1
|
Paul E, Sharma C, Chaturvedi P, Bhatnagar P. Quorum quenching activity of endophytic Bacillus sp. EBS9 from Tecomella undulata and its biocontrol applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100307. [PMID: 39584039 PMCID: PMC11585653 DOI: 10.1016/j.crmicr.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
This study investigates the quorum quenching (QQ) activity of an endophytic bacterium, Bacillus sp. EBS9, isolated from the native medicinal plant Tecomella undulata of Rajasthan, and its biocontrol potential against the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). QQ activity was confirmed by the loss of violacein pigment in Chromobacterium violaceum (MCC 2290). Quorum quenching metabolites were extracted using ethyl acetate, and the Quorum Quenching Extract (QQE) demonstrated positive activity in assays with C. violaceum CV026 (MCC 2216). HRLC-MS analysis identified diketopiperazines, L,L-Cyclo (leucylprolyl) and Cyclo (L-Phe-L-Pro), which are N-acyl homoserine lactones (AHLs) antagonists competing for LuxR receptor binding sites. In vitro and in planta assays evaluated QQB's biocontrol potential using treatment I (Pcc), treatment II (Pcc + QQB), and a control (sterile water). In the in vitro soft rot attenuation assay showed that treatment I caused severe maceration in vegetable slices, particularly in radish, exhibiting the highest maceration diameter (25.33 ± 3.52 mm) and percentage (46.14 ± 5.70 %). However, co-inoculation with QQB significantly reduced maceration across all tested vegetables. In the plate assay, germination rates decreased to approximately 50 % in both Vigna radiata and Raphanus sativus for treatment I, but improved to 86.67 % in treatment II. The seed vigour and germination indices also improved with QQB treatment in both plant species. In the pot assay after 30 days, in contrast to a 50 % decrease in root and shoot lengths in treatment I, treatment II led to a substantial recovery, with root lengths increase by 112.07 % and 138.76 %, while shoot length by 315.65 % and 163.63 % in V. radiata and R. sativus, respectively. This study highlights the QQ and biocontrol potential of Bacillus sp. EBS9 against P. carotovorum (Pcc), suggesting its promise in effective management of phytopathogens, which is crucial for agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Etisha Paul
- Department of Microbiology and Biotechnology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| | - Charu Sharma
- Department of Microbiology and Biotechnology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| | - Payal Chaturvedi
- Department of Microbiology and Biotechnology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Microbiology and Biotechnology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
3
|
Insight in the quorum sensing-driven lifestyle of the non-pathogenic Agrobacterium tumefaciens 6N2 and the interactions with the yeast Meyerozyma guilliermondii. Genomics 2021; 113:4352-4360. [PMID: 34793950 DOI: 10.1016/j.ygeno.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.
Collapse
|
4
|
The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards. Curr Top Microbiol Immunol 2019; 418:15-53. [PMID: 29556824 DOI: 10.1007/82_2018_85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.
Collapse
|
5
|
McIntosh M, Serrania J, Lacanna E. A novel LuxR-type solo of Sinorhizobium meliloti, NurR, is regulated by the chromosome replication coordinator, DnaA and activates quorum sensing. Mol Microbiol 2019; 112:678-698. [PMID: 31124196 DOI: 10.1111/mmi.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
The genome of Sinorhizobium meliloti, a model for studying plant-bacteria symbiosis, contains eight genes coding for LuxR-like proteins. Two of these, SinR and ExpR, are essential for quorum sensing (QS). Roles and regulation surrounding the others are mostly unknown. Here, we reveal the DNA recognition sequence and regulon of the LuxR-like protein SMc00877. Unlike ExpR, which uses the long-chain acyl homoserine lactones (AHLs) as inducers, SMc00877 functioned independently of AHLs and was even functional in Escherichia coli. A target of SMc00877 is SinR, the major regulator of AHL production in S. meliloti. Disruption of SMc00877 decreased AHL production. A weaker production of AHLs resulted in smaller microcolonies, starting from single cells, and delayed AHL-dependent regulation. SMc00877 was expressed only in growing cells in the presence of replete nutrients. Therefore, we renamed it NurR (nutrient sensitive LuxR-like regulator). We traced this nutrient-sensitive expression to transcription control by the DNA replication initiation factor, DnaA, which is essential for growth. These results indicate that NurR has a role in modulating the threshold of QS activation according to growth. We propose growth behavior as an additional prerequisite to population density for the activation of QS in S. meliloti.
