1
|
Kamal H, Zafar MM, Parvaiz A, Razzaq A, Elhindi KM, Ercisli S, Qiao F, Jiang X. Gossypium hirsutum calmodulin-like protein (CML 11) interaction with geminivirus encoded protein using bioinformatics and molecular techniques. Int J Biol Macromol 2024; 269:132095. [PMID: 38710255 DOI: 10.1016/j.ijbiomac.2024.132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Plant viruses are the most abundant destructive agents that exist in every ecosystem, causing severe diseases in multiple crops worldwide. Currently, a major gap is present in computational biology determining plant viruses interaction with its host. We lay out a strategy to extract virus-host protein interactions using various protein binding and interface methods for Geminiviridae, a second largest virus family. Using this approach, transcriptional activator protein (TrAP/C2) encoded by Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Multan virus (CLCuMV) showed strong binding affinity with calmodulin-like (CML) protein of Gossypium hirsutum (Gh-CML11). Higher negative value for the change in Gibbs free energy between TrAP and Gh-CML11 indicated strong binding affinity. Consensus from gene ontology database and in-silico nuclear localization signal (NLS) tools identified subcellular localization of TrAP in the nucleus associated with Gh-CML11 for virus infection. Data based on interaction prediction and docking methods present evidences that full length and truncated C2 strongly binds with Gh-CML11. This computational data was further validated with molecular results collected from yeast two-hybrid, bimolecular fluorescence complementation system and pull down assay. In this work, we also show the outcomes of full length and truncated TrAP on plant machinery. This is a first extensive report to delineate a role of CML protein from cotton with begomoviruses encoded transcription activator protein.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan. Pakistan
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan..
| | - Khalid M Elhindi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China..
| |
Collapse
|
2
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
3
|
Kamal H, Minhas FUAA, Tripathi D, Abbasi WA, Hamza M, Mustafa R, Khan MZ, Mansoor S, Pappu HR, Amin I. βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh-CML11) in Gossypium hirsutum. PLoS One 2019; 14:e0225876. [PMID: 31794580 PMCID: PMC6890265 DOI: 10.1371/journal.pone.0225876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Begomoviruses interfere with host plant machinery to evade host defense mechanism by interacting with plant proteins. In the old world, this group of viruses are usually associated with betasatellite that induces severe disease symptoms by encoding a protein, βC1, which is a pathogenicity determinant. Here, we show that βC1 encoded by Cotton leaf curl Multan betasatellite (CLCuMB) requires Gossypium hirsutum calmodulin-like protein 11 (Gh-CML11) to infect cotton. First, we used the in silico approach to predict the interaction of CLCuMB-βC1 with Gh-CML11. A number of sequence- and structure-based in-silico interaction prediction techniques suggested a strong putative binding of CLCuMB-βC1 with Gh-CML11 in a Ca+2-dependent manner. In-silico interaction prediction was then confirmed by three different experimental approaches: The Gh-CML11 interaction was confirmed using CLCuMB-βC1 in a yeast two hybrid system and pull down assay. These results were further validated using bimolecular fluorescence complementation system showing the interaction in cytoplasmic veins of Nicotiana benthamiana. Bioinformatics and molecular studies suggested that CLCuMB-βC1 induces the overexpression of Gh-CML11 protein and ultimately provides calcium as a nutrient source for virus movement and transmission. This is the first comprehensive study on the interaction between CLCuMB-βC1 and Gh-CML11 proteins which provided insights into our understating of the role of βC1 in cotton leaf curl disease.
