1
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
2
|
Taninaka Y, Nakahara KS, Hagiwara-Komoda Y. Intracellular proliferation of clover yellow vein virus is unaffected by the recessive resistance gene cyv1 of Pisum sativum. Microbiol Immunol 2020; 64:76-82. [PMID: 31687790 DOI: 10.1111/1348-0421.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
The pea cyv1 gene is a yet-to-be-identified recessive resistance gene that inhibits the infection of clover yellow vein virus (ClYVV). Previous studies confirmed that the cell-to-cell movement of ClYVV is inhibited in cyv1-carrying pea plants; however, the effect of cyv1 on viral replication remains unknown. In this study, we developed a new pea protoplast transfection method to investigate ClYVV propagation at the single-cell level. Using this method, we revealed that ClYVV accumulates to similar levels in both ClYVV-susceptible and cyv1-carrying pea protoplasts. Thus, the cyv1-mediated resistance would not suppress intracellular ClYVV replication.
Collapse
Affiliation(s)
- Yosuke Taninaka
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
3
|
Abe J, Wang Y, Yamada T, Sato M, Ono T, Atsumi G, Abe J, Hajimorad MR, Nakahara KS. Recessive Resistance Governed by a Major Quantitative Trait Locus Restricts Clover Yellow Vein Virus in Mechanically but Not Graft-Inoculated Cultivated Soybeans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1026-1037. [PMID: 30830836 DOI: 10.1094/mpmi-12-18-0331-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Clover yellow vein virus (ClYVV) infects and causes disease in legume plants. However, here, we found that ClYVV isolate No. 30 (ClYVV-No.30) inefficiently multiplied or spread via cell-to-cell movement in mechanically inoculated leaves of a dozen soybean (Glycine max) cultivars and resulted in failure to spread systemically. Soybean plants also had a similar resistance phenotype against additional ClYVV isolates. In contrast, all but one of 24 tested accessions of wild soybeans (G. soja) were susceptible to ClYVV-No.30. Graft inoculation of cultivated soybean TK780 with ClYVV-No.30-infected wild soybean B01167 scion resulted in systemic infection of the cultivated soybean rootstock. This suggests that, upon mechanical inoculation, the cultivated soybean inhibits ClYVV-No.30, at infection steps prior to the systemic spread of the virus, via vascular systems. Systemic infection of all F1 plants from crossing between TK780 and B01167 and of 68 of 76 F2 plants with ClYVV-No.30 indicated recessive inheritance of the resistance. Further genetic analysis using 64 recombinant inbred lines between TK780 and B01167 detected one major quantitative trait locus, designated d-cv, for the resistance that was positioned in the linkage group D1b (chromosome 2). The mapped region on soybean genome suggests that d-cv is not an allele of the known resistance genes against soybean mosaic virus.
Collapse
Affiliation(s)
- Junya Abe
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yongzhi Wang
- 2Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- 3Jilin Academy of Agricultural Sciences, 1363 Caiyu Street, Changchun 130033, Jilin, China
| | - Tetsuya Yamada
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masako Sato
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takuya Ono
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Go Atsumi
- 4National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Jun Abe
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- 2Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Kenji S Nakahara
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
4
|
Sardaru P, Sinausía L, López‐González S, Zindovic J, Sánchez F, Ponz F. The apparent non-host resistance of Ethiopian mustard to a radish-infecting strain of Turnip mosaic virus is largely determined by the C-terminal region of the P3 viral protein. MOLECULAR PLANT PATHOLOGY 2018; 19:1984-1994. [PMID: 29517848 PMCID: PMC6638043 DOI: 10.1111/mpp.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 05/22/2023]
Abstract
Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme-linked immunosorbent assay (ELISA). Thus, this species looks like a non-host for JPN 1, an apparent situation of non-host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C-terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N-PIPO and P3N-ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)-tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus-induced fluorescence could be found in discrete areas of both inoculated and non-inoculated leaves. In comparison with other plant-virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.
