1
|
Ren R, Zhou X, Zhang X, Li X, Zhang P, He Y. Genome-wide identification and characterization of thaumatin-like protein family genes in wheat and analysis of their responses to Fusarium head blight infection. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is necessary to determine their function and apply them to plant disease resistance. However, limited information is available about TLP-family genes in wheat, especially regarding their responses to Fusarium species, which cause Fusarium head blight in wheat. In this study, we conducted a comprehensive genome-wide survey of TLP genes in wheat and identified 129 TLP genes in the wheat genome, which were unevenly distributed on 21 wheat chromosomes, with 5A containing the highest number. Phylogenetic analysis showed that these 129 wheat TLP genes together with 24 Arabidopsis TLPs were classified into 7 groups based on the protein sequences. We systematically analyzed the genes in terms of their sequence characterization, chromosomal locations, exon–intron distribution, duplication (tandem and segmental) events and expression profiles in response to Fusarium infection. Furthermore, we analyzed differentially expressed TLP genes based on publicly available RNA-seq data obtained from a resistant near isogenic wheat line at different time points after Fusarium graminearum inoculation. Then, the expression of 9 differentially expressed TLP genes was confirmed by real-time PCR, and these 9 genes were all upregulated in the resistant Sumai 3 variety, which was generally consistent with the RNA-seq data. Our results provide a basis for selecting candidate wheat TLP genes for further studies to determine the biological functions of the TLP genes in wheat.
Graphical Abstract
Collapse
|
2
|
Genome-wide comprehensive characterization and expression analysis of TLP gene family revealed its responses to hormonal and abiotic stresses in watermelon (Citrullus lanatus). Gene X 2022; 844:146818. [PMID: 35985412 DOI: 10.1016/j.gene.2022.146818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.
Collapse
|
3
|
Zhang Y, Miao L, Yang X, Jiang G. Genome-wide characterization and expression of the TLP gene family associated with Colletotrichum gloeosporioides inoculation in Fragaria × ananassa. PeerJ 2022; 10:e12979. [PMID: 35356470 PMCID: PMC8958966 DOI: 10.7717/peerj.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Background Colletotrichum gloeosporioides, a soil-borne fungal pathogen, causes significant yield losses in many plants, including cultivated strawberry (Fragaria × ananassa, 2n = 8x = 56). Thaumatin-like proteins (TLPs) are a large and complex family of proteins that play a vital role in plant host defense and other physiological processes. Methods To enhance our understanding of the antifungal activity of F. × ananassa TLPs (FaTLP), we investigated the genome-wide identification of FaTLP gene families and their expression patterns in F. × ananassa plants upon pathogen infection. Moreover, we used RNA sequencing (RNA-seq) to detect the differences in the expression patterns of TLP genes between different resistant strawberry cultivars in response to C. gloeosporioides infection. Results In total, 76 TLP genes were identified from the octoploid cultivated strawberry genome with a mean length of 1,439 bp. They were distributed on 24 F. × ananassa chromosomes. The FaTLP family was then divided into ten groups (Group I-X) according to the comparative phylogenetic results. Group VIII contained the highest number of TLP family genes. qRT-PCR analysis results indicated that FaTLP40, FaTLP41, FaTLP43, FaTLP68, and FaTLP75 were upregulated following C. gloeosporioides infection in the resistant octoploid strawberry. Conclusions The data showed some differences in TLP gene expression patterns across different resistant strawberry cultivars, as well as faster TLP defense responses to pathogenic fungi in resistant cultivars. This study will aid in the characterization of TLP gene family members found in octoploid strawberries and their potential biological functions in plants' defenses against pathogenic fungi.