Collapse
Affiliation(s)
- Hira Kamal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | | | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Wajid Arshad Abbasi
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Roma Mustafa
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Zuhaib Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
4
|
Leisner SM, Schoelz JE. Joining the Crowd: Integrating Plant Virus Proteins into the Larger World of Pathogen Effectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:89-110. [PMID: 29852091 DOI: 10.1146/annurev-phyto-080417-050151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The first bacterial and viral avirulence ( avr) genes were cloned in 1984. Although virus and bacterial avr genes were physically isolated in the same year, the questions associated with their characterization after discovery were very different, and these differences had a profound influence on the narrative of host-pathogen interactions for the past 30 years. Bacterial avr proteins were subsequently shown to suppress host defenses, leading to their reclassification as effectors, whereas research on viral avr proteins centered on their role in the viral infection cycle rather than their effect on host defenses. Recent studies that focus on the multifunctional nature of plant virus proteins have shown that some virus proteins are capable of suppression of the same host defenses as bacterial effectors. This is exemplified by the P6 protein of Cauliflower mosaic virus (CaMV), a multifunctional plant virus protein that facilitates several steps in the infection, including modulation of host defenses. This review highlights the modular structure and multifunctional nature of CaMV P6 and illustrates its similarities to other, well-established pathogen effectors.
Collapse
Affiliation(s)
- Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
5
|
Geldreich A, Haas G, Kubina J, Bouton C, Tanguy M, Erhardt M, Keller M, Ryabova L, Dimitrova M. Formation of large viroplasms and virulence of Cauliflower mosaic virus in turnip plants depend on the N-terminal EKI sequence of viral protein TAV. PLoS One 2017; 12:e0189062. [PMID: 29253877 PMCID: PMC5734791 DOI: 10.1371/journal.pone.0189062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) TAV protein (TransActivator/Viroplasmin) plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs) called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA), which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB), which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.
Collapse
Affiliation(s)
- Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Gabrielle Haas
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Clément Bouton
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mélanie Tanguy
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Lyubov Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
6
|
Schoelz JE, Leisner S. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2017; 8:1832. [PMID: 29163571 PMCID: PMC5670102 DOI: 10.3389/fpls.2017.01832] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 05/23/2023]
Abstract
Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
7
|
Feng M, Zhang H, Pan Y, Hu Y, Chen J, Zuo D, Jiang T. Complete nucleotide sequence of strawberry vein banding virus Chinese isolate and infectivity of its full-length DNA clone. Virol J 2016; 13:164. [PMID: 27716385 PMCID: PMC5052798 DOI: 10.1186/s12985-016-0624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Strawberry vein banding virus (SVBV) is a double-stranded DNA plant virus, which has been found in North America, Australia, Brazil, Japan, Europe and several provinces of China. Infected strawberry plants exhibit mild vein-banding symptoms and chlorosis along the veins. It is one of the most economically important diseases in Asiatic, European and North American strawberry-growing areas. FINDINGS The complete genome of an SVBV Chinese isolate (SVBV-CN) was isolated and cloned from a naturally infected strawberry (Fragaria × ananassa cv. Sachinoka) sample found in Shenyang city of Liaoning province. Sequence analysis revealed a complete genome of 7864 nucleotides (nts) that indicated SVBV-CN was most closely related to SVBV from the United States (SVBV-US) with a sequence similarity of 85.8 %. Two major clades were identified based on phylogenetic analysis of the complete genome sequences of caulimoviruses. SVBV-CN clustered together with SVBV-US, whereas other caulimoviruses formed a separate branch. Agrobacterium-mediated inoculation of Fragaria vesca with an infectious clone of SVBV-CN results in systemic infection with distinct symptoms of yellowing bands along the main leaf veins. This suggests that the SVBV-CN infectious clone can recapitulate the symptoms observed in naturally infected strawberries, and therefore is likely the causal agent of the original disease observed in strawberries. Furthermore, strawberry plants inoculated with the infectious clone using vacuum infiltration developed symptoms with a very high infection rate of 86-100 % in 4-5 weeks post-inoculation. This compares to an infection rate of 20-40 % in 8-9 weeks post-inoculation using syringe-inoculation. CONCLUSIONS The complete nucleotide sequence of SVBV from a naturally infected strawberry was determined. Agroinfiltration of strawberry plants using an infectious clone of SVBV-CN resulted in symptoms typically found in infected strawberries from Shenyang city of Liaoning province in China. This is the first report describing an infectious clone of SVBV-CN, and that vacuum infiltration can be potentially used as a new and highly efficient means for inoculation of strawberry plants.