Collapse
Affiliation(s)
- Matthew McIntosh
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Egidio Lacanna
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
6
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
7
|
Hao L, Kemmenoe DJ, Orel DC, Burr T. The Impacts of Tumorigenic and Nontumorigenic Agrobacterium vitis Strains on Graft Strength and Growth of Grapevines. PLANT DISEASE 2018; 102:375-381. [PMID: 30673517 DOI: 10.1094/pdis-07-17-0952-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of tumorigenic and nontumorigenic strains of Agrobacterium vitis on graft strength and growth of grapevines was studied. A procedure was developed for inoculating graft interface surfaces with A. vitis and for measuring the force required to break grafts at different time points. Cuttings were soaked in an aqueous suspension of bacteria, about 106 CFU/ml, and bacteria were spread onto the graft interface during the grafting procedure. Tumorigenic strain CG49 caused reduced bud germination and increased callus (crown gall) at the graft union and at the base of cuttings at 30 days postinoculation (dpi) and significantly reduced shoot growth by 60 dpi whereas, at the same time points, nontumorigenic strain F2/5 inhibited callus formation but did not affect bud germination or shoot growth. Graft strength was enhanced at 30 dpi with CG49, presumably because the crown gall callus served to secure the union; graft strength was weakened by F2/5 over the same period. Between 30 and 60 dpi, the greatest increase in graft strength was observed in the water control. Following graft union inoculations, the A. vitis population increased more than 1,000-fold within 5 days.
Collapse
Affiliation(s)
- Lingyun Hao
- College of Life Sciences and Oceanography, Shenzhen University, Guang Dong 518060, P.R. China, and Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, NY, 14456
| | - David J Kemmenoe
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850
| | - Didem Canik Orel
- Department of Plant Protection, Ankara University, Ankara, Turkey
| | - Thomas Burr
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station
| |
Collapse
|
8
|
Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR. A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front Cell Infect Microbiol 2015; 5:16. [PMID: 25759807 PMCID: PMC4338825 DOI: 10.3389/fcimb.2015.00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
LuxR solo transcriptional regulators contain both an autoinducer binding domain (ABD; N-terminal) and a DNA binding Helix-Turn-Helix domain (HTH; C-terminal), but are not associated with a cognate N-acyl homoserine lactone (AHL) synthase coding gene in the same genome. Although a few LuxR solos have been characterized, their distributions as well as their role in bacterial signal perception and other processes are poorly understood. In this study we have carried out a systematic survey of distribution of all ABD containing LuxR transcriptional regulators (QS domain LuxRs) available in the InterPro database (IPR005143), and identified those lacking a cognate AHL synthase. These LuxR solos were then analyzed regarding their taxonomical distribution, predicted functions of neighboring genes and the presence of complete AHL-QS systems in the genomes that carry them. Our analyses reveal the presence of one or multiple predicted LuxR solos in many proteobacterial genomes carrying QS domain LuxRs, some of them harboring genes for one or more AHL-QS circuits. The presence of LuxR solos in bacteria occupying diverse environments suggests potential ecological functions for these proteins beyond AHL and interkingdom signaling. Based on gene context and the conservation levels of invariant amino acids of ABD, we have classified LuxR solos into functionally meaningful groups or putative orthologs. Surprisingly, putative LuxR solos were also found in a few non-proteobacterial genomes which are not known to carry AHL-QS systems. Multiple predicted LuxR solos in the same genome appeared to have different levels of conservation of invariant amino acid residues of ABD questioning their binding to AHLs. In summary, this study provides a detailed overview of distribution of LuxR solos and their probable roles in bacteria with genome sequence information.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Grupo de Bioprospección, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común Chía, Colombia
| | | | - Zulma R Suarez-Moreno
- Grupo de Bioprospección, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común Chía, Colombia
| |
Collapse
|
9
|
Zheng D, Burr TJ. An Sfp-type PPTase and associated polyketide and nonribosomal peptide synthases in Agrobacterium vitis are essential for induction of tobacco hypersensitive response and grape necrosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:812-22. [PMID: 23581823 DOI: 10.1094/mpmi-12-12-0295-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.
