had a host-specific phenotype, forming mainly uninfected nodule primordia on Lotus filicaulis and L. corniculatus and effective nodules with a delay on L. japonicus. The mutants also showed significantly reduced infection thread formation and Nin gene induction. In planta complementation experiments further suggested that the acetylfucose was important for balanced signaling in response to Nod factor by the L. japonicus NFR1/NFR5 receptors. Overall the results reveal differences in the sensitivity of plant perception with respect to signaling leading to root hair deformation and nodule primordium development versus infection thread formation and rhizobial entry.
Collapse
Affiliation(s)
- Patsarin Rodpothong
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Combier JP, Küster H, Journet EP, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1118-27. [PMID: 18616408 DOI: 10.1094/mpmi-21-8-1118] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
Collapse
Affiliation(s)
- Jean-Philippe Combier
- Laboratoire des Interactions Plantes Micro-organismes, UMR CNRS-INRA 2594/441, F-31320 Castanet Tolosan, France
| | | | | | | | | | | |
Collapse
|
32
|
Kawaharada Y, Eda S, Minamisawa K, Mitsui H. A Mesorhizobium loti mutant with reduced glucan content shows defective invasion of its host plant Lotus japonicus. MICROBIOLOGY-SGM 2008; 153:3983-3993. [PMID: 18048913 DOI: 10.1099/mic.0.2007/008631-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Random transposon mutagenesis led to the isolation of a novel Mesorhizobium loti mutant that is defective in nitrogen fixation during symbiosis with Lotus japonicus. The mutated locus, designated cep, encodes a putative cell-envelope protein displaying no significant sequence similarity to proteins with known functions. This mutant elicits the formation of nodule-like bumps and root-hair curling, but not the elongation of infection threads, on L. japonicus roots. This is reminiscent of the phenotypes of rhizobial mutants impaired in cyclic beta-glucan biosynthesis. The cep mutant exhibits partially reduced content of cell-associated glucans and intermediate deficiency of motility under hypo-osmotic conditions as compared to a glucan-deficient mutant. Second-site pseudorevertants of the cep mutant were isolated by selecting for restoration of symbiotic nitrogen fixation. A subset of pseudorevertants restored both symbiotic capability and glucan content to levels comparable to that of the wild-type. These results suggest that the Cep product acts on a successful symbiosis by affecting cell-associated glucan content.
Collapse
Affiliation(s)
- Yasuyuki Kawaharada
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
33
|
Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. PLANT PHYSIOLOGY 2007; 144:2000-8. [PMID: 17556512 PMCID: PMC1949875 DOI: 10.1104/pp.107.096727] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 06/01/2007] [Indexed: 05/15/2023]
Abstract
Legume plants have an ability to fix atmospheric nitrogen into nutrients via symbiosis with soil microbes. As the initial event of the symbiosis, legume plants secrete flavonoids into the rhizosphere to attract rhizobia. Secretion of flavonoids is indispensable for the establishment of symbiotic nitrogen fixation, but almost nothing is known about the membrane transport mechanism of flavonoid secretion from legume root cells. In this study, we performed biochemical analyses to characterize the transport mechanism of flavonoid secretion using soybean (Glycine max) in which genistein is a signal flavonoid. Plasma membrane vesicles prepared from soybean roots showed clear transport activity of genistein in an ATP-dependent manner. This transport activity was inhibited by sodium orthovanadate, a typical inhibitor of ATP-binding cassette (ABC) transporters, but was hardly affected by various ionophores, such as gramicidin D, nigericin, or valinomycin, suggesting involvement of an ABC transporter in the secretion of flavonoids