Collapse
Affiliation(s)
- Mingfeng Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Hanping Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yuan Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yahui Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Dengpan Zuo
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|
8
|
Schoelz JE, Angel CA, Nelson RS, Leisner SM. A model for intracellular movement of Cauliflower mosaic virus: the concept of the mobile virion factory. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2039-48. [PMID: 26687180 DOI: 10.1093/jxb/erv520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genomes of many plant viruses have a coding capacity limited to <10 proteins, yet it is becoming increasingly clear that individual plant virus proteins may interact with several targets in the host for establishment of infection. As new functions are uncovered for individual viral proteins, virologists have realized that the apparent simplicity of the virus genome is an illusion that belies the true impact that plant viruses have on host physiology. In this review, we discuss our evolving understanding of the function of the P6 protein of Cauliflower mosaic virus (CaMV), a process that was initiated nearly 35 years ago when the CaMV P6 protein was first described as the 'major inclusion body protein' (IB) present in infected plants. P6 is now referred to in most articles as the transactivator (TAV)/viroplasmin protein, because the first viral function to be characterized for the Caulimovirus P6 protein beyond its role as an inclusion body protein (the viroplasmin) was its role in translational transactivation (the TAV function). This review will discuss the currently accepted functions for P6 and then present the evidence for an entirely new function for P6 in intracellular movement.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Richard S Nelson
- The Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
9
|
Tripathi D, Raikhy G, Pappu HR. Movement and nucleocapsid proteins coded by two tospovirus species interact through multiple binding regions in mixed infections. Virology 2015; 478:137-47. [PMID: 25666522 DOI: 10.1016/j.virol.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/07/2014] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
Abstract
Negative-stranded tospoviruses (family: Bunyaviridae) are among the most agronomically important viruses. Some of the tospoviruses are known to exist as mixed infections in the same host plant. Iris yellow spot virus (IYSV) and Tomato spotted wilt virus (TSWV) were used to study virus-virus interaction in dually infected host plants. Viral genes of both viruses were separately cloned into binary pSITE-BiFC vectors. BiFC results showed that the N and NSm proteins of IYSV interact with their counterparts coded by TSWV in dually infected Nicotiana benthamiana plants. BiFC results were further confirmed by pull down and yeast-2-hybrid (Y2H) assays. Interacting regions of the N and NSm proteins were also identified by Y2H system and β-galactosidase activity. Several regions of the N and NSm were found interacting with each other. The regions involved in these interactions are presumed to be critical for the functioning of the tospovirus N and NSm proteins. This is the first report of in vivo protein interactions of distinct tospoviruses in mixed infection.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA
| | - Gaurav Raikhy
- Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, P.O. Box 646430, Pullman, WA 99164-6430, USA.
