1
|
Zhu W, Cao S, Huang M, Li P, Ke J, Xu A, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Differential phosphorylation of receptor kinase SlLYK4 mediates immune responses to bacterial and fungal pathogens in tomato. SCIENCE ADVANCES 2025; 11:eadu2840. [PMID: 40446045 PMCID: PMC12124392 DOI: 10.1126/sciadv.adu2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating plant disease. Exopolysaccharide (EPS), a major virulence factor of R. solanacearum, elicits pattern-triggered immunity (PTI) in tomato, but the means by which EPS is recognized in the plant remain poorly understood. We found that tomato non-arginine-aspartate (non-RD) receptor kinase SlLYK4 mediates the perception of R. solanacearum EPS and positively regulates resistance to bacterial wilt. The RD receptor kinases SlLYK1 and SlLYK13 are required for EPS-triggered immune responses and form complexes with SlLYK4. These receptor kinase complexes have dual functions in recognizing bacterial EPS and fungal chitin. Phosphorylation of serine-320 in the juxtamembrane domain of SlLYK4 is essential in EPS- and chitin-mediated signaling, whereas phosphorylation of serine-334 or serine-634 in the C-terminal domain is required for chitin or EPS signaling, respectively. Our results reveal the mechanism underlying EPS recognition in tomato and provide insight into how differential phosphorylation of receptor kinase regulates antibacterial and antifungal immunity.
Collapse
Affiliation(s)
- Wanting Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sen Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengling Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingjing Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ai Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. Proc Natl Acad Sci U S A 2024; 121:e2319499121. [PMID: 38814867 PMCID: PMC11161748 DOI: 10.1073/pnas.2319499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA95616
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR97331
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Judith Fliegmann
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | | | - Georg Felix
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA95616
| |
Collapse
|
3
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558511. [PMID: 37790530 PMCID: PMC10543004 DOI: 10.1101/2023.09.21.558511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis CA 95616, USA
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR, USA
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Adam Steinbrenner
- University of Washington, Department of Biology, Box 351800, Seattle, WA, 98195, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
4
|
Wang R, Li C, Jia Z, Su Y, Ai Y, Li Q, Guo X, Tao Z, Lin F, Liang Y. Reversible phosphorylation of a lectin-receptor-like kinase controls xylem immunity. Cell Host Microbe 2023; 31:2051-2066.e7. [PMID: 37977141 DOI: 10.1016/j.chom.2023.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Pattern-recognition receptors (PRRs) mediate basal resistance to most phytopathogens. However, plant responses can be cell type specific, and the mechanisms governing xylem immunity remain largely unknown. We show that the lectin-receptor-like kinase LORE contributes to xylem basal resistance in Arabidopsis upon infection with Ralstonia solanacearum, a destructive plant pathogen that colonizes the xylem to cause bacterial wilt. Following R. solanacearum infection, LORE is activated by phosphorylation at residue S761, initiating a phosphorelay that activates reactive oxygen species production and cell wall lignification. To prevent prolonged activation of immune signaling, LORE recruits and phosphorylates type 2C protein phosphatase LOPP, which dephosphorylates LORE and attenuates LORE-mediated xylem immunity to maintain immune homeostasis. A LOPP knockout confers resistance against bacterial wilt disease in Arabidopsis and tomatoes without impacting plant growth. Thus, our study reveals a regulatory mechanism in xylem immunity involving the reversible phosphorylation of receptor-like kinases.