from soybean roots. The K(m) and V(max) values of this transport were calculated to be 158 mum and 322 pmol mg protein(-1) min(-1), respectively. Competition experiments using various flavonoids of both aglycone and glucoside varieties suggested that this ABC-type transporter recognizes genistein and daidzein, another signaling compound in soybean root exudates, as well as other isoflavonoid aglycones as its substrates. Transport activity was constitutive regardless of the availability of nitrogen nutrition. This is, to our knowledge, the first biochemical characterization of the membrane transport of flavonoid secretion from roots.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | |
Collapse
|
34
|
Barbulova A, Rogato A, D'Apuzzo E, Omrane S, Chiurazzi M. Differential effects of combined N sources on early steps of the Nod factor-dependent transduction pathway in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:994-1003. [PMID: 17722702 DOI: 10.1094/mpmi-20-8-0994] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of nitrogen-fixing nodules in legumes is induced by perception of lipochitin-oligosaccharide signals secreted by a bacterial symbiont. Nitrogen (N) starvation is a prerequisite for the formation, development, and function of root nodules, and high levels of combined N in the form of nitrate or ammonium can completely abolish nodule formation. We distinguished between nitrate and ammonium inhibitory effects by identifying when and where these combined N sources interfere with the Nod-factor-induced pathway. Furthermore, we present a small-scale analysis of the expression profile, under different N conditions, of recently identified genes involved in the Nod-factor-induced pathway. In the presence of high levels of nitrate or ammonium, the NIN gene fails to be induced 24 h after the addition of Nod factor compared with plants grown under N-free conditions. This induction is restored in the hypernodulating nitrate-tolerant har1-3 mutant only in the presence of 10 and 20 mM KNO3. These results were confirmed in Lotus plants inoculated with Mesorhizobium loti. NIN plays a key role in the nodule organogenesis program and its downregulation may represent a crucial event in the nitrate-dependent pathway leading to the inhibition of nodule organogenesis.
Collapse
Affiliation(s)
- Ani Barbulova
- Institute of Genetics and Biophysics A, Buzzati Traverso, Via P. Castellino 111, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
35
|
Hubber AM, Sullivan JT, Ronson CW. Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:255-61. [PMID: 17378428 DOI: 10.1094/mpmi-20-3-0255] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Mesorhizobium loti R7A symbiosis island contains genes encoding a VirB/D4 type IV secretion system (T4SS) similar to that of Agrobacterium tumefaciens. This system has host-dependent effects on symbiosis that probably are due to translocation of two effector proteins, Msi059 and Msi061, into host cells. Here we report that, as in A. tumefaciens, the M. loti vir genes are transcriptionally regulated by a VirA/VirG two-component regulatory system. A virGN54D mutant gene of M. loti caused constitutive expression of lacZ reporter gene fusions to virB1, virD4, msi059, and msi061. Expression of these gene fusions also was activated by a NodD gene product from Rhizobium leguminosarum in the presence of the inducer naringenin, as was a virA::lacZ fusion. This activation was dependent on a nod box present 851 bp upstream of virA, and a mutant with the nod box deleted formed effective nodules on Leucaena leucocephala, the same symbiotic phenotype as other M. loti vir mutants. In contrast, the wild-type strain formed small, empty nodules whereas a nodD1 mutant was completely Nod-. These results indicate that the M. loti vir genes are induced in a symbiosis-specific manner that involves a two-tiered regulatory cascade, and that the vir effectors act after Nod factor during infection thread formation.