Collapse
|
4
|
Arif MAR, Afzal I, Börner A. Genetic Aspects and Molecular Causes of Seed Longevity in Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:598. [PMID: 35270067 PMCID: PMC8912819 DOI: 10.3390/plants11050598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Seed longevity is the most important trait related to the management of gene banks because it governs the regeneration cycle of seeds. Thus, seed longevity is a quantitative trait. Prior to the discovery of molecular markers, classical genetic studies have been performed to identify the genetic determinants of this trait. Post-2000 saw the use of DNA-based molecular markers and modern biotechnological tools, including RNA sequence (RNA-seq) analysis, to understand the genetic factors determining seed longevity. This review summarizes the most important and relevant genetic studies performed in Arabidopsis (24 reports), rice (25 reports), barley (4 reports), wheat (9 reports), maize (8 reports), soybean (10 reports), tobacco (2 reports), lettuce (1 report) and tomato (3 reports), in chronological order, after discussing some classical studies. The major genes identified and their probable roles, where available, are debated in each case. We conclude by providing information about many different collections of various crops available worldwide for advanced research on seed longevity. Finally, the use of new emerging technologies, including RNA-seq, in seed longevity research is emphasized by providing relevant examples.
Collapse
Affiliation(s)
- Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Andreas Börner
- Leibniz-Institute für Pflanzengenetik und Kulturpflanzenforschung (IPK), OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
5
|
Zhang Y, Chen W, Sang X, Wang T, Gong H, Zhao Y, Zhao P, Wang H. Genome-Wide Identification of the Thaumatin-like Protein Family Genes in Gossypium barbadense and Analysis of Their Responses to Verticillium dahliae Infection. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122647. [PMID: 34961118 PMCID: PMC8708996 DOI: 10.3390/plants10122647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
(1) Background: Plants respond to pathogen challenge by activating a defense system involving pathogenesis-related (PR) proteins. The PR-5 family includes thaumatin, thaumatin-like proteins (TLPs), and other related proteins. TLPs play an important role in response to biotic and abiotic stresses. Many TLP-encoding genes have been identified and functionally characterized in the model plant species. (2) Results: We identified a total of 90 TLP genes in the G. barbadense genome. They were phylogenetically classified into 10 subfamilies and distributed across 19 chromosomes and nine scaffolds. The genes were characterized by examining their exon-intron structures, promoter cis-elements, conserved domains, synteny and collinearity, gene family evolution, and gene duplications. Several TLP genes were predicted to be targets of miRNAs. Investigation of expression changes of 21 GbTLPs in a G. barbadense cultivar (Hai7124) resistance to Verticillium dahliae revealed 13 GbTLPs being upregulated in response to V. dahliae infection, suggesting a potential role of these GbTLP genes in disease response. (3) Conclusions: The results of this study allow insight into the GbTLP gene family, identify GbTLP genes responsive to V. dahliae infection, and provide candidate genes for future studies of their roles in disease resistance.
Collapse
Affiliation(s)
- Yilin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Ting Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
| | - Haiyan Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Yunlei Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Pei Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Hongmei Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| |
Collapse
|
6
|
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1946-1961. [PMID: 33247920 PMCID: PMC7921302 DOI: 10.1093/jxb/eraa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Over the last two decades, extensive studies have been performed at the molecular level to understand the evolution of carnivorous plants. As fruits, the repertoire of protein components in the digestive fluids of several carnivorous plants have gradually become clear. However, the quantitative aspects of these proteins and the expression mechanisms of the genes that encode them are still poorly understood. In this study, using the Australian sundew Drosera adelae, we identified and quantified the digestive fluid proteins. We examined the expression and methylation status of the genes corresponding to major hydrolytic enzymes in various organs; these included thaumatin-like protein, S-like RNase, cysteine protease, class I chitinase, β-1, 3-glucanase, and hevein-like protein. The genes encoding these proteins were exclusively expressed in the glandular tentacles. Furthermore, the promoters of the β-1, 3-glucanase and cysteine protease genes were demethylated only in the glandular tentacles, similar to the previously reported case of the S-like RNase gene da-I. This phenomenon correlated with high expression of the DNA demethylase DEMETER in the glandular tentacles, strongly suggesting that it performs glandular tentacle-specific demethylation of the genes. The current study strengthens and generalizes the relevance of epigenetics to trap organ-specific gene expression in D. adelae. We also suggest similarities between the trap organs of carnivorous plants and the roots of non-carnivorous plants.