Collapse
Affiliation(s)
- Desen Zheng
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experimental Station, Cornell University, 630 W. North Street Geneva, NY 14456, USA
| | | |
Collapse
|
10
|
Kaewnum S, Zheng D, Reid CL, Johnson KL, Gee JC, Burr TJ. A host-specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics. PHYTOPATHOLOGY 2013; 103:427-35. [PMID: 23252969 DOI: 10.1094/phyto-07-12-0153-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nontumorigenic Agrobacterium vitis strain F2/5 is able to prevent crown gall caused by tumorigenic A. vitis on grape but not on other plant species such as tobacco. Mutations in a quorum-sensing transcription factor, aviR, and in caseinolytic protease (clp) component genes clpA and clpP1 resulted in reduced or loss of biological control. All mutants were complemented; however, restoration of biological control by complemented clpA and clpP1 mutants was dependent on the copy number of vector that was used as well as timing of application of the complemented mutants to grape wounds in relation to inoculation with pathogen. Mutations in other quorum-sensing and clp genes and in a gene associated with polyketide synthesis did not affect biological control. It was determined that, although F2/5 inhibits transformation by tumorigenic A. vitis strains on grape, it does not affect growth of the pathogen in wounded grape tissue over time.
Collapse
Affiliation(s)
- Supaporn Kaewnum
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, NY, USA
| | | | | | | | | | | |
Collapse
|
11
|
Zheng D, Hao G, Cursino L, Zhang H, Burr TJ. LhnR and upstream operon LhnABC in Agrobacterium vitis regulate the induction of tobacco hypersensitive responses, grape necrosis and swarming motility. MOLECULAR PLANT PATHOLOGY 2012; 13:641-52. [PMID: 22212449 PMCID: PMC6638669 DOI: 10.1111/j.1364-3703.2011.00774.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The characterization of Tn5 transposon insertional mutants of Agrobacterium vitis strain F2/5 revealed a gene encoding a predicted LysR-type transcriptional regulator, lhnR (for 'LysR-type regulator associated with HR and necrosis'), and an immediate upstream operon consisting of three open reading frames (lhnABC) required for swarming motility, surfactant production and the induction of a hypersensitive response (HR) on tobacco and necrosis on grape. The operon lhnABC is unique to A. vitis among the sequenced members in Rhizobiaceae. Mutagenesis of lhnR and lhnABC by gene disruption and complementation of ΔlhnR and ΔlhnABC confirmed their roles in the expression of these phenotypes. Mutation of lhnR resulted in complete loss of HR, swarming motility, surfactant production and reduced necrosis, whereas mutation of lhnABC resulted in loss of swarming motility, delayed and reduced HR development and reduced surfactant production and necrosis. The data from promoter-green fluorescent protein (gfp) fusions showed that lhnR suppresses the expression of lhnABC and negatively autoregulates its own expression. It was also shown that lhnABC negatively affects its own expression and positively affects the transcription of lhnR. lhnR and lhnABC constitute a regulatory circuit that coordinates the transcription level of lhnR, resulting in the expression of swarming, surfactant, HR and necrosis phenotypes.