Collapse
Affiliation(s)
- Andree M Hubber
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
36
|
Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S, Yazaki K. Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 2006; 13:205-28. [PMID: 17164256 DOI: 10.1093/dnares/dsl013] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATP-binding cassette (ABC) proteins constitute a large family in plants with more than 120 members each in Arabidopsis and rice, and have various functions including the transport of auxin and alkaloid, as well as the regulation of stomata movement. In this report, we carried out genome-wide analysis of ABC protein genes in a model legume plant, Lotus japonicus. For analysis of the Lotus genome sequence, we devised a new method 'domain-based clustering analysis', where domain structures like the nucleotide-binding domain (NBD) and transmembrane domain (TMD), instead of full-length amino acid sequences, are used to compare phylogenetically each other. This method enabled us to characterize fragments of ABC proteins, which frequently appear in a draft sequence of the Lotus genome. We identified 91 putative ABC proteins in L. japonicus, i.e. 43 'full-size', 40 'half-size' and 18 'soluble' putative ABC proteins. The characteristic feature of the composition is that Lotus has extraordinarily many paralogs similar to AtMRP14 and AtPDR12, which are at least six and five members, respectively. Expression analysis of the latter genes performed with real-time quantitative reverse transcription-PCR revealed their putative involvement in the nodulation process.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 2006; 315:104-7. [PMID: 17110537 DOI: 10.1126/science.1132397] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Legume root nodules originate from differentiated cortical cells that reenter the cell cycle and form organ primordia. We show that perception of the phytohormone cytokinin is a key element in this switch. Mutation of a Lotus japonicus cytokinin receptor gene leads to spontaneous development of root nodules in the absence of rhizobia or rhizobial signal molecules. The mutant histidine kinase receptor has cytokinin-independent activity and activates an Escherichia coli two-component phosphorelay system in vivo. Mutant analysis shows that cytokinin signaling is required for cell divisions that initiate nodule development and defines an autoregulated process where cytokinin induction of nodule stem cells is controlled by shoots.
Collapse
MESH Headings
- Alleles
- Amino Acid Motifs
- Amino Acid Sequence
- Benzyl Compounds
- Calcium/metabolism
- Cell Division
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Escherichia coli/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Histidine Kinase
- Kinetin/pharmacology
- Lipopolysaccharides/metabolism
- Lotus/genetics
- Lotus/metabolism
- Lotus/physiology
- Meristem/cytology
- Molecular Sequence Data
- Mutation
- Nitrogen Fixation
- Plant Roots/cytology
- Plant Roots/metabolism
- Plants, Genetically Modified
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Purines
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/cytology
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/metabolism
- Signal Transduction
- Transformation, Genetic
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. PLANT PHYSIOLOGY 2006; 141:1473-81. [PMID: 16798946 PMCID: PMC1533935 DOI: 10.1104/pp.106.080986] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 05/10/2023]
Abstract
The exogenous addition of salicylic acid (SA) was previously shown to inhibit indeterminate but not determinate-type nodulation. We sought to extend these results by modulating endogenous levels of SA through the transgenic expression of salicylate hydroxylase (NahG) in both stably transformed Lotus japonicus and composite Medicago truncatula plants. NahG expression in L. japonicus resulted in a marked reduction of SA levels. This reduction correlated with an increase in the number of infections and mean nodule number when compared to controls. However, a complicating factor was that NahG-expressing plants had greater root growth. Spot inoculations of NahG-expressing L. japonicus plants confirmed increased nodulation in these plants. Consistent with the reported inhibitory effects of exogenous SA on indeterminate-type nodulation, NahG expression in M. truncatula plants led to enhanced nodulation and infection. These data point to an important role for SA-mediated plant defense pathways in controlling nodule formation on both determinate and indeterminate nodule-forming hosts.
Collapse
Affiliation(s)
- Gary Stacey
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | | | |
Collapse
|
39
|
Kumagai H, Kinoshita E, Ridge RW, Kouchi H. RNAi Knock-Down of ENOD40 s Leads to Significant Suppression of Nodule Formation in Lotus japonicus. ACTA ACUST UNITED AC 2006; 47:1102-11. [PMID: 16816411 DOI: 10.1093/pcp/pcj081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ENOD40 is one of the most intriguing early nodulin genes that is known to be induced very early in response to interaction of legume plants with symbiotic Rhizobium bacteria, but its function in the nodulation process is still not known. Lotus japonicus has two ENOD40 genes: LjENOD40-1 is abundantly induced in very early stages of bacterial infection or Nod factor application, whereas LjENOD40-2 is abundantly expressed only in mature nodules. We generated transgenic lines of L. japonicus with an RNAi (RNA interference) construct that expresses hairpin double-stranded RNA for LjENOD40-1 to induce sequence-specific RNA silencing. In the transgenic plants, expression of both LjENOD40-1 and -2 was significantly reduced, and no accumulation of ENOD40 transcripts was detected upon Mesorhizobium loti inoculation. The transgenic plants exhibited very poor nodulation (only 0-2 nodules per plant) and could not grow well without additional nitrogen supply. Analysis of segregation in the T(2) progeny indicated that the suppression of nodulation is perfectly linked with the presence of the transgene. Microscopic observation of the infection process using lacZ-labeled M. loti, together with expression analysis of infection-related nodulin genes, demonstrated that ENOD40 knock-down did not inhibit the initiation of the bacterial infection process. In contrast, nodule primordium initiation and subsequent nodule development were significantly suppressed in the transgenic plants. These results clearly indicate that ENOD40 is required for nodule initiation and subsequent organogenesis, but is not involved in early infection events.