Collapse
Affiliation(s)
- Ran Wang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Chenying Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Zhiyi Jia
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yaxing Su
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Qinghong Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Xijie Guo
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China.
| | - Yan Liang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Chen Y, Zhao A, Wei Y, Mao Y, Zhu JK, Macho AP. GmFLS2 contributes to soybean resistance to Ralstonia solanacearum. THE NEW PHYTOLOGIST 2023; 240:17-22. [PMID: 37391882 DOI: 10.1111/nph.19111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Yujiao Chen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Mao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
6
|
Trinh J, Li T, Franco JY, Toruño TY, Stevens DM, Thapa SP, Wong J, Pineda R, de Dios EÁ, Kahn TL, Seymour DK, Ramadugu C, Coaker GL. Variation in microbial feature perception in the Rutaceae family with immune receptor conservation in citrus. PLANT PHYSIOLOGY 2023; 193:689-707. [PMID: 37144828 PMCID: PMC10686701 DOI: 10.1093/plphys/kiad263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Although much is known about the responses of model plants to microbial features, we still lack an understanding of the extent of variation in immune perception across members of a plant family. In this work, we analyzed immune responses in Citrus and wild relatives, surveying 86 Rutaceae genotypes with differing leaf morphologies and disease resistances. We found that responses to microbial features vary both within and between members. Species in 2 subtribes, the Balsamocitrinae and Clauseninae, can recognize flagellin (flg22), cold shock protein (csp22), and chitin, including 1 feature from Candidatus Liberibacter species (csp22CLas), the bacterium associated with Huanglongbing. We investigated differences at the receptor level for the flagellin receptor FLAGELLIN SENSING 2 (FLS2) and the chitin receptor LYSIN MOTIF RECEPTOR KINASE 5 (LYK5) in citrus genotypes. We characterized 2 genetically linked FLS2 homologs from "Frost Lisbon" lemon (Citrus ×limon, responsive) and "Washington navel" orange (Citrus ×aurantium, nonresponsive). Surprisingly, FLS2 homologs from responsive and nonresponsive genotypes were expressed in Citrus and functional when transferred to a heterologous system. "Washington navel" orange weakly responded to chitin, whereas "Tango" mandarin (C. ×aurantium) exhibited a robust response. LYK5 alleles were identical or nearly identical between the 2 genotypes and complemented the Arabidopsis (Arabidopsis thaliana) lyk4/lyk5-2 mutant with respect to chitin perception. Collectively, our data indicate that differences in chitin and flg22 perception in these citrus genotypes are not the results of sequence polymorphisms at the receptor level. These findings shed light on the diversity of perception of microbial features and highlight genotypes capable of recognizing polymorphic pathogen features.
Collapse
Affiliation(s)
- Jessica Trinh
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Justin Wong
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Rebeca Pineda
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Emmanuel Ávila de Dios
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Tracy L Kahn
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Danelle K Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Gitta L Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
8
|
RING-Type E3 Ubiquitin Ligases AtRDUF1 and AtRDUF2 Positively Regulate the Expression of PR1 Gene and Pattern-Triggered Immunity. Int J Mol Sci 2022; 23:ijms232314525. [PMID: 36498851 PMCID: PMC9739713 DOI: 10.3390/ijms232314525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.
Collapse
|
9
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
10
|
Fan L, Fröhlich K, Melzer E, Pruitt RN, Albert I, Zhang L, Joe A, Hua C, Song Y, Albert M, Kim ST, Weigel D, Zipfel C, Chae E, Gust AA, Nürnberger T. Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nat Commun 2022; 13:1294. [PMID: 35277499 PMCID: PMC8917236 DOI: 10.1038/s41467-022-28887-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Activation of plant pattern-triggered immunity (PTI) relies on the recognition of microbe-derived structures, termed patterns, through plant-encoded surface-resident pattern recognition receptors (PRRs). We show that proteobacterial translation initiation factor 1 (IF1) triggers PTI in Arabidopsis thaliana and related Brassicaceae species. Unlike for most other immunogenic patterns, IF1 elicitor activity cannot be assigned to a small peptide epitope, suggesting that tertiary fold features are required for IF1 receptor activation. We have deployed natural variation in IF1 sensitivity to identify Arabidopsis leucine-rich repeat (LRR) receptor-like protein 32 (RLP32) as IF1 receptor using a restriction site-associated DNA sequencing approach. RLP32 confers IF1 sensitivity to rlp32 mutants, IF1-insensitive Arabidopsis accessions and IF1-insensitive Nicotiana benthamiana, binds IF1 specifically and forms complexes with LRR receptor kinases SOBIR1 and BAK1 to mediate signaling. Similar to other PRRs, RLP32 confers resistance to Pseudomonas syringae, highlighting an unexpectedly complex array of bacterial pattern sensors within a single plant species. Pattern-triggered immunity is activated by recognition of microbe-derived structures by host pattern recognition receptors. Here the authors use a genotype-by sequencing approach to show that bacterial translation initiation factor 1 triggers PTI in Arabidopsis thaliana after recognition by the RLP32 receptor.