Collapse
Affiliation(s)
- Desen Zheng
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | |
Collapse
|
12
|
LasR Receptor for Detection of Long-Chain Quorum-Sensing Signals: Identification of N-Acyl-homoserine Lactones Encoded by the avsI Locus of Agrobacterium vitis. Curr Microbiol 2010; 62:101-10. [DOI: 10.1007/s00284-010-9679-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
13
|
Süle S, Cursino L, Zheng D, Hoch H, Burr T. Surface motility and associated surfactant production inAgrobacterium vitis. Lett Appl Microbiol 2009; 49:596-601. [DOI: 10.1111/j.1472-765x.2009.02716.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Subramoni S, Venturi V. LuxR-family 'solos': bachelor sensors/regulators of signalling molecules. MICROBIOLOGY-SGM 2009; 155:1377-1385. [PMID: 19383698 DOI: 10.1099/mic.0.026849-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Acylhomoserine lactone (AHL) quorum-sensing (QS) signalling is the best-understood chemical language in proteobacteria. In the last 15 years a large amount of research in several bacterial species has revealed in detail the genetic, molecular and biochemical mechanisms underlying AHL signalling. These studies have revealed the role played by protein pairs of the AHL synthase belonging to the LuxI family and cognate LuxR-family AHL sensor-regulator. Proteobacteria however commonly possess a QS LuxR-family protein for which there is no obvious cognate LuxI synthase; these proteins are found in bacteria which possess a complete AHL QS system(s) as well as in bacteria that do not. Scientists are beginning to address the roles played by these proteins and it is emerging that they could allow bacteria to respond to endogenous and exogenous signals produced by their neighbours. AHL QS research thus far has mainly focused on a cell-density response involving laboratory monoculture studies. Recent findings on the role played by the unpaired LuxR-family proteins highlight the need to address bacterial behaviour and response to signals in mixed communities. Here we review recent progress with respect to these LuxR proteins, which we propose to call LuxR 'solos' since they act on their own without the need for a cognate signal generator. Initial investigations have revealed that LuxR solos have diverse roles in bacterial interspecies and interkingdom communication.
Collapse
Affiliation(s)
- Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
15
|
Abstract
Bacteria can modulate their behavior by releasing and responding to the accumulation of signal molecules. This population co-ordination, referred to as quorum sensing, is prevalent in Gram-negative and Gram-positive bacteria. The essential constituents of quorum-sensing systems include a signal producer, or synthase, and a cognate transcriptional regulator that responds to the accumulated signal molecules. With the availability of bacterial genome sequences and an increased elucidation of quorum-sensing circuits, genes that code for additional transcriptional regulators, usually in excess of the synthase, have been identified. These additional regulators are referred to as 'orphan' regulators, because they are not directly associated with a synthase. Here, we review orphan regulators characterized in various Gram-negative bacteria and their role in expanding the bacterial regulatory network.
Collapse
Affiliation(s)
- Arati V Patankar
- Department of Molecular Biology and Immunology, Center at Fort Worth, University of North Texas Health Science, Fort Worth, TX 75080, USA
| | | |
Collapse
|
16
|
Venturi V, Subramoni S. Future research trends in the major chemical language of bacteria. HFSP JOURNAL 2009; 3:105-16. [PMID: 19794815 DOI: 10.2976/1.3065673] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/16/2008] [Indexed: 01/22/2023]
Abstract
Microbiology was revolutionized in the 1990's by the discovery that many different bacterial species coordinate their behavior when they form a group. In fact, bacteria are now considered multicellular organisms capable of communicating and changing behavior in relation to their cell-density; since 1994 this has been called quorum sensing. This group behavior ensures survival and propagation of the community in many natural environments. Bacterial intercellular communication is mediated by different chemical signals that are synthesized by bacteria which are then either secreted or diffused in the external environment. Bacteria are then able to detect the type and concentration of the signal resulting in regulation of gene expression and, consequently, a synchronized response by the community. The predominant signalling molecules produced by Gram-negative bacteria are N-acyl derivatives of homoserine lactone (AHLs) which have been shown to be produced by over seventy bacterial species. In this essay we discuss the importance of quorum sensing via AHLs and highlight current and future trends in this important field of research.