Collapse
Affiliation(s)
- Hirotaka Kumagai
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | |
Collapse
|
40
|
Tirichine L, James EK, Sandal N, Stougaard J. Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:373-82. [PMID: 16610740 DOI: 10.1094/mpmi-19-0373] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 C Aarhus, Denmark
| | | | | | | |
Collapse
|
41
|
Takeda N, Okamoto S, Hayashi M, Murooka Y. Expression of LjENOD40 genes in response to symbiotic and non-symbiotic signals: LjENOD40-1 and LjENOD40-2 are differentially regulated in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2005; 46:1291-8. [PMID: 15937327 DOI: 10.1093/pcp/pci138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrogen fixation in nodules provides leguminous plants with an ability to grow in nitrogen-starved soil. Infection of the host plants by microsymbionts triggers various physiological and morphological changes during nodule formation. In Lotus japonicus, expression of early nodulin (ENOD) genes is triggered by perception of bacterial signal molecules, nodulation factors (Nod factors). We examined the expression patterns of ENOD40 genes during the nodule formation process. Two ENOD40 genes of L. japonicus were specifically expressed in the nodule formation process, but they showed different expression patterns upon infection. Each ENOD40 gene demonstrates an individual specificity and regulation with regard to rhizobial infection.
Collapse
Affiliation(s)
- Naoya Takeda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | | | | | | |
Collapse
|
42
|
Shibata S, Mitsui H, Kouchi H. Acetylation of a fucosyl residue at the reducing end of Mesorhizobium loti nod factors is not essential for nodulation of Lotus japonicus. PLANT & CELL PHYSIOLOGY 2005; 46:1016-1020. [PMID: 15805124 DOI: 10.1093/pcp/pci099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NodMl-V(C(18:1), Me, Cb, AcFuc) is a major component of lipo-chitin oligosaccharides (LCOs), or Nod factors, produced by Mesorhizobium loti. The presence of a 4-O-acetylated fucosyl residue (AcFuc) at the reducing end has been thought to be essential for symbiotic interactions with the compatible host plant, Lotus japonicus. We generated an M. loti mutant in which the nolL gene is disrupted; nolL has been shown to encode acetyltransferase that is responsible for acetylation of the fucosyl residue. The nolL disruptant Ml107 produced LCOs that lacked acetylation of fucosyl residues as expected, but exhibited nodulation performance on L. japonicus as efficiently as the wild-type M. loti strain MAFF303099. We show that LCOs without acetylation of a fucosyl residue purified from Ml107 are also able to induce abundant root hair deformation and nodule primordium formation. These results indicate that NolL-dependent acetylation of a fucosyl residue at the reducing end of M. loti LCOs is not essential for nodulation of L. japonicus.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Plant Physiology, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | |
Collapse
|
43
|
Vassileva VN, Kouchi H, Ridge RW. Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals. THE PLANT CELL 2005; 17:1777-87. [PMID: 15863517 PMCID: PMC1143076 DOI: 10.1105/tpc.105.031641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The incorporation of a fusion of green fluorescent protein and tubulin-alpha 6 from Arabidopsis thaliana in root hairs of Lotus japonicus has allowed us to visualize and quantify the dynamic parameters of the cortical microtubules in living root hairs. Analysis of individual microtubule turnover in real time showed that only plus polymer ends contributed to overall microtubule dynamicity, exhibiting dynamic instability as the main type of microtubule behavior in Lotus root hairs. Comparison of the four standard parameters of in vivo dynamic instability--the growth rate, the disassembly rate, and the frequency of transitions from disassembly to growth (rescue) and from growth to disassembly (catastrophe)--revealed that microtubules in young root hairs were more dynamic than those in mature root hairs. Either inoculation with Mesorhizobium loti or purified M. loti lipochitin oligosaccharide signal molecules (Nod factors) significantly affected the growth rate and transition frequencies in emerging and growing root hairs, making microtubules less dynamic at a specific window after symbiotic inoculation. This response of root hair cells to rhizobial Nod factors is discussed in terms of the possible biological significance of microtubule dynamics in the early signaling events leading to the establishment and progression of the globally important Rhizobium/legume symbiosis.