Collapse
Affiliation(s)
- Li Fan
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Katja Fröhlich
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Eric Melzer
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,BioChem agrar, Labor für biologische und chemische Analytik GmbH, Machern, Germany
| | - Rory N Pruitt
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lisha Zhang
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Anna Joe
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Chenlei Hua
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Yanyue Song
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Markus Albert
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Medical & Biological Sciences, The Catholic University of Korea, Bucheon-si, South Korea
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Andrea A Gust
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany. .,Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
11
|
Ercoli MF, Luu DD, Rim EY, Shigenaga A, Teixeira de Araujo A, Chern M, Jain R, Ruan R, Joe A, Stewart V, Ronald P. Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proc Natl Acad Sci U S A 2022; 119:e2121568119. [PMID: 35131901 PMCID: PMC8872720 DOI: 10.1073/pnas.2121568119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
In this article, we describe the development of the plant immunity field, starting with efforts to understand the genetic basis for disease resistance, which ∼30 y ago led to the discovery of diverse classes of immune receptors that recognize and respond to infectious microbes. We focus on knowledge gained from studies of the rice XA21 immune receptor that recognizes RaxX (required for activation of XA21 mediated immunity X), a sulfated microbial peptide secreted by the gram-negative bacterium Xanthomonas oryzae pv. oryzae. XA21 is representative of a large class of plant and animal immune receptors that recognize and respond to conserved microbial molecules. We highlight the complexity of this large class of receptors in plants, discuss a possible role for RaxX in Xanthomonas biology, and draw attention to the important role of sulfotyrosine in mediating receptor-ligand interactions.
Collapse
Affiliation(s)
- María Florencia Ercoli
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Dee Dee Luu
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Ellen Youngsoo Rim
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Alexandra Shigenaga
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Artur Teixeira de Araujo
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Rashmi Jain
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Randy Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Anna Joe
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Valley Stewart
- Department of Microbiology and Molecular Genetics, University of California, Davis 95616, CA
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616;
- The Genome Center, University of California, Davis, CA 95616
| |
Collapse
|
12
|
Malvino ML, Bott AJ, Green CE, Majumdar T, Hind SR. Influence of Flagellin Polymorphisms, Gene Regulation, and Responsive Memory on the Motility of Xanthomonas Species That Cause Bacterial Spot Disease of Solanaceous Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:157-169. [PMID: 34732057 DOI: 10.1094/mpmi-08-21-0211-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasingly, new evidence has demonstrated variability in the epitope regions of bacterial flagellin, including in regions harboring the microbe-associated molecular patterns flg22 and flgII-28 that are recognized by the pattern recognition receptors FLS2 and FLS3, respectively. Additionally, because bacterial motility is known to contribute to pathogen virulence and chemotaxis, reductions in or loss of motility can significantly reduce bacterial fitness. In this study, we determined that variations in flg22 and flgII-28 epitopes allow some but not all Xanthomonas spp. to evade both FLS2- and FLS3-mediated oxidative burst responses. We observed variation in the motility for many isolates, regardless of their flagellin sequence. Instead, we determined that past growth conditions may have a significant impact on the motility status of isolates, because we could minimize this variability by inducing motility using chemoattractant assays. Additionally, motility could be significantly suppressed under nutrient-limited conditions, and bacteria could "remember" its prior motility status after storage at ultracold temperatures. Finally, we observed larger bacterial populations of strains with flagellin variants predicted not to be recognized by either FLS2 or FLS3, suggesting that these bacteria can evade flagellin recognition in tomato plants. Although some flagellin variants may impart altered motility and differential recognition by the host immune system, external growth parameters and gene expression regulation appear to have more significant impacts on the motility phenotypes for these Xanthomonas spp.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maria L Malvino