Collapse
Affiliation(s)
- Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | |
Collapse
|
17
|
Carle SA, Hao G, Zheng D, Sanni-Sanoussi T, Talarico MJ, Hilton JS, Burr TJ. A gene cluster in Agrobacterium vitis homologous to polyketide synthase operons is associated with grape necrosis and hypersensitive response induction on tobacco. FEMS Microbiol Lett 2008; 289:90-6. [PMID: 19054098 DOI: 10.1111/j.1574-6968.2008.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we identify a cluster of eight genes on chromosome 2 of Agrobacterium vitis that is associated with the ability of the bacterium to cause a hypersensitive response on tobacco and a necrosis of grape shoot explants. Three of these genes share a high level of structural and sequence similarity to clusters of genes in other bacteria that encode the enzymes for biosynthesis of polyketides and long-chain polyunsaturated fatty acids. No similar gene clusters were discovered in sequenced genomes of other members of Rhizobiales.
Collapse
Affiliation(s)
- Sigrid A Carle
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Barriuso J, Ramos Solano B, Fray RG, Cámara M, Hartmann A, Gutiérrez Mañero FJ. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:442-452. [PMID: 18384507 DOI: 10.1111/j.1467-7652.2008.00331.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.
Collapse
Affiliation(s)
- Jorge Barriuso
- Universidad San Pablo CEU, Facultad Farmacia, PO Box 67, Boadilla del Monte, 28668 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Morohoshi T, Nakamura Y, Yamazaki G, Ishida A, Kato N, Ikeda T. The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing. J Bacteriol 2007; 189:8333-8. [PMID: 17827290 PMCID: PMC2168703 DOI: 10.1128/jb.01054-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022] Open
Abstract
A number of gram-negative bacteria have a quorum-sensing system and produce N-acyl-l-homoserine lactone (AHL) that they use them as a quorum-sensing signal molecule. Pantoea ananatis is reported as a common colonist of wheat heads at ripening and causes center rot of onion. In this study, we demonstrated that P. ananatis SK-1 produced two AHLs, N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). We cloned the AHL-synthase gene (eanI) and AHL-receptor gene (eanR) and revealed that the deduced amino acid sequence of EanI/EanR showed high identity to those of EsaI/EsaR from P. stewartii. EanR repressed the ean box sequence and the addition of AHLs resulted in derepression of ean box. Inactivation of the chromosomal eanI gene in SK-1 caused disruption of exopolysaccharide (EPS) biosynthesis, biofilm formation, and infection of onion leaves, which were recovered by adding exogenous 3-oxo-C6-HSL. These results demonstrated that the quorum-sensing system involved the biosynthesis of EPS, biofilm formation, and infection of onion leaves in P. ananatis SK-1.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Department of Applied Chemistry, Utsunomiya University, Tochigi 321-8585, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Wang YH, Zhang LQ, Li JY, Wang JH, Wang HM. The quorum-sensing system AvsR-AvsI regulates both long-chain and short-chain acyl-homoserine lactones in Agrobacterium vitis E26. Antonie van Leeuwenhoek 2007; 93:267-73. [PMID: 17906938 DOI: 10.1007/s10482-007-9201-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/06/2007] [Indexed: 11/27/2022]
Abstract
Agrobacterium vitis strain E26 is a nonpathogenic bacterium isolated from grape crown gall. In this study, the identification of a luxR-luxI type quorum-sensing system in strain E26 is reported. This system is involved in the induction of hypersensitive response on tobacco, but not its biocontrol activity. The deduced components AvsI(E26) and AvsR(E26) show the greatest similarity to AvsI(F2/5) and AvsR(F2/5), respectively from A. vitis strain F2/5. The mutant in AvsI(E26) abolished the production of both long-chain and short-chain acyl-homoserine lactones signals as well as the ability to cause hypersensitive response on tobacco. Complementaion of avsI (E26) and avsR (E26) genes restored the lost phenotypes to the level of wild type E26. In pot trial, no significant difference on biocontrol efficiency against grapevine crown gall was found between the wide type E26 and its quorum sensing negative mutants.
Collapse
Affiliation(s)
- Yuan-Hong Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
22
|
Abstract
Homologs of quorum-sensing luxR and luxI regulatory genes, avsR and avsI, were identified in Agrobacterium vitis strain F2/5. Compared to other LuxI proteins from related species, the deduced AvsI shows the greatest identity to SinI (71%) from Sinorhizobium meliloti Rm1021. AvsR possesses characteristic autoinducer binding and helix-turn-helix DNA binding domains and shares a high level of identity with SinR (38%) from Rm1021. Site-directed mutagenesis of avsR and avsI was performed, and both genes are essential for hypersensitive-like response (HR) and necrosis. Two hypothetical proteins (ORF1 and ORF2) that are positioned downstream of avsR-avsI are also essential for the phenotypes. Profiles of N-acyl-homoserine lactones (AHLs) isolated from the wild type and mutants revealed that disruption of avsI, ORF1, or ORF2 abolished the production of long-chain AHLs. Disruption of avsR reduces long-chain AHLs. Expression of a cloned avsI gene in A. tumefaciens strain NT1 resulted in synthesis of long-chain AHLs. The necrosis and HR phenotypes of the avsI and avsR mutants were fully complemented with cloned avsI. The addition of synthetic AHLs (C(16:1) and 3-O-C(16:1)) complemented grape necrosis in the avsR, avsI, ORF1, and ORF2 mutants. It was determined by reverse transcriptase PCR that the expression level of avsI is regulated by avsR but not by aviR or avhR, two other luxR homologs which were previously shown to be associated with induction of a tobacco hypersensitive response and grape necrosis. We further verified that avsR regulates avsI by measuring the expression of an avsI::lacZ fusion construct.
Collapse
Affiliation(s)
- Guixia Hao
- Department of Plant Pathology, NYSAES, Cornell University, Geneva, NY 14456, USA
| | | |
Collapse
|
23
|
Scott RA, Weil J, Le PT, Williams P, Fray RG, von Bodman SB, Savka MA. Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:227-39. [PMID: 16570653 DOI: 10.1094/mpmi-19-0227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two N-acyl-homoserine lactone (acyl-HSL) synthase genes, lasI from Pseudomonas aeruginosa and yenI from Yersinia enterocolitica, were introduced into tobacco, individually and in combination. Liquid chromatograph-tandem mass spectrometry and thin-layer chromatography confirmed products of lasI and yenI activity in single and cotransformants. Cotransformants expressing plastid-localized LasI and YenI synthases produced the major acyl-HSLs for each synthase in all tissues tested. Total acyl-HSL signals accumulated in leaf tissue up to 3 pmol/mg of fresh weight, half as much in stem tissue, and approximately 10-fold less in root tissues. Acyl-HSLs were present in aqueous leaf washes from greenhouse-grown transgenic plants. Transgenic lines grown for 14 days under axenic conditions produced detectable levels of acyl-HSLs in root exudates. Ethyl acetate extractions of rhizosphere and nonrhizosphere soil from transgenically grown plants contained active acyl-HSLs, whereas plant-free soil or rhizosphere and nonrhizosphere soil from wild-type plants lacked detectable amounts of acyl-HSLs. This work shows that bioactive acyl-HSLs are exuded from leaves and roots and accumulate in the phytosphere of plants engineered to produce acyl-HSLs. These data further suggest that plants that are bioengineered to synthesize acyl-HSLs can foster beneficial plant-bacteria communications or deter deleterious interactions. Therefore, it is feasible to use bioengineered plants to supplement soils with specific acyl-HSLs to modulate bacterial phenotypes and plant-associated bacterial community structures.