Collapse
Affiliation(s)
- Naoki Arai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ohno
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Jumyo
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Hamaji
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|
7
|
SAEIDI M, ZAREIE R. Prediction, isolation, overexpression and antifungal activity analysis of Medicago truncatula var. truncatula putative thaumatin like proteins (TLP-1, -2, -3, -4 and -5). Turk J Biol 2020; 44:176-187. [PMID: 32922125 PMCID: PMC7478138 DOI: 10.3906/biy-1912-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pathogenesis-related proteins (PR-proteins) are induced in response to environmental stresses such as osmotic and drought stress, wounding, microbial infections and treatment with specific plant hormones and elicitors. These proteins are classified into several groups (PR-1 through PR-17) based on their amino acid sequence and biochemical functions. The present study focuses on prediction, isolation, over-expression and analysis of the antifungal activities of the thaumatin-like proteins (i.e. PR-5) in the model legume M. truncatula var. truncatula. Analysis of M. truncatula genome sequence, available freely on the NCBI website, indicated the presence of at least 15 PR-5 Open Reading Frames (ORFs), 5 of them (dubbed TLP-1, -2, -3, -4 and -5) were selected for this study. Using gene-specific primers, the genomic coding sequences were isolated, sequenced and all confirmed to match with those reported in the database. All the fragments were, then, cloned in Escherichia coli isolate BL21 (DE3), using pET-21c(+) plasmids for subsequent overexpression (overexpression). All 5 genes were expressed as inclusion bodies (IBs) with masses, estimated by SDS PAGE, corresponding to the theoretical values. As expected, none of the protein IBs had no detectable effect on the phytopathogenic fungi Rhizoctonia solani, Alternaria alternata, Fusarium graminearum, Fusarium solani, Verticillium sp. and Phytophtora spp. However, when the in vitro refolded IB preparations were applied, all displayed comparable strong antifungal activities against the tested fungi. The current study is the first report of overexpression and evaluation of antifungal activities of PR-5 family of proteins from M. truncatula Var. truncatula, and provides experimental evidence that all investigated proteins have the potential for enhancing resistance against some important fungal pathogens.
Collapse
Affiliation(s)
- Maryam SAEIDI
- Department of Biotechnology, Faculty of Agriculture, Isfahan University of Technology, IsfahanIran
| | - Reza ZAREIE
- Department of Biotechnology, Faculty of Agriculture, Isfahan University of Technology, IsfahanIran
| |
Collapse
|
8
|
Liu Y, Cui J, Zhou X, Luan Y, Luan F. Genome-wide identification, characterization and expression analysis of the TLP gene family in melon (Cucumis melo L.). Genomics 2020; 112:2499-2509. [PMID: 32044327 DOI: 10.1016/j.ygeno.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Thaumatin-like proteins (TLPs), which belong to pathogenesis-related (PR) protein family 5 (PR5), are involved in plant host defense and various developmental processes. The functions of the TLP family have been extensively discussed in multiple organisms, whereas the detailed information of this family in melon has not been reported yet. In this study, we identified 28 TLP genes in the melon genome and a N-terminal signal peptide was found highly conserved within each member of this family. Phylogeny analysis indicated that TLPs from melon and other plant species were clustered into ten groups. Twelve segmental and seven tandem duplication gene pairs that underwent purifying selection were identified. TLP genes expressed differentially in different tissues/organs, and were significantly induced after Podosphaera xanthii infection. TLPs in breeding line MR-1 tend to express early after pathogen infection compared with cultivar Top Mark. Our study provides a comprehensive understanding of the melon TLP family and demonstrates their potential roles in disease resistance, therefore provides more reference for further research.
Collapse
Affiliation(s)
- Yarong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China
| | - Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116033, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Tyagi A, Pankaj V, Singh S, Roy S, Semwal M, Shasany AK, Sharma A. PlantAFP: a curated database of plant-origin antifungal peptides. Amino Acids 2019; 51:1561-1568. [PMID: 31612325 DOI: 10.1007/s00726-019-02792-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
Emerging infectious diseases (EIDs) are a severe problem caused by fungi in human and plant species across the world. They pose a worldwide threat to food security as well as human health. Fungal infections are increasing now day by day worldwide, and the current antimycotic drugs are not effective due to the emergence of resistant strains. Therefore, it is an urgent need for the finding of new plant-origin antifungal peptides (PhytoAFPs). Huge numbers of peptides were extracted from different plant species which play a protective role against fungal infection. Hundreds of plant-origin peptides with antifungal activity have already been reported. So there is a requirement of a dedicated platform which systematically catalogs plant-origin peptides along with their antifungal properties. PlantAFP database is a resource of experimentally verified plant-origin antifungal peptides, collected from research articles, patents, and public databases. The current release of PlantAFP database contains 2585 peptide entries among which 510 are unique peptides. Each entry provides comprehensive information of a peptide that includes its peptide sequence, peptide name, peptide class, length of the peptide, molecular mass, antifungal activity, and origin of peptides. Besides this primary information, PlantAFP stores peptide sequences in SMILES format. In order to facilitate the user, many tools have been integrated into this database that includes BLAST search, peptide search, SMILES search, and peptide-mapping is also included in the database. PlantAFP database is accessible at http://bioinformatics.cimap.res.in/sharma/PlantAFP/.