Collapse
Affiliation(s)
- Papaiah Sardaru
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA), Campus Montegancedo28223 MadridSpain
- Present address:
Department of Virology, College of SciencesSri Venkateswara UniversityTirupati 517502India
| | - Laura Sinausía
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA), Campus Montegancedo28223 MadridSpain
- Present address:
Celgene Institute for Translational Research Europe, Parque Científico y Tecnológico Cartuja 93, Centro de Empresas Pabellón de Italia, C/. Isaac Newton, 441092 SevillaSpain
| | - Silvia López‐González
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA), Campus Montegancedo28223 MadridSpain
| | - Jelena Zindovic
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA), Campus Montegancedo28223 MadridSpain
- Present address:
On leave of absence from Biotechnical Faculty, University of Montenegro, Mihajla Lalica 181000 PodgoricaMontenegro
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA), Campus Montegancedo28223 MadridSpain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA), Campus Montegancedo28223 MadridSpain
| |
Collapse
|
5
|
Atsumi G, Suzuki H, Miyashita Y, Choi SH, Hisa Y, Rihei S, Shimada R, Jeon EJ, Abe J, Nakahara KS, Uyeda I. P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas. J Virol 2016; 90:7388-7404. [PMID: 27279605 PMCID: PMC4984661 DOI: 10.1128/jvi.00190-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1 Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. IMPORTANCE Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line recognized the increased amount of P3N-PIPO produced by Cl-90-1 Br2 and activated the salicylic acid-mediated defense pathway, inducing lethal systemic cell death. We found a gradation of virulence among ClYVV isolates in a cyv1-carrying pea line and two susceptible pea lines. This study suggests a trade-off between breaking of recessive resistance (cyv1) and host viability; the latter is presumably regulated by the dominant Cyn1 gene, which may impose evolutionary constraints upon P3N-PIPO for overcoming resistance. We propose a working model of the host strategy to sustain the durability of resistance and control fast-evolving viruses.
Collapse
Affiliation(s)
- Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Haruka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuri Miyashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Hisa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Rihei
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoko Shimada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ichiro Uyeda
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Hagiwara-Komoda Y, Choi SH, Sato M, Atsumi G, Abe J, Fukuda J, Honjo MN, Nagano AJ, Komoda K, Nakahara KS, Uyeda I, Naito S. Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Sci Rep 2016; 6:21411. [PMID: 26898356 PMCID: PMC4761962 DOI: 10.1038/srep21411] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
RNA viruses use various strategies to condense their genetic information into small genomes. Potyviruses not only use the polyprotein strategy, but also embed an open reading frame, pipo, in the P3 cistron in the -1 reading frame. PIPO is expressed as a fusion protein with the N-terminal half of P3 (P3N-PIPO) via transcriptional slippage of viral RNA-dependent RNA polymerase (RdRp). We herein show that clover yellow vein virus (ClYVV) produces a previously unidentified factor, P3N-ALT, in the +1 reading frame via transcriptional slippage at a conserved G(1-2)A(6-7) motif, as is the case for P3N-PIPO. The translation of P3N-ALT terminates soon, and it is considered to be a C-terminal truncated form of P3. In planta experiments indicate that P3N-ALT functions in cell-to-cell movement along with P3N-PIPO. Hence, all three reading frames are used to produce functional proteins. Deep sequencing of ClYVV RNA from infected plants endorses the slippage by viral RdRp. Our findings unveil a virus strategy that optimizes the coding capacity.
Collapse
Affiliation(s)
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masanao Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami 024-0003, Japan
- National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | - Junya Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Junya Fukuda
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Atsushi J. Nagano
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi 332-0012, Japan
- Faculty of Agriculture, Ryukoku University, Otsu 520-2194, Japan
| | - Keisuke Komoda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji S. Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Ichiro Uyeda
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Construction of infectious cDNA clones derived from the potyviruses clover yellow vein virus and bean yellow mosaic virus. Methods Mol Biol 2015; 1236:219-27. [PMID: 25287506 DOI: 10.1007/978-1-4939-1743-3_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Infectious cDNA clones are now indispensible tools for the genetic analysis of viral factors involved in viral virulence and host resistance. In addition, infectious cDNA-derived virus vectors that express foreign genes in infected plants enable the production of useful proteins at low cost and can confer novel crop traits. We constructed infectious cDNA clones derived from two potyviruses, Clover yellow vein virus and Bean yellow mosaic virus, which infect legume plants and cause disease. Here, we present our procedure for constructing these potyvirus infectious clones.
Collapse
|
8
|
Hart JP, Griffiths PD. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to Clover yellow vein virus in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2849-2863. [PMID: 23933781 DOI: 10.1007/s00122-013-2176-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 07/27/2013] [Indexed: 05/29/2023]
Abstract
Clover yellow vein virus (ClYVV) is capable of causing severe damage to common bean (Phaseolus vulgaris L.) production worldwide. The snap bean market class is particularly vulnerable because infection may lead to distortion and necrosis of the fresh green pods and rejection of the harvest. Three putatively independent recessive genes (cyv, desc, bc-3) have been reported to condition resistance to ClYVV; however, their allelic relationships have not been resolved. We identified, evaluated, and characterized the phenotypic and molecular genetic variation present in 21 informative common bean genotypes for resistance to ClYVV. Allelism testing phenotypes from multiple populations provided clear evidence that the three genes were a series of recessive alleles at the Bc-3 locus that condition unique potyvirus strain- and species-specific resistance spectra. Candidate gene analysis revealed complete association between the recessive resistance alleles and unique patterns of predicted amino acid substitutions in P. vulgaris eukaryotic translation initiation factor 4E (PveIF4E). This led to the discovery and characterization of two novel PveIF4E alleles associated with resistance to ClYVV, PveIF4E (3) , and PveIF4E (4) . We developed KASPar allele-specific SNP genotyping assays and demonstrated their ability to accurately detect and differentiate all of the PveIF4E haplotypes present in the germplasm, allelism testing, and in three separate segregating populations. The results contribute to an enhanced understanding and accessibility of the important potyvirus resistance conditioned by recessive alleles at Bc-3. The KASPar assays should be useful to further enable germplasm exploration, allelic discrimination, and marker-assisted introgression of bc-3 alleles in common bean.
Collapse
Affiliation(s)
- John P Hart
- Department of Plant Breeding and Genetics, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | | |
Collapse
|
9
|
Choi SH, Hagiwara-Komoda Y, Nakahara KS, Atsumi G, Shimada R, Hisa Y, Naito S, Uyeda I. Quantitative and qualitative involvement of P3N-PIPO in overcoming recessive resistance against Clover yellow vein virus in pea carrying the cyv1 gene. J Virol 2013; 87:7326-37. [PMID: 23616656 PMCID: PMC3700270 DOI: 10.1128/jvi.00065-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022] Open
Abstract
In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus.
Collapse
Affiliation(s)
- Sun Hee Choi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The Mediterranean area (MA) produces about 12% of the world vegetables both for local consumption and for export. With an average consumption of 242 kg per person and per year (and almost 400 kg in Turkey), vegetables are an important part of the Mediterranean diet. Vegetables are cultivated using different cultivation techniques (for instance, open field or protected), and the importance of viruses varies greatly between these growing conditions. Breeding virus-resistant cultivars is a key component of an integrated pest management strategy. The origin and the diversity of the main vegetables are presented with the sources of virus resistance. The center of origin of most vegetables is not in the MA: for instance, tomato, potato, pepper, bean, squash and pumpkin, and sweetpotato have been introduced from the American continent. Very few original sources of resistance against viruses have been described in local landraces from the MA.
Collapse
Affiliation(s)
- Michel Pitrat
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| |
Collapse
|
11
|
Atsumi G, Nakahara KS, Wada TS, Choi SH, Masuta C, Uyeda I. Heterologous expression of viral suppressors of RNA silencing complements virulence of the HC-Pro mutant of clover yellow vein virus in pea. Arch Virol 2012; 157:1019-28. [PMID: 22398917 DOI: 10.1007/s00705-012-1281-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Many plant viruses encode suppressors of RNA silencing, including the helper component-proteinase (HC-Pro) of potyviruses. Our previous studies showed that a D-to-Y mutation at amino acid position 193 in HC-Pro (HC-Pro-D193Y) drastically attenuated the virulence of clover yellow vein virus (ClYVV) in legume plants. Furthermore, RNA-silencing suppression (RSS) activity of HC-Pro-D193Y was significantly reduced in Nicotiana benthamiana. Here, we examine the effect of expression of heterologous suppressors of RNA silencing, i.e., tomato bushy stunt virus p19, cucumber mosaic virus 2b, and their mutants, on the virulence of the ClYVV point mutant with D193Y (Cl-D193Y) in pea. P19 and 2b fully and partially complemented Cl-D193Y multiplication and virulence, including lethal systemic HR in pea, respectively, but the P19 and 2b mutants with defects in their RSS activity did not. Our findings strongly suggest that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary for ClYVV multiplication and virulence in pea.
Collapse
Affiliation(s)
- Go Atsumi
- Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Inaba JI, Kim BM, Shimura H, Masuta C. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-silencing suppressor and a host catalase. PLANT PHYSIOLOGY 2011; 156:2026-36. [PMID: 21622812 PMCID: PMC3149961 DOI: 10.1104/pp.111.180042] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/26/2011] [Indexed: 05/19/2023]
Abstract
Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis.
Collapse
|
13
|
Nakahara KS, Kitazawa H, Atsumi G, Choi SH, Suzuki Y, Uyeda I. Screening and analysis of genes expressed upon infection of broad bean with Clover yellow vein virus causing lethal necrosis. Virol J 2011; 8:355. [PMID: 21767375 PMCID: PMC3158773 DOI: 10.1186/1743-422x-8-355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Clover yellow vein virus (ClYVV) causes lethal systemic necrosis in legumes, including broad bean (Vicia faba) and pea (Pisum sativum). To identify host genes involved in necrotic symptom expression after ClYVV infection, we screened cDNA fragments in which expression was changed in advance of necrotic symptom expression in broad bean (V. faba cv. Wase) using the differential display technique and secondarily with Northern blot analysis. Expression changes were confirmed in 20 genes, and the six that exhibited the most change were analyzed further. These six genes included a gene that encodes a putative nitrate-induced NOI protein (VfNOI), and another was homologous to an Arabidopsis gene that encodes a glycine- and proline-rich protein GPRP (VfGPRP). We recently reported that necrotic symptom development in ClYVV-infected pea is associated with expression of salicylic acid (SA)-dependent pathogenesis-related (PR) proteins and requires SA-dependent host responses. Interestingly, VfNOI and VfGPRP expression was correlated with that of the putative SA-dependent PR proteins in ClYVV-infected broad bean. However, broad bean infected with a recombinant ClYVV expressing the VfGPRP protein showed weaker symptoms and less viral multiplication than that infected with ClYVV expressing the GFP protein. These results imply that VfGPRP plays a role in defense against ClYVV rather than in necrotic symptom expression.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiroaki Kitazawa
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Go Atsumi
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Sun Hee Choi
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuji Suzuki
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Ichiro Uyeda
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
14
|
Nakahara KS, Shimada R, Choi SH, Yamamoto H, Shao J, Uyeda I. Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1460-9. [PMID: 20653413 DOI: 10.1094/mpmi-11-09-0277] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two recessive genes (cyv1 and cyv2) are known to confer resistance against Clover yellow vein virus (ClYVV) in pea. cyv2 has recently been revealed to encode eukaryotic translation initiation factor 4E (eIF4E) and is the same allele as sbm1 and wlm against other potyviruses. Although mechanical inoculation with crude sap is rarely able to cause infection of a cyv2 pea, biolistic inoculation of the infectious ClYVV cDNA clone does. At the infection foci, the breaking virus frequently emerges, resulting in systemic infection. Here, a derived cleaved-amplified polymorphic sequence analysis showed that the breakings were associated with a single nonsynonymous mutation on the ClYVV genome, corresponding to an amino-acid substitution at position 24 (isoleucine to valine) on the P1 cistron. ClYVV with the point mutation was able to break the resistance. This is a first report demonstrating that P1 is involved in eIF4E-mediated recessive resistance.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
About half of the approximately 200 known virus resistance genes in plants are recessively inherited, suggesting that this form of resistance is more common for viruses than for other plant pathogens. The use of such genes is therefore a very important tool in breeding programs to control plant diseases caused by pathogenic viruses. Over the last few years, the detailed analysis of many host/virus combinations has substantially advanced basic research on recessive resistance mechanisms in crop species. This type of resistance is preferentially expressed in protoplasts and inoculated leaves, influencing virus multiplication at the single-cell level as well as cell-to-cell movement. Importantly, a growing number of recessive resistance genes have been cloned from crop species, and further analysis has shown them all to encode translation initiation factors of the 4E (eIF4E) and 4G (eIF4G) families. However, not all of the loss-of-susceptibility mutants identified in collections of mutagenized hosts correspond to mutations in eIF4E and eIF4G. This, together with other supporting data, suggests that more extensive characterization of the natural variability of resistance genes may identify new host factors conferring recessive resistance. In this chapter, we discuss the recent work carried out to characterize loss-of-susceptibility and recessive resistance genes in crop and model species. We review actual and probable recessive resistance mechanisms, and bring the chapter to a close by summarizing the current state-of-the-art and offering perspectives on potential future developments.
Collapse
Affiliation(s)
- V Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo Correos 164, 30100 Espinardo (Murcia), Spain
| | | |
Collapse
|
16
|
Hébrard E, Bessin Y, Michon T, Longhi S, Uversky VN, Delalande F, Van Dorsselaer A, Romero P, Walter J, Declerk N, Fargette D. Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses. Virol J 2009; 6:23. [PMID: 19220875 PMCID: PMC2649914 DOI: 10.1186/1743-422x-6-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/16/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND VPgs are viral proteins linked to the 5' end of some viral genomes. Interactions between several VPgs and eukaryotic translation initiation factors eIF4Es are critical for plant infection. However, VPgs are not restricted to phytoviruses, being also involved in genome replication and protein translation of several animal viruses. To date, structural data are still limited to small picornaviral VPgs. Recently three phytoviral VPgs were shown to be natively unfolded proteins. RESULTS In this paper, we report the bacterial expression, purification and biochemical characterization of two phytoviral VPgs, namely the VPgs of Rice yellow mottle virus (RYMV, genus Sobemovirus) and Lettuce mosaic virus (LMV, genus Potyvirus). Using far-UV circular dichroism and size exclusion chromatography, we show that RYMV and LMV VPgs are predominantly or partly unstructured in solution, respectively. Using several disorder predictors, we show that both proteins are predicted to possess disordered regions. We next extend theses results to 14 VPgs representative of the viral diversity. Disordered regions were predicted in all VPg sequences whatever the genus and the family. CONCLUSION Based on these results, we propose that intrinsic disorder is a common feature of VPgs. The functional role of intrinsic disorder is discussed in light of the biological roles of VPgs.
Collapse
Affiliation(s)
- Eugénie Hébrard
- UMR 1097 Résistance des Plantes aux Bio-agresseurs, IRD, CIRAD, Université de Montpellier II, BP 64501, 34394 Montpellier cedex 5, France
| | - Yannick Bessin
- Centre de Biochimie Structurale, UMR 5048, 29 rue de Navacelles, 34090 Montpellier, France
| | - Thierry Michon
- UMR1090 Génomique Diversité Pouvoir Pathogène, INRA, Université de Bordeaux 2, F-33883 Villenave D'Ornon, France
| | - Sonia Longhi
- UMR 6098 Architecture et Fonction des Macromolécules Biologiques, CNRS, Universités Aix-Marseille I et II, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, 67087 Strasbourg, France
| | - Pedro Romero
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jocelyne Walter
- UMR1090 Génomique Diversité Pouvoir Pathogène, INRA, Université de Bordeaux 2, F-33883 Villenave D'Ornon, France
| | - Nathalie Declerk
- Centre de Biochimie Structurale, UMR 5048, 29 rue de Navacelles, 34090 Montpellier, France
| | - Denis Fargette
- UMR 1097 Résistance des Plantes aux Bio-agresseurs, IRD, CIRAD, Université de Montpellier II, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|
17
|
Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:166-75. [PMID: 19132869 DOI: 10.1094/mpmi-22-2-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination.
Collapse
Affiliation(s)
- Go Atsumi
- Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
18
|
Miyoshi H, Okade H, Muto S, Suehiro N, Nakashima H, Tomoo K, Natsuaki T. Turnip mosaic virus VPg interacts with Arabidopsis thaliana eIF(iso)4E and inhibits in vitro translation. Biochimie 2008; 90:1427-34. [DOI: 10.1016/j.biochi.2008.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
19
|
Larsen RC, Miklas PN, Eastwell KC, Grau CR. A Strain of Clover yellow vein virus that Causes Severe Pod Necrosis Disease in Snap Bean. PLANT DISEASE 2008; 92:1026-1032. [PMID: 30769525 DOI: 10.1094/pdis-92-7-1026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean aphid (Aphis glycines) outbreaks occurring since 2000 have been associated with severe virus epidemics in snap bean (Phaseolus vulgaris) production in the Great Lakes region. Our objective was to identify specific viruses associated with the disease complex observed in the region and to survey bean germplasm for sources of resistance to the causal agents. The principle causal agent of the disease complex associated with extensive pod necrosis was identified as Clover yellow vein virus (ClYVV), designated ClYVV-WI. The virus alone caused severe mosaic, apical necrosis, and stunting. Putative coat protein amino acid sequence from clones of amplicons generated by reverse-transcription polymerase chain reaction was 98% identical to ClYVV strain no. 30 identified in Japan that has not been reported to cause pod necrosis. ClYVV-WI amplicons were 96% identical to a mild strain of ClYVV from Oregon. A distinguishing feature of this new strain is that it does not react with Potyvirus broad-spectrum monoclonal antibody PTY 1. A survey of common bean lines and cultivars revealed that, in addition to UI-31 and US1140 with known resistance to ClYVV, lines with the bc-3 gene for resistance to Bean common mosaic necrosis virus also were resistant to ClYVV-WI. An evaluation of 63 snap bean cultivars and breeding lines revealed just one, Roma 442, with a moderate level of tolerance to ClYVV-WI. Introgression of the bc-3 gene and resistances from UI-31 and US1140 into snap bean may offer a high level of resistance to extensive pod necrosis disease caused by ClYVV in the Great Lakes region.
Collapse
Affiliation(s)
- Richard C Larsen
- Unites States Department of Agriculture-Agricultural Research Service, Prosser, WA 99350
| | - Phillip N Miklas
- Unites States Department of Agriculture-Agricultural Research Service, Prosser, WA 99350
| | - Kenneth C Eastwell
- Department of Plant Pathology, Washington State University, IAREC, Prosser 99350
| | - Craig R Grau
- Department of Plant Pathology, University of Wisconsin, Madison 53706
| |
Collapse
|
20
|
Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C. Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. PLANT & CELL PHYSIOLOGY 2007; 48:1050-60. [PMID: 17567638 DOI: 10.1093/pcp/pcm074] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Double-stranded (ds) RNAs and imperfect hairpin RNAs of endogenous genes trigger post-transcriptional gene silencing (PTGS) and are cleaved by a Dicer-like nuclease into small interfering RNAs (siRNAs) and microRNs (miRNAs), respectively. Such small RNAs (siRNAs and miRNAs) then guide an RNA-induced silencing complex (RISC) for sequence-specific RNA degradation. While PTGS serves as an antiviral defense in plants, many plant viruses encode suppressors as a counter defense. Here we demonstrate that the PTGS suppressor (2b) of a severe strain (CM95R) of cucumber mosaic virus (CMV) can bind to in vitro synthesized siRNAs and even to long dsRNAs to a lesser extent. However, the 2b suppressor weakly bound to a miRNA (miR171) duplex in contrast to another small RNA-binding suppressor, p19 of tombusvirus that can effectively bind miRNAs. Because the 2b suppressor of an attenuated strain of CMV (CM95), which differs in a single amino acid from the 2b of CM95R, could barely bind siRNAs, we hypothesized that the weak suppressor activity of the attenuated strain resulted from a loss of the siRNA-binding property of 2b via a single amino acid change. Here we consider that 2b interferes with the PTGS pathway by directly binding siRNAs (or long dsRNA).
Collapse
Affiliation(s)
- Kazunori Goto
- Cell Biology and Manipulation Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | | | |
Collapse
|
21
|
Andrade M, Sato M, Uyeda I. Two Resistance Modes to Clover yellow vein virus in Pea Characterized by a Green Fluorescent Protein-Tagged Virus. PHYTOPATHOLOGY 2007; 97:544-550. [PMID: 18943572 DOI: 10.1094/phyto-97-5-0544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT This study characterized resistance in pea lines PI 347295 and PI 378159 to Clover yellow vein virus (ClYVV). Genetic cross experiments showed that a single recessive gene controls resistance in both lines. Conventional mechanical inoculation did not result in infection; however, particle bombardment with infectious plasmid or mechanical inoculation with concentrated viral inocula did cause infection. When ClYVV No. 30 isolate was tagged with a green fluorescent protein (GFP) and used to monitor infection, viral cell-to-cell movement differed in the two pea lines. In PI 347595, ClYVV replicated at a single-cell level, but did not move to neighboring cells, indicating that resistance operated at a cell-to-cell step. In PI 378159, the virus moved to cells around the infection site and reached the leaf veins, but viral movement was slower than that in the susceptible line. The viruses observed around the infection sites and in the veins were then recovered and inoculated again by a conventional mechanical inoculation method onto PI 378159 demonstrating that ClYVV probably had mutated and newly emerged mutant viruses can move to neighboring cells and systemically infect the plants. Tagging the virus with GFP was an efficient tool for characterizing resistance modes. Implications of the two resistance modes are discussed.
Collapse
|
22
|
Miyoshi H, Suehiro N, Tomoo K, Muto S, Takahashi T, Tsukamoto T, Ohmori T, Natsuaki T. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors. Biochimie 2005; 88:329-40. [PMID: 16300873 DOI: 10.1016/j.biochi.2005.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 09/12/2005] [Indexed: 11/18/2022]
Abstract
The turnip mosaic virus (TuMV) genome-linked protein (VPg) and Arabidopsis thaliana translation initiation factors were expressed and purified in order to investigate their binding properties and kinetics. Affinity chromatography on m(7)GTP-sepharose showed that bound A. thaliana eIF(iso)4E was eluted with crude TuMV VPg. Further column studies with purified VPg and other A. thaliana eIF4E isoforms showed that VPg preferentially bound eIF(iso)4E. Structural data implicate Trp-46 and Trp-92 in eIF(iso)4E in cap recognition. When Trp-46 or Trp-92 were changed to Leu, eIF(iso)4E lost the ability to form a complex with both VPg and m(7)GTP-sepharose. This suggests that the VPg-binding site is located in or near the cap-recognition pocket on eIF(iso)4E. Affinity constants for the interactions with eIF(iso)4E of VPg and capped RNA oligomer were determined using surface plasmon resonance (SPR). The K(D) values showed that the binging affinity of VPg for eIF(iso)4E is stronger than that of capped RNA. This suggests that viral VPg can interfere with formation of a translational initiation complex on host plant cellular mRNA by sequestering eIF(iso)4E. Further experiments with affinity chromatography showed that VPg forms a ternary complex with eIF(iso)4E and eIF(iso)4G. Thus, VPg may participate in viral translational initiation by functioning as an alternative cap-like structure.
Collapse
Affiliation(s)
- Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki 216-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Díaz-Pendón JA, Fernández-Muñoz R, Gómez-Guillamón ML, Moriones E. Inheritance of Resistance to Watermelon mosaic virus in Cucumis melo that Impairs Virus Accumulation, Symptom Expression, and Aphid Transmission. PHYTOPATHOLOGY 2005; 95:840-6. [PMID: 18943018 DOI: 10.1094/phyto-95-0840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The Cucumis melo accession TGR-1551 was found to be resistant to Watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae). The resistance resulted in a drastic and significant reduction of virus titer and infected plants were asymptomatic or exhibited mild disease symptoms. The same gene or closely linked genes restricted virus accumulation and ameliorated symptom expression. No effect was observed on virus accumulation in inoculated leaves, which suggested that the initial phases of infection were not affected. The resistance was effective against a range of WMV isolates from Spanish melon production areas. Using aphid inoculations, resistant plants showed a lower propensity for infection by WMV and for serving as virus sources for secondary spread once infected. Resistance was determined to be under recessive genetic control.
Collapse
|
24
|
Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J. The Arabidopsis Gene CAD1 Controls Programmed Cell Death in the Plant Immune System and Encodes a Protein Containing a MACPF Domain. ACTA ACUST UNITED AC 2005; 46:902-12. [PMID: 15799997 DOI: 10.1093/pcp/pci095] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To clarify the processes involved in plant immunity, we have isolated and characterized a single recessive Arabidopsis mutant, cad1 (constitutively activated cell death 1), which shows a phenotype that mimics the lesions seen in the hypersensitive response (HR). This mutant shows spontaneously activated expression of pathogenesis-related (PR) genes, and leading to a 32-fold increase in salicylic acid (SA). Inoculation of cad1 mutant plants with Pseudomonas syringae pv tomato DC3000 shows that the cad1 mutation results in the restriction of bacterial growth. Cloning of CAD1 reveals that this gene encodes a protein containing a domain with significant homology to the MACPF (membrane attack complex and perforin) domain of complement components and perforin proteins that are involved in innate immunity in animals. Furthermore, cell death is suppressed in transgenic cad1 plants expressing nahG, which encodes an SA-degrading enzyme. We therefore conclude that the CAD1 protein negatively controls the SA-mediated pathway of programmed cell death in plant immunity.
Collapse
Affiliation(s)
- Chizuko Morita-Yamamuro
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sato M, Nakahara K, Yoshii M, Ishikawa M, Uyeda I. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 2005; 579:1167-71. [PMID: 15710407 DOI: 10.1016/j.febslet.2004.12.086] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/24/2004] [Accepted: 12/29/2004] [Indexed: 11/15/2022]
Abstract
Arabidopsis thaliana plants with mutations in the genes encoding eukaryotic initiation factor (eIF4E) or isoform of eIF4E (eIF(iso)4E) were tested for susceptibility to Clover yellow vein virus (ClYVV), a member of the genus Potyvirus. ClYVV accumulated in both inoculated and upper uninoculated leaves of mutant plants lacking eIF(iso)4E, but not in mutant plants lacking eIF4E. In contrast, Turnip mosaic virus (TuMV), another member of the genus Potyvirus, multiplied in mutant plants lacking eIF4E but not in mutant plants lacking eIF(iso)4E. These results suggest the selective involvement of members of the eIF4E family in infection by potyviruses.
Collapse
Affiliation(s)
- Masanao Sato
- Pathogen-Plant Interactions Group, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
26
|
Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA. Advances in understanding recessive resistance to plant viruses. MOLECULAR PLANT PATHOLOGY 2004; 5:223-33. [PMID: 20565612 DOI: 10.1111/j.1364-3703.2004.00223.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY Recent work carried out to characterize recessive mutations which render experimental hosts non-permissive to viral infection (loss-of-susceptibility mutants) seems to be converging with new data on natural recessive resistance in crop species, and also with functional analyses of virus avirulence determinants. Perhaps the most well known examples are the studies that identified the eukaryotic translation initiation factors 4E(iso) (eIF(iso)4E) and 4E(eIF4E) as the host factors required for potyvirus multiplication within experimental and natural hosts, respectively, and the potyviral genome-linked protein (VPg) as the viral factor that directly interacts with eIF4E to promote potyvirus multiplication. The purpose of this paper is to review the available information on the characterization of loss-of-susceptibility mutants in experimental hosts, natural recessive resistances and virus avirulence factors, and also to comment on possible implications for the design of new sources of sustainable virus resistance.
Collapse
Affiliation(s)
- Juan A Diaz-Pendon
- Estación Experimental 'La Mayora', Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | | | | | |
Collapse
|