| |
Collapse
|
10
|
Tripathi D, Raikhy G, Goodin MM, Dietzgen RG, Pappu HR. In vivo localization of iris yellow spot tospovirus (Bunyaviridae)-encoded proteins and identification of interacting regions of nucleocapsid and movement proteins. PLoS One 2015; 10:e0118973. [PMID: 25781476 PMCID: PMC4363525 DOI: 10.1371/journal.pone.0118973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Localization and interaction studies of viral proteins provide important information about their replication in their host plants. Tospoviruses (Family Bunyaviridae) are economically important viruses affecting numerous field and horticultural crops. Iris yellow spot virus (IYSV), one of the tospoviruses, has recently emerged as an important viral pathogen of Allium spp. in many parts of the world. We studied the in vivo localization and interaction patterns of the IYSV proteins in uninfected and infected Nicotiana benthamiana and identified the interacting partners. PRINCIPAL FINDINGS Bimolecular fluorescence complementation (BiFC) analysis demonstrated homotypic and heterotypic interactions between IYSV nucleocapsid (N) and movement (NSm) proteins. These interactions were further confirmed by pull-down assays. Additionally, interacting regions of IYSV N and NSm were identified by the yeast-2-hybrid system and β-galactosidase assay. The N protein self-association was found to be mediated through the N- and C-terminal regions making head to tail interaction. Self-interaction of IYSV NSm was shown to occur through multiple interacting regions. In yeast-2-hybrid assay, the N- and C-terminal regions of IYSV N protein interacted with an N-terminal region of IYSV NSm protein. CONCLUSION/SIGNIFICANCE Our studies provide new insights into localization and interactions of IYSV N and NSm proteins. Molecular basis of these interactions was studied and is discussed in the context of tospovirus assembly, replication, and infection processes.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, P.O. Box 646430, Washington State University, Pullman, Washington, United States of America
| | - Gaurav Raikhy
- Department of Plant Pathology, P.O. Box 646430, Washington State University, Pullman, Washington, United States of America
| | - Michael M. Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ralf G. Dietzgen
- QAAFI, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hanu R. Pappu
- Department of Plant Pathology, P.O. Box 646430, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
11
|
Lutz L, Okenka G, Schoelz J, Leisner S. Mutations within A 35 amino acid region of P6 influence self-association, inclusion body formation, and Caulimovirus infectivity. Virology 2015; 476:26-36. [PMID: 25506670 PMCID: PMC4323857 DOI: 10.1016/j.virol.2014.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022]
Abstract
Cauliflower mosaic virus gene VI product (P6) is an essential protein that forms cytoplasmic, inclusion bodies (IBs). P6 contains four regions involved in self-association, termed D1-D4. D3 binds to D1, along with D4 and contains a spacer region (termed D3b) between two RNA-binding domains. Here we show D3b binds full-length P6 along with D1 and D4. Full-length P6s harboring single amino acid substitutions within D3b showed reduced binding to both D1 and D4. Full-length P6s containing D3b mutations and fused with green fluorescent protein formed inclusion-like bodies (IL-Bs) when expressed in Nicotiana benthamiana leaves. However, mutant P6s with reduced binding to D1 and D4, showed smaller IL-Bs, than wild type. Likewise, viruses containing these mutations showed a decrease in inoculated leaf viral DNA levels and reduced efficiency of systemic infection. These data suggest that mutations influencing P6 self-association alter IB formation and reduce virus infection.
Collapse
Affiliation(s)
- Lindy Lutz
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Genevieve Okenka
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
12
|
Podevin N, du Jardin P. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants. GM CROPS & FOOD 2014; 3:296-300. [DOI: 10.4161/gmcr.21406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ. Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 2013; 94:2777-2789. [PMID: 24088344 PMCID: PMC3836500 DOI: 10.1099/vir.0.057729-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.
Collapse
Affiliation(s)
- Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carol McInally
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sowjanya Doddiah
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gary Yates
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elina Chrysanthou
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ahmed Khattab
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Chiara Geri
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy.,Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Brian O Smith
- Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kappei Kobayashi
- Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Ehime 790-8566, Japan
| | - Joel J Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Virus factories of cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission. J Virol 2013; 87:12207-15. [PMID: 24006440 DOI: 10.1128/jvi.01883-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.