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Amie J Bott
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Cory E Green
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Tanvi Majumdar
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| |
Collapse
|
13
|
Xu C, Zhong L, Huang Z, Li C, Lian J, Zheng X, Liang Y. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. PLANT METHODS 2022; 18:7. [PMID: 35033123 PMCID: PMC8761306 DOI: 10.1186/s13007-022-00841-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ralstonia solanacearum, one of the most devastating bacterial plant pathogens, is the causal agent of bacterial wilt. Recently, several studies on resistance to bacterial wilt have been conducted using the Arabidopsis-R. solanacearum system. However, the progress of R. solanacearum infection in Arabidopsis is still unclear. RESULTS We generated a bioluminescent R. solanacearum by expressing plasmid-based luxCDABE. Expression of luxCDABE did not alter the bacterial growth and pathogenicity. The light intensity of bioluminescent R. solanacearum was linearly related to bacterial concentrations from 104 to 108 CFU·mL-1. After root inoculation with bioluminescent R. solanacearum strain, light signals in tomato and Arabidopsis were found to be transported from roots to stems via the vasculature. Quantification of light intensity from the bioluminescent strain accurately reported the difference in disease resistance between Arabidopsis wild type and resistant mutants. CONCLUSIONS Bioluminescent R. solanacearum strain spatially and quantitatively measured bacterial growth in tomato and Arabidopsis, and offered a tool for the high-throughput study of R. solanacearum-Arabidopsis interaction in the future.
Collapse
Affiliation(s)
- Cuihong Xu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lingkun Zhong
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zeming Huang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenying Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuefang Zheng
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Fuzhou, 350003, China
| | - Yan Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Liu T, Cao L, Cheng Y, Ji J, Wei Y, Wang C, Duan K. MKK4/5-MPK3/6 Cascade Regulates Agrobacterium-Mediated Transformation by Modulating Plant Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:731690. [PMID: 34659297 PMCID: PMC8514879 DOI: 10.3389/fpls.2021.731690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 05/25/2023]
Abstract
Agrobacterium tumefaciens is a specialized plant pathogen that causes crown gall disease and is commonly used for Agrobacterium-mediated transformation. As a pathogen, Agrobacterium triggers plant immunity, which affects transformation. However, the signaling components and pathways in plant immunity to Agrobacterium remain elusive. We demonstrate that two Arabidopsis mitogen-activated protein kinase kinases (MAPKKs) MKK4/MKK5 and their downstream mitogen-activated protein kinases (MAPKs) MPK3/MPK6 play major roles in both Agrobacterium-triggered immunity and Agrobacterium-mediated transformation. Agrobacteria induce MPK3/MPK6 activity and the expression of plant defense response genes at a very early stage. This process is dependent on the MKK4/MKK5 function. The loss of the function of MKK4 and MKK5 or their downstream MPK3 and MPK6 abolishes plant immunity to agrobacteria and increases transformation frequency, whereas the activation of MKK4 and MKK5 enhances plant immunity and represses transformation. Global transcriptome analysis indicates that agrobacteria induce various plant defense pathways, including reactive oxygen species (ROS) production, ethylene (ET), and salicylic acid- (SA-) mediated defense responses, and that MKK4/MKK5 is essential for the induction of these pathways. The activation of MKK4 and MKK5 promotes ROS production and cell death during agrobacteria infection. Based on these results, we propose that the MKK4/5-MPK3/6 cascade is an essential signaling pathway regulating Agrobacterium-mediated transformation through the modulation of Agrobacterium-triggered plant immunity.