Collapse
Affiliation(s)
- Atul Tyagi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India.
| | - Vaishali Pankaj
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226010, India
| | - Sanjay Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and communication, Brno University of Technology-Techicka-10, 61600, Brno, Czech Republic
| | - Manoj Semwal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O.-CIMAP, Lucknow, Uttar Pradesh, 226 015, India.
| |
Collapse
|
10
|
Hou C, Saunders RMK, Deng N, Wan T, Su Y. Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation. Genes (Basel) 2019; 10:E800. [PMID: 31614866 PMCID: PMC6826882 DOI: 10.3390/genes10100800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollination syndromes. This study compared the proteome in the pollination drops of these two species using label-free quantitative techniques. The transcriptomes of fertile reproductive units (FRUs) and sterile reproductive units (SRUs) for each species were furthermore compared using Illumina Hiseq sequencing, and integrated proteomic and transcriptomic analyses were subsequently performed. Our results show that the differentially expressed proteins between FRUs and SRUs were involved in carbohydrate metabolism, the biosynthesis of amino acids and ovule defense. In addition, the differentially expressed genes between the FRUs and SRUs (e.g., MADS-box genes) were engaged in reproductive development and the formation of pollination drops. The integrated protein-transcript analyses revealed that FRUs and their exudates were relatively conservative while the SRUs and their exudates were more diverse, probably functioning as pollinator attractants. The evolution of reproductive organs appears to be synchronized with changes in the pollination drop proteome of Gnetum, suggesting that insect-pollinated adaptations are not restricted to angiosperms but also occur in gymnosperms.
Collapse
Affiliation(s)
- Chen Hou
- School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China.
| | - Richard M K Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Nan Deng
- Institute of Ecology, Hunan Academy of Forestry, Shaoshannan Road, No. 6581, Changsha 410004, China.
- Hunan Cili Forest Ecosystem State Research Station, Cili 427200, China.
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Liantangxianhu Road, No. 160, Shenzhen 518004, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Science, Moshan, Wuhan 430074, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Xingangxi Road No. 135, Guangzhou 510275, China.
| |
Collapse
|
11
|
Prior N, Little SA, Boyes I, Griffith P, Husby C, Pirone-Davies C, Stevenson DW, Tomlinson PB, von Aderkas P. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. PLANT REPRODUCTION 2019; 32:153-166. [PMID: 30430247 PMCID: PMC6500509 DOI: 10.1007/s00497-018-0348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Complex protein-containing reproductive secretions are a conserved trait amongst all extant gymnosperms; the pollination drops of most groups include carbohydrate-modifying enzymes and defence proteins. Pollination drops are aqueous secretions that receive pollen and transport it to the ovule interior in gymnosperms (Coniferales, Cycadales, Ginkgoales, Gnetales). Proteins are well established as components of pollination drops in conifers (Coniferales) and Ephedra spp. (Gnetales), but it is unknown whether proteins are also present in the pollination drops of cycads (Cycadales), Ginkgo (Ginkgoales), Gnetum (Gnetales), or in the pollination drops produced by sterile ovules occurring on pollen plants in the Gnetales. We used liquid chromatography-tandem mass spectrometry followed by database-derived protein identification to conduct proteomic surveys of pollination drops collected from: Ceratozamia hildae, Zamia furfuracea and Cycas rumphii (Cycadales); Ginkgo biloba (Ginkgoales); Gnetum gnemon and Welwitschia mirabilis, including pollination drops from both microsporangiate and ovulate plants (Gnetales). We identified proteins in all samples: C. hildae (61), Z. furfuracea (40), C. rumphii (9), G. biloba (57), G. gnemon ovulate (17) and sterile ovules from microsporangiate plants (25) and W. mirabilis fertile ovules (1) and sterile ovules from microsporangiate plants (138). Proteins involved in defence and carbohydrate modification occurred in the drops of most groups, indicating conserved functions for proteins in pollination drops. Our study demonstrates that all extant gymnosperm groups produce complex reproductive secretions containing proteins, an ancient trait that likely contributed to the evolutionary success of seed plants.