Collapse
Affiliation(s)
- Valya N Vassileva
- Department of Biology, Division of Natural Sciences, International Christian University, Mitaka-shi, 181-8585 Tokyo, Japan
| | | | | |
Collapse
|
44
|
Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Saeki K, Hayashi M, Kawaguchi M, Izui K, Hata S. Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes. PLANT PHYSIOLOGY 2005; 137:1261-71. [PMID: 15793069 PMCID: PMC1088319 DOI: 10.1104/pp.104.056630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/17/2005] [Accepted: 01/31/2005] [Indexed: 05/18/2023]
Abstract
We isolated a recessive symbiotic mutant of Lotus japonicus that defines a genetic locus, LOT1 (for low nodulation and trichome distortion). The nodule number per plant of the mutant was about one-fifth of that of the wild type. The lot1 mutant showed a moderate dwarf phenotype and distorted trichomes, but its root hairs showed no apparent differences to those of the wild type. Infection thread formation after inoculation of Mesorhizobium loti was repressed in lot1 compared to that in the wild type. The nodule primordia of lot1 did not result in any aborted nodule-like structure, all nodules becoming mature and exhibiting high nitrogen fixation activity. The mutant was normally colonized by mycorrhizal fungi. lot1 also showed higher sensitivity to nitrate than the wild type. The grown-up seedlings of lot1 were insensitive to any ethylene treatments with regard to nodulation, although the mutant showed normal triple response on germination. It is conceivable that a nodulation-specific ethylene signaling pathway is constitutively activated in the mutant. Grafting experiments with lot1 and wild-type seedlings suggested that the root genotype mainly determines the low nodulation phenotype of the mutant, while the trichome distortion is regulated by the shoot genotype. Grafting of har1-4 shoots to lot1 roots resulted in an intermediate nodule number, i.e. more than that of lot1 and less than that of har1-4. Putative double mutants of lot1 and har1 also showed intermediate nodulation. Thus, it was indicated that LOT1 is involved in a distinct signal transduction pathway independent of HAR1.
Collapse
Affiliation(s)
- Yasuhiro Ooki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 2004; 433:527-31. [PMID: 15616514 DOI: 10.1038/nature03237] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/29/2004] [Indexed: 11/09/2022]
Abstract
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.
Collapse
Affiliation(s)
- Haruko Imaizumi-Anraku
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferraioli S, Tatè R, Rogato A, Chiurazzi M, Patriarca EJ. Development of ectopic roots from abortive nodule primordia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1043-50. [PMID: 15497397 DOI: 10.1094/mpmi.2004.17.10.1043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The symbiotic phenotype of five Tn5-induced mutants of Rhizobium etli affected in different anabolic pathways (namely, gluconeogenesis and biosynthesis of lysine, purine, or pyrimidine) was analyzed. These mutants induced, on the root of Phaseolus vulgaris, a normal early sequence of morphogenetics events, including root hair deformation and development of nodule primordia. Later on, however, from the resulting root outgrowths, instead of nodules, one or more ectopic roots (spaced closely related and agravitropic) emerged. Therefore, this group of mutant was collectively called "root inducer" (RIND). It was observed that the RIND-induced infection threads aborted early inside the invaded root hair, and that the resulting abortive nodules lack induction of late nodulin genes. Moreover, experiments performed using a conditional mutant (a methionine-requiring invader) revealed that bacterial invasion plays a key role in the maintenance of the program of nodule development and, in particular, in the differentiation of the most specific symbiotic tissue of globose nodules, the central tissue. These data indicate that, in P. vulgaris, the nodule primordium is a root-specified pro-meristematic tissue.
Collapse
Affiliation(s)
- Simona Ferraioli
- Institute of Genetics and Biophysics A. Buzzati-Traverso, C.N.R., Via G. Marconi 10, 80125 Naples, Italy
| | | | | | | | | |
Collapse
|
47
|
Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K. Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 2004; 186:2439-48. [PMID: 15060047 PMCID: PMC412173 DOI: 10.1128/jb.186.8.2439-2448.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are symbiotic nitrogen-fixing soil bacteria that are associated with host legumes. The establishment of rhizobial symbiosis requires signal exchanges between partners in microaerobic environments that result in mutualism for the two partners. We developed a macroarray for Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, and monitored the transcriptional dynamics of the bacterium during symbiosis, microaerobiosis, and starvation. Global transcriptional profiling demonstrated that the clusters of genes within the symbiosis island (611 kb), a transmissible region distinct from other chromosomal regions, are collectively expressed during symbiosis, whereas genes outside the island are downregulated. This finding implies that the huge symbiosis island functions as clustered expression islands to support symbiotic nitrogen fixation. Interestingly, most transposase genes on the symbiosis island were highly upregulated in bacteroids, as were nif, fix, fdx, and rpoN. The genome region containing the fixNOPQ genes outside the symbiosis island was markedly upregulated as another expression island under both microaerobic and symbiotic conditions. The symbiosis profiling data suggested that there was activation of amino acid metabolism, as well as nif-fix gene expression. In contrast, genes for cell wall synthesis, cell division, DNA replication, and flagella were strongly repressed in differentiated bacteroids. A highly upregulated gene in bacteroids, mlr5932 (encoding 1-aminocyclopropane-1-carboxylate deaminase), was disrupted and was confirmed to be involved in nodulation enhancement, indicating that disruption of highly expressed genes is a useful strategy for exploring novel gene functions in symbiosis.
Collapse
Affiliation(s)
- Toshiki Uchiumi
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:201-62. [PMID: 15066376 DOI: 10.1016/s0074-7696(04)34005-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The N(2)-fixing nodules elicited by rhizobia on legume roots represent a useful model for studying plant development. Nodule formation implies a complex progression of temporally and spatially regulated events of cell differentiation/dedifferentiation involving several root tissues. In this review we describe the morphogenetic events leading to the development of these histologically well-structured organs. These events include (1) root hair deformation, (2) development and growth of infection threads, (3) induction of the nodule primordium, and (4) induction, activity, and persistence of the nodular meristem and/or of foci of meristematic activities. Particular attention is given to specific aspects of the symbiosis, such as the early stages of intracellular invasion and to differentiation of the intracellular form of rhizobia, called symbiosomes. These developmental aspects were correlated with (1) the regulatory signals exchanged, (2) the plant genes expressed in specific cell types, and (3) the staining procedures that allow the recognition of some cell types. When strictly linked with morphogenesis, the nodulation phenotypes of plant and bacterial mutants such as the developmental consequence of the treatment with metabolic inhibitors, metabolic intermediates, or the variation of physical parameters are described. Finally, some aspects of nodule senescence and of regulation of nodulation are discussed.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | |
Collapse
|
49
|
Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 2003; 425:637-40. [PMID: 14534591 DOI: 10.1038/nature02045] [Citation(s) in RCA: 599] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/11/2003] [Indexed: 11/08/2022]
Abstract
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.
Collapse
Affiliation(s)
- Esben Bjørn Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 2003; 425:585-92. [PMID: 14534578 DOI: 10.1038/nature02039] [Citation(s) in RCA: 725] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/11/2003] [Indexed: 11/09/2022]
Abstract
Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.
Collapse
Affiliation(s)
- Simona Radutoiu
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|