Collapse
|
15
|
Buscaill P, van der Hoorn RAL. Defeated by the nines: nine extracellular strategies to avoid microbe-associated molecular patterns recognition in plants. THE PLANT CELL 2021; 33:2116-2130. [PMID: 33871653 PMCID: PMC8364246 DOI: 10.1093/plcell/koab109] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/07/2021] [Indexed: 05/13/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by cell-surface receptors is pivotal in host-microbe interactions. Both pathogens and symbionts establish plant-microbe interactions using fascinating intricate extracellular strategies to avoid recognition. Here we distinguish nine different extracellular strategies to avoid recognition by the host, acting at three different levels. To avoid the accumulation of MAMP precursors (Level 1), microbes take advantage of polymorphisms in both MAMP proteins and glycans, or downregulate MAMP production. To reduce hydrolytic MAMP release (Level 2), microbes shield MAMP precursors with proteins or glycans and inhibit or degrade host-derived hydrolases. And to prevent MAMP perception directly (Level 3), microbes degrade or sequester MAMPs before they are perceived. We discuss examples of these nine strategies and envisage three additional extracellular strategies to avoid MAMP perception in plants.
Collapse
Affiliation(s)
- Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
16
|
Cheng JHT, Bredow M, Monaghan J, diCenzo GC. Proteobacteria Contain Diverse flg22 Epitopes That Elicit Varying Immune Responses in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:504-510. [PMID: 33560865 DOI: 10.1094/mpmi-11-20-0314-sc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial flagellin protein is a potent microbe-associated molecular pattern. Immune responses are triggered by a 22-amino-acid epitope derived from flagellin, known as flg22, upon detection by the pattern recognition receptor FLAGELLIN-SENSING2 (FLS2) in multiple plant species. However, increasing evidence suggests that flg22 epitopes of several bacterial species are not universally immunogenic to plants. We investigated whether flg22 immunogenicity systematically differs between classes of the phylum Proteobacteria, using a dataset of 2,470 flg22 sequences. To predict which species encode highly immunogenic flg22 epitopes, we queried a custom motif (11[ST]xx[DN][DN]xAGxxI21) in the flg22 sequences, followed by sequence conservation analysis and protein structural modeling. These data led us to hypothesize that most flg22 epitopes of the γ- and β-Proteobacteria are highly immunogenic, whereas most flg22 epitopes of the α-, δ-, and ε-Proteobacteria are weakly to moderately immunogenic. To test this hypothesis, we generated synthetic peptides representative of the flg22 epitopes of each proteobacterial class, and we monitored their ability to elicit an immune response in Arabidopsis thaliana. The flg22 peptides of γ- and β-Proteobacteria triggered strong oxidative bursts, whereas peptides from the ε-, δ-, and α-Proteobacteria triggered moderate, weak, or no response, respectively. These data suggest flg22 immunogenicity is not highly conserved across the phylum Proteobacteria. We postulate that sequence divergence of each taxonomic class was present prior to the evolution of FLS2, and that the ligand specificity of A. thaliana FLS2 was driven by the flg22 epitopes of the γ- and β-Proteobacteria, a monophyletic group containing many common phytopathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Janis H T Cheng
- Department of Biology, Queen's University, Kingston ON, K7L 3N6, Canada
| | - Melissa Bredow
- Department of Biology, Queen's University, Kingston ON, K7L 3N6, Canada
| | | | - George C diCenzo
- Department of Biology, Queen's University, Kingston ON, K7L 3N6, Canada
| |
Collapse
|
17
|
Steinbrenner AD, Muñoz-Amatriaín M, Chaparro AF, Aguilar-Venegas JM, Lo S, Okuda S, Glauser G, Dongiovanni J, Shi D, Hall M, Crubaugh D, Holton N, Zipfel C, Abagyan R, Turlings TCJ, Close TJ, Huffaker A, Schmelz EA. A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proc Natl Acad Sci U S A 2020; 117:31510-31518. [PMID: 33229576 PMCID: PMC7733821 DOI: 10.1073/pnas.2018415117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Maria Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | | | - Jessica Montserrat Aguilar-Venegas