Collapse
Affiliation(s)
- Natalie Prior
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Stefan A Little
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Ian Boyes
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Patrick Griffith
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Chad Husby
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Cary Pirone-Davies
- The Arnold Arboretum of Harvard University, 125 Arborway, Boston, MA, USA
| | | | - P Barry Tomlinson
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada.
| |
Collapse
|
12
|
Odeny Ojola P, Nyaboga EN, Njiru PN, Orinda G. Overexpression of rice thaumatin-like protein ( Ostlp) gene in transgenic cassava results in enhanced tolerance to Colletotrichum gloeosporioides f. sp. manihotis. J Genet Eng Biotechnol 2018; 16:125-131. [PMID: 30647714 DOI: 10.1016/j.jgeb.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/16/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Cassava (Manihot esculenta Crantz) is the most important staple food for more than 300 million people in Africa, and anthracnose disease caused by Colletotrichum gloeosporioides f. sp. manihotis is the most destructive fungal disease affecting cassava production in sub-Saharan Africa. The main objective of this study was to improve anthracnose resistance in cassava through genetic engineering. Transgenic cassava plants harbouring rice thaumatin-like protein (Ostlp) gene, driven by the constitutive CaMV35S promoter, were generated using Agrobacterium-mediated transformation of friable embryogenic calli (FEC) of cultivar TMS 60444. Molecular analysis confirmed the presence, integration, copy number of the transgene all the independent transgenic events. Semi-quantitative RT-PCR confirmed high expression levels of Ostlp in six transgenic lines tested. The antifungal activity of the transgene against Colletotrichum gloeosporioides pathogen was evaluated using the leaves and stem cuttings bioassay. The results demonstrated significantly delayed disease development and reduced size of necrotic lesions in leaves and stem cuttings of all transgenic lines compared to the leaves and stem cuttingss of non-transgenic control plants. Therefore, constitutive overexpression of rice thaumatin-like protein in transgenic cassava confers enhanced tolerance to the fungal pathogen C. gloeosporioides f. sp. manihotis. These results can therefore serve as an initial step towards genetic engineering of farmer-preffered cassava cultivars for resistance to anthracnose disease.
Collapse
Affiliation(s)
- Patroba Odeny Ojola
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Evans N Nyaboga
- Department of Biochemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Paul N Njiru
- Department of Agriculture and Resource Management, University of Embu, P.O. Box 6 - 60100, Embu, Kenya
| | - George Orinda
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
13
|
Al-Taweel K, Fernando WGD, Brûlé-Babel AL. Transcriptome profiling of wheat differentially expressed genes exposed to different chemotypes of Fusarium graminearum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1703-1718. [PMID: 24893796 DOI: 10.1007/s00122-014-2333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
The study is an overview of the behavior of the wheat transcriptome to the Fusarium graminearum fungus using two different chemotypes. The transcriptome profiles of seven putative differentially expressed defense-related genes were identified by SSH and further examined using qPCR. Fusarium head blight (FHB) of wheat (Triticum aestivum L.), caused by several species of the fungus fusarium, is important in all wheat growing regions worldwide. The most dominant species in Canada is Fusarium graminearum (Fg). F. graminearum isolates producing mycotoxins such as 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON). The objective of this study was to investigate the effect of the different chemotypes of Fg on the transcriptome pattern of expressed wheat genes. A cDNA library was constructed from infected "Sumai 3" spikes harvested at different times after inoculation with a macroconidia suspension. Employing suppression subtractive hybridization (SSH), the subtracted cDNA library was differentially screened by dot-blot hybridization. Thirty-one clones were identified; one was isolated and characterized, and transcriptome profiling of seven up-regulated putative defense-related genes was performed using quantitative real-time reverse-transcriptase PCR. These genes may be involved in the wheat-pathogen interactions revealing transcript accumulation differences between the non-diseased, 3ADON-, and 15ADON-infected plants. Additionally, significant differences in gene expression were observed between 3ADON- and 15ADON-infected plants which highlight the significance of a particular chemotype in FHB disease.