Collapse
|
15
|
Angel CA, Lutz L, Yang X, Rodriguez A, Adair A, Zhang Y, Leisner SM, Nelson RS, Schoelz JE. The P6 protein of Cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments. Virology 2013; 443:363-74. [DOI: 10.1016/j.virol.2013.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/11/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
|
16
|
Lutz L, Raikhy G, Leisner SM. Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. Virus Res 2012; 170:150-3. [PMID: 22982205 DOI: 10.1016/j.virusres.2012.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral infection. In order to perform its various tasks, P6 interacts with both viral and host factors, as well as forming electron-dense cytoplasmic inclusion bodies. Here we investigate the interactions of P6 with three CaMV proteins: P2 (aphid transmission factor), P3 (virion-associated protein), and P7 (protein of unknown function). Based on yeast two-hybrid and maltose-binding protein pull-down experiments, P6 interacted with all three of these CaMV proteins. P2 helps to stabilize P6 inclusion bodies. Although the P2s from two CaMV isolates (W260 and CM1841) differ in the ability to stabilize inclusion bodies, both interacted similarly with P6. This suggests that inclusion body stability may not be dependent on the efficiency of P2-P6 interaction. However, neither P2 nor P3 interacted with P7 in yeast two-hybrid assays.
Collapse
Affiliation(s)
- Lindy Lutz
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, United States
| | | | | |
Collapse
|
17
|
Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. MOLECULAR PLANT 2011; 4:813-31. [PMID: 21896501 PMCID: PMC3183398 DOI: 10.1093/mp/ssr070] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/18/2011] [Indexed: 05/03/2023]
Abstract
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Phillip A. Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| |
Collapse
|
18
|
Raikhy G, Krause C, Leisner S. The Dahlia mosaic virus gene VI product N-terminal region is involved in self-association. Virus Res 2011; 159:69-72. [DOI: 10.1016/j.virusres.2011.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/25/2022]
|
19
|
Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS. The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. PLANT PHYSIOLOGY 2009; 4:454-6. [PMID: 19028879 PMCID: PMC2633818 DOI: 10.1104/pp.108.131755] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/19/2008] [Indexed: 05/19/2023]
Abstract
The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV.
Collapse
Affiliation(s)
- Phillip A Harries
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | | | | | |
Collapse
|
20
|
Hapiak M, Li Y, Agama K, Swade S, Okenka G, Falk J, Khandekar S, Raikhy G, Anderson A, Pollock J, Zellner W, Schoelz J, Leisner SM. Cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. Virus Res 2008; 138:119-29. [PMID: 18851998 DOI: 10.1016/j.virusres.2008.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Cauliflower mosaic virus (CaMV) gene VI encodes a multifunctional protein (P6) involved in the translation of viral RNA, the formation of inclusion bodies, and the determination of host range. Arabidopsis thaliana ecotype Tsu-0 prevents the systemic spread of most CaMV isolates, including CM1841. However, CaMV isolate W260 overcomes this resistance. In this paper, the N-terminal 110 amino acids of P6 (termed D1) were identified as the resistance-breaking region. D1 also bound full-length P6. Furthermore, binding of W260 D1 to P6 induced higher beta-galactosidase activity and better leucine-independent growth in the yeast two-hybrid system than its CM1841 counterpart. Thus, W260 may evade Tsu-0 resistance by mediating P6 self-association in a manner different from that of CM1841. Because Tsu-0 resistance prevents virus movement, interaction of P6 with P1 (CaMV movement protein) was investigated. Both yeast two-hybrid analyses and maltose-binding protein pull-down experiments show that P6 interacts with P1. Although neither half of P1 interacts with P6, the N-terminus of P6 binds P1. Interestingly, D1 by itself does not interact with P1, indicating that different portions of the P6 N-terminus are involved in different activities. The P1-P6 interactions suggest a role for P6 in virus transport, possibly by regulating P1 tubule formation or the assembly of movement complexes.
Collapse
Affiliation(s)
- Michael Hapiak
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cawly J, Cole AB, Király L, Qiu W, Schoelz JE. The plant gene CCD1 selectively blocks cell death during the hypersensitive response to Cauliflower mosaic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:212-9. [PMID: 15782635 DOI: 10.1094/mpmi-18-0212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.