Collapse
Affiliation(s)
- Russell A Scott
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Molina L, Rezzonico F, Défago G, Duffy B. Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 2005; 187:3206-13. [PMID: 15838048 PMCID: PMC1082838 DOI: 10.1128/jb.187.9.3206-3213.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.
Collapse
Affiliation(s)
- Lázaro Molina
- Swiss Federal Institute of Technology (ETHZ), Institute for Plant Sciences, Phytopathology Group, Zürich, Switzerland.
| | | | | | | |
Collapse
|
25
|
Creasap JE, Reid CL, Goffinet MC, Aloni R, Ullrich C, Burr TJ. Effect of Wound Position, Auxin, and Agrobacterium vitis Strain F2/5 on Wound Healing and Crown Gall in Grapevine. PHYTOPATHOLOGY 2005; 95:362-367. [PMID: 18943037 DOI: 10.1094/phyto-95-0362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Agrobacterium vitis is the causal agent of crown gall disease in grapevine, which can be severe in many regions worldwide. Vitis vinifera cultivars are highly susceptible to freeze injury, providing the wounds necessary for infection by A. vitis. Wound position in relation to the uppermost bud of cuttings was determined to be important in tumor development. Inoculated wounds below buds developed tumors, whereas wounds opposite the bud did not, implying that indole-3-aectic acid flow contributes to tumor formation. If auxin was applied to wounds prior to inoculation with a tumorigenic A. vitis strain, all sites of inoculation developed tumors, accompanied by an increased amount of callus in the cambium. Wounds inoculated with an A. vitis biological control strain F2/5 prior to application of the pathogen did not develop galls. A closer examination of these wounds determined that callus cells formed in the cambium during wound healing are susceptible to transformation by the pathogen. Although the mechanism by which F2/5 prevents transformation is unknown, our observations suggest that F2/5 inhibits normal wound healing by inducing necrosis in the cambium.
Collapse
|
26
|
Hao G, Zhang H, Zheng D, Burr TJ. luxR homolog avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hypersensitive response. J Bacteriol 2005; 187:185-92. [PMID: 15601702 PMCID: PMC538803 DOI: 10.1128/jb.187.1.185-192.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 09/16/2004] [Indexed: 11/20/2022] Open
Abstract
The luxR homolog aviR in Agrobacterium vitis strain F2/5 was recently shown to be associated with induction of a hypersensitive response (HR) on tobacco and necrosis on grape plants, indicating that the responses are regulated by quorum sensing. We now report a second luxR homolog, avhR, whose disruption (mutant M1320) results in HR-negative and reduced grape necrosis phenotypes. The deduced AvhR protein has characteristic autoinducer binding and DNA binding domains and is unique among reported functional LuxR homologs in having substitutions at highly conserved Asp70, Trp57, and Trp85 residues, which are predicted to play important roles in autoinducer binding in TraR. M1320 was fully complemented with cloned avhR. The same array of N-acylhomoserine lactones (AHL) from F2/5, M1320, and complemented M1320 were observed; however, the signal strength from extracts of 6-day-old M1320 cultures was stronger than that of F2/5. Cultures of F2/5 amended with AHL extracts from overnight and 6-day cultures of F2/5 and M1320 were not affected in ability to cause HR or necrosis. A region of about 14 kb flanking avhR was sequenced and compared with homologous regions of A. tumefaciens C58 and Sinorhizobium meliloti Rm1021 genomes. Gene order and homology are conserved between the species. A site-directed mutation in a putative gene that resides downstream of avhR and that has homology to genes belonging to the ATP-binding cassette transporter family did not affect HR or necrosis phenotypes. It was determined that avhR and aviR are expressed independently and that neither regulates the expression of a clpA homolog in F2/5.
Collapse
Affiliation(s)
- Guixia Hao
- Department of Plant Pathology, NYSAES, Cornell University, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|