Collapse
Affiliation(s)
- Khaled Al-Taweel
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada,
| | | | | |
Collapse
|
14
|
Gorjanović S. A Review: Biological and Technological Functions of Barley Seed Pathogenesis-Related Proteins (PRs). JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00389.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Gorjanović S, Beljanski MV, Gavrović-Jankulović M, Gojgić-Cvijović G, Pavlović MD, Bejosano F. Antimicrobial Activity of Malting Barley Grain Thaumatin-Like Protein Isoforms, S and R. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00277.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
|
17
|
Pathogenic metabolites in barley caryopses and their effect on quality of malting barley and malt. KVASNY PRUMYSL 2011. [DOI: 10.18832/kp2011021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Identification of substances originating from pathogen - caryopsis interaction and their effect on malt quality.. KVASNY PRUMYSL 2011. [DOI: 10.18832/kp2011001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Liu JJ, Sturrock R, Ekramoddoullah AKM. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. PLANT CELL REPORTS 2010; 29:419-36. [PMID: 20204373 DOI: 10.1007/s00299-010-0826-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 05/18/2023]
Abstract
Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defence and a wide range of developmental processes in fungi, plants, and animals. Despite their dramatic diversification in organisms, TLPs appear to have originated in early eukaryotes and share a well-defined TLP domain. Nonetheless, determination of the roles of individual members of the TLP superfamily remains largely undone. This review summarizes recent advances made in elucidating the varied TLP activities related to host resistance to pathogens and other physiological processes. Also discussed is the current state of knowledge on the origins and types of TLPs, regulation of gene expression, and potential biotechnological applications for TLPs.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada.
| | | | | |
Collapse
|
20
|
Munis MFH, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 2010; 393:38-44. [PMID: 20097164 DOI: 10.1016/j.bbrc.2010.01.069] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/16/2010] [Indexed: 11/28/2022]
Abstract
For the first time, a sea-island cotton (Gossypium barbadense L.) thaumatin-like protein gene (GbTLP1) with a potential role in secondary cell wall development has been overexpressed in tobacco to elucidate its function. The presence of the transgene was verified by Southern blotting and higher expression levels of GbTLP1 in transgenic tobacco plants were revealed by reverse-transcription and quantitative real-time polymerase chain reaction analyses. Transgenic plants with constitutively higher expression of the GbTLP1 showed enhanced resistance against different stress agents, particularly, its performance against Verticillium dahliae was exceptional. Transgenic tobacco plants also exhibited considerable resistance against Fusarium oxysporum and some abiotic stresses including salinity and drought. In this experiment, transgenic plants without GbTLP1 expression were also used as controls, which behaved similar to non-transgenic control plants. Overexpression of GbTLP1 had no significant deleterious effect on plant growth except that flowering was delayed for 3-5 weeks. The apparent pleiotropic effect of this novel gene has given us insight to the plant defense mechanism.
Collapse
Affiliation(s)
- M Farooq Hussain Munis
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu JJ, Zamani A, Ekramoddoullah AKM. Expression profiling of a complex thaumatin-like protein family in western white pine. PLANTA 2010; 231:637-51. [PMID: 19997927 DOI: 10.1007/s00425-009-1068-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/09/2009] [Indexed: 05/05/2023]
Abstract
The protein content in the plant apoplast is believed to change dramatically as a result of host defense response upon infection with various pathogens. In this study, six novel thaumatin-like proteins (TLPs) were identified in western white pine (Pinus monticola) needle apoplast by a proteomic strategy using two-dimensional protein electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Sequent cDNA cloning found that ten P. monticola TLP genes (PmTLP-L1 to -L6 and -S1 to -S4) were expressed in various tissues. Phylogenetic analysis demonstrated that these PmTLP genes belong to a large, complex, and highly diverse plant TLP family. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) using gene-specific primer pairs showed that each PmTLP gene exhibited a characteristic pattern of mRNA expression based on their unique organ distribution, seasonal regulation, and response to abiotic and biotic stresses. A time-course analysis at the early stages of infection by white pine blister rust pathogen Cronartium ribicola revealed that a coordinated upregulation of multiple PmTLP genes was involved in P. monticola major gene (Cr2) resistance. The structural and expressional differentiations suggest that the PmTLP family may contribute to host defense as well as other mechanism.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.
| | | | | |
Collapse
|
22
|
Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class II chitinase CHT11. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
De Lucca AJ, Cleveland TE, Wedge DE. Plant-derived antifungal proteins and peptides. Can J Microbiol 2005; 51:1001-14. [PMID: 16462858 DOI: 10.1139/w05-063] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plants produce potent constitutive and induced antifungal compounds to complement the structural barriers to microbial infection. Approximately 250 000 – 500 000 plant species exist, but only a few of these have been investigated for antimicrobial activity. Nevertheless, a wide spectrum of compound classes have been purified and found to have antifungal properties. The commercial potential of effective plant-produced antifungal compounds remains largely unexplored. This review article presents examples of these compounds and discusses their properties.Key words: antifungal, peptides, phytopathogenic, plants, proteins.
Collapse
Affiliation(s)
- A J De Lucca
- Southern Regional Research Center, USDA, New Orleans, LA 70124, USA.
| | | | | |
Collapse
|
24
|
Chu KT, Xia L, Ng TB. Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 2005; 26:2098-103. [PMID: 15941607 DOI: 10.1016/j.peptides.2005.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/15/2005] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
A 7kDa peptide, with inhibitory activity on mycelial growth in the fungi Fusaerium oxysporum, Mycosphaerella arachidicola and Physalospora piricola, was isolated from fresh fruiting bodies of the oyster mushroom. The isolation procedure entailed extraction with an aqueous buffer, ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel and gel filtration by fast protein liquid chromatography on Superdex 75. The protein was unadsorbed on DEAE-cellulose and adsorbed on Affi-gel blue gel. It demonstrated an N-terminal sequence different from known antifungal proteins and peptides.
Collapse
Affiliation(s)
- K T Chu
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
25
|
Lee SJ, Saravanan RS, Damasceno CMB, Yamane H, Kim BD, Rose JKC. Digging deeper into the plant cell wall proteome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:979-88. [PMID: 15707835 DOI: 10.1016/j.plaphy.2004.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/18/2004] [Indexed: 05/03/2023]
Abstract
The proteome of the plant cell wall/apoplast is less well characterized than those of other subcellular compartments. This largely reflects the many technical challenges involved in extracting and identifying extracellular proteins, many of which resist isolation and identification, and in capturing a population that is both comprehensive and relatively uncontaminated with intracellular proteins. However, a range of disruptive techniques, involving tissue homogenization and subsequent sequential extraction and non-disruptive approaches has been developed. These approaches have been complemented more recently by other genome-scale screens, such as secretion traps that reveal the genes encoding proteins with N-terminal signal peptides that are targeted to the secretory pathway, many of which are subsequently localized in the wall. While the size and complexity of the wall proteome is still unresolved, the combination of experimental tools and computational prediction is rapidly expanding the catalog of known wall-localized proteins, suggesting the unexpected extracellular localization of other polypeptides and providing the basis for further exploration of plant wall structure and function.
Collapse
Affiliation(s)
- Sang-Jik Lee
- Department of Plant Biology, 228 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chu KT, Ng TB. First report of a glutamine-rich antifungal peptide with immunomodulatory and antiproliferative activities from family Amaryllidaceae. Biochem Biophys Res Commun 2004; 325:167-73. [PMID: 15522215 DOI: 10.1016/j.bbrc.2004.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Indexed: 11/27/2022]
Abstract
This represents the first report of purification of a glutamine-rich antifungal peptide from family Amarylliaceace. The peptide, designated as nartazin, was purified from the bulbs of the Chinese daffodil Narcissus tazetta var. chinensis by means of ion-exchange chromatography and affinity chromatography. Its molecular mass was 7.1kDa, as determined by SDS-PAGE and gel filtration. Nartazin stimulated proliferation of mouse splenocytes and bone marrow cells but inhibited proliferation of leukemia L1210 cells. It also inhibited translation in a cell-free rabbit reticulocyte lysate system. The sequence of its first 20 N-terminal residues was characterized by an abundance of glutamine. The peptide possessed antifungal activity on four phytopathogenic fungi. Its activity was retained after incubation with bovine trypsin and chymotrypsin (enzyme: substrate ratio 1:10 w/w) at 37 degrees C for 1h but was attenuated after treatment with proteinase K. The data revealed its pronounced resistance to proteolytic digestion.
Collapse
Affiliation(s)
- Kin Tak Chu
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
27
|
Anand A, Lei Z, Sumner LW, Mysore KS, Arakane Y, Bockus WW, Muthukrishnan S. Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1306-17. [PMID: 15597736 DOI: 10.1094/mpmi.2004.17.12.1306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A transgenic wheat line constitutively expressing genes encoding a class IV acidic chitinase and an acidic beta-1,3-glucanase, showed significant delay in spread of Fusarium head blight (scab) disease under greenhouse conditions. In an earlier work, we observed a lesion-mimic phenotype in this transgenic line when homozygous for transgene loci. Apoplastic fluid (AF) extracted from the lesion-mimic plants had pathogenesis-related (PR) proteins belonging to families of beta-1,3-glucanases, chitinases, and thaumatin-like proteins (TLPs). AF had growth inhibitory activity against certain fungal pathogens, including Fusarium graminearum and Gaeumannomyces graminis var. tritici. Through a two-step ion-exchange chromatography protocol, we recovered many PR proteins and a few uncharacterized proteins. Three individual protein bands corresponding to a TLP (molecular mass, 16 kDa) and two beta-1,3-glucanases (molecular mass, 32 kDa each) were purified and identified by tandem mass spectrometry. We measured the in vitro antifungal activity of the three purified enzymes and a barley class II chitinase (purified earlier in our laboratory) in microtiter plate assays with macroconidia or conidiophores of F. graminearum and Pyrenophora tritici-repentis. Mixtures of proteins revealed synergistic or additive inhibitory activity against F. graminearum and P. tritici-repentis hyphae. The concentrations of PR proteins at which these effects were observed are likely to be those reached in AF of cells exhibiting a hypersensitive response. Our results suggest that apoplastic PR proteins are antifungal and their antimicrobial potency is dependent on concentrations and combinations that are effectively reached in plants following microbial attack.
Collapse
Affiliation(s)
- Ajith Anand
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Schürch S, Linde CC, Knogge W, Jackson LF, McDonald BA. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1114-25. [PMID: 15497404 DOI: 10.1094/mpmi.2004.17.10.1114] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deletion or alteration of an avirulence gene are two mechanisms that allow pathogens to escape recognition mediated by the corresponding resistance gene in the host. We studied these two mechanisms for the NIP1 avirulence gene in field populations of the fungal barley pathogen Rhynchosporium secalis. The product of the avirulence gene, NIP1, causes leaf necrosis and elicits a defense response on plants with the Rrs1 resistance gene. A high NIP1 deletion frequency (45%) was found among 614 isolates from different geographic populations on four continents. NIP1 was also sequenced for 196 isolates, to identify DNA polymorphisms and corresponding NIP1 types. Positive diversifying selection was found to act on NIP1. A total of 14 NIP1 types were found, 11 of which had not been described previously. The virulence of the NIP1 types was tested on Rrs1 and rrs1 barley lines. Isolates carrying three of these types were virulent on the Rrs1 cultivar. One type each was found in California, Western Europe, and Jordan. Additionally, a field experiment with one pair of near-isogenic lines was conducted to study the selection pressure imposed by Rrs1 on field populations of R. secalis. Deletion of NIP1 was the only mechanism used to infect the Rrs1 cultivar in the field experiment. In this first comprehensive study on the population genetics of a fungal avirulence gene, virulence to Rrs1 in R. secalis was commonly achieved through deletion of the NIP1 avirulence gene but rarely also through point mutations in NIP1.
Collapse
Affiliation(s)
- Stéphanie Schürch
- Institute of Plant Sciences, Plant Pathology Group, Federal Institute of Technology, Universitätstrasse 2, CH-8092 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|