Collapse
Affiliation(s)
- John Cawly
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Haas M, Geldreich A, Bureau M, Dupuis L, Leh V, Vetter G, Kobayashi K, Hohn T, Ryabova L, Yot P, Keller M. The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. THE PLANT CELL 2005; 17:927-43. [PMID: 15746075 PMCID: PMC1069709 DOI: 10.1105/tpc.104.029017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 12/09/2004] [Indexed: 05/20/2023]
Abstract
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal alpha-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the alpha-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.
Collapse
Affiliation(s)
- Muriel Haas
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche, Centre National de la Recherche Scientifique 2357, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bureau M, Leh V, Haas M, Geldreich A, Ryabova L, Yot P, Keller M. P6 protein of Cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. J Gen Virol 2004; 85:3765-3775. [PMID: 15557250 DOI: 10.1099/vir.0.80242-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The P6 protein of Cauliflower mosaic virus (CaMV) transactivates translation of the CaMV 35S polycistronic pregenomic RNA and its spliced versions, and thus allows synthesis of a complete set of viral proteins. Previous studies have shown that P6 interacts with plant L18 and L24 ribosomal proteins and initiation factor eIF3, and it has been proposed that these interactions are involved in the reinitiation of translation of polycistronic viral RNAs. This study characterizes a novel cellular partner of P6, the ribosomal protein L13 from Arabidopsis thaliana. Far-Western assays performed with several P6 deletion mutants have shown that L13 interacts with the miniTAV of P6, which represents the minimal domain for transactivation, suggesting that the P6-L13 interaction might also be involved in this process. L13 and L18 were found to bind to the same region within the miniTAV. Competition assays between L18 and L13 for binding to miniTAV suggest that interactions between P6 and these ribosomal proteins involve separate P6 molecules, and/or occur at different stages of translation or in the context of another function also mediated by P6.
Collapse
Affiliation(s)
- Marina Bureau
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Véronique Leh
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Muriel Haas
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Lyubov Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Pierre Yot
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
24
|
Kobayashi K, Hohn T. The avirulence domain of Cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:475-83. [PMID: 15141951 DOI: 10.1094/mpmi.2004.17.5.475] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is a multifunctional protein essential for basic replication of CaMV. It also plays a role in viral pathogenesis in crucifer and solanaceous host plants. Deletion mutagenesis revealed that N- and C-terminal parts of Tav are not essential for CaMV replication in transfected protoplasts. Two deletion mutants having only minimal defects in basic replication were infectious in turnips but only with highly attenuated virulence. This was shown to be due to delayed virus spread within the inoculated leaves and to the upper leaves. Unlike the wild-type virus, the mutant viruses successfully spread locally without inducing a host defense response in inoculated Datura stramonium leaves, but did not spread systemically. These results provide the first evidence that a Tav domain required for avirulence function in solanaceous plants is not essential for CaMV infectivity but has a role in viral virulence in susceptible hosts.
Collapse
|
25
|
Kobayashi K, Hohn T. Dissection of cauliflower mosaic virus transactivator/viroplasmin reveals distinct essential functions in basic virus replication. J Virol 2003; 77:8577-83. [PMID: 12857928 PMCID: PMC165242 DOI: 10.1128/jvi.77.15.8577-8583.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 05/16/2003] [Indexed: 12/24/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is an essential multifunctional viral protein. Dissection of Tav by deletion mutagenesis revealed that the central region is essential for CaMV replication in single cells but that the N- and C-terminal parts are not. Strains with mutations in the central region were defective in the translational transactivator function and could be complemented by coexpressing Gag (capsid protein precursor) and Pol (polyprotein with protease, reverse transcriptase, and RNase H activity) from separate monocistronic plasmids. In contrast, total omission of Tav was only partially complemented by Gag and Pol overexpression from separate plasmids. These results indicate that CaMV basic replication requires both Tav-activated polycistronic translation and some posttranslational function(s) of Tav that is not affected by the deletions in the central region of Tav.
Collapse
|