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Laboratory of AgriGenomic Sciences, Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, 37684 Leon, Mexico
| | - Sassoum Lo
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Satohiro Okuda
- Department for Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaetan Glauser
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julien Dongiovanni
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Marlo Hall
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Daniel Crubaugh
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ted C J Turlings
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
18
|
The LysR-Type Transcriptional Regulator CrgA Negatively Regulates the Flagellar Master Regulator flhDC in Ralstonia solanacearum GMI1000. J Bacteriol 2020; 203:JB.00419-20. [PMID: 33046561 DOI: 10.1128/jb.00419-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 01/07/2023] Open
Abstract
The invasion and colonization of host plants by the destructive pathogen Ralstonia solanacearum rely on its cell motility, which is controlled by multiple factors. Here, we report that the LysR-type transcriptional regulator CrgA (RS_RS16695) represses cell motility in R. solanacearum GMI1000. CrgA possesses common features of a LysR-type transcriptional regulator and contains an N-terminal helix-turn-helix motif as well as a C-terminal LysR substrate-binding domain. Deletion of crgA results in an enhanced swim ring and increased transcription of flhDC In addition, the ΔcrgA mutant possesses more polar flagella than wild-type GMI1000 and exhibits higher expression of the flagellin gene fliC Despite these alterations, the ΔcrgA mutant did not have a detectable growth defect in culture. Yeast one-hybrid and electrophoretic mobility shift assays revealed that CrgA interacts directly with the flhDC promoter. Expressing the β-glucuronidase (GUS) reporter under the control of the crgA promoter showed that crgA transcription is dependent on cell density. Soil-soaking inoculation with the crgA mutant caused wilt symptoms on tomato (Solanum lycopersicum L. cv. Hong yangli) plants earlier than inoculation with the wild-type GMI1000 but resulted in lower disease severity. We conclude that the R. solanacearum regulator CrgA represses flhDC expression and consequently affects the expression of fliC to modulate cell motility, thereby conditioning disease development in host plants.IMPORTANCE Ralstonia solanacearum is a widely distributed soilborne plant pathogen that causes bacterial wilt disease on diverse plant species. Motility is a critical virulence attribute of R. solanacearum because it allows this pathogen to efficiently invade and colonize host plants. In R. solanacearum, motility-defective strains are markedly affected in pathogenicity, which is coregulated with multiple virulence factors. In this study, we identified a new LysR-type transcriptional regulator (LTTR), CrgA, that negatively regulates motility. The mutation of the corresponding gene leads to the precocious appearance of wilt symptoms on tomato plants when the pathogen is introduced using soil-soaking inoculation. This study indicates that the regulation of R. solanacearum motility is more complex than previously thought and enhances our understanding of flagellum regulation in R. solanacearum.
Collapse
|
19
|
Zhou F, Emonet A, Dénervaud Tendon V, Marhavy P, Wu D, Lahaye T, Geldner N. Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots. Cell 2020; 180:440-453.e18. [PMID: 32032516 PMCID: PMC7042715 DOI: 10.1016/j.cell.2020.01.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Aurélia Emonet
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valérie Dénervaud Tendon
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter Marhavy
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Dousheng Wu
- ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Thomas Lahaye
- ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
Wei Y, Balaceanu A, Rufian JS, Segonzac C, Zhao A, Morcillo RJL, Macho AP. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat Commun 2020; 11:3763. [PMID: 32724132 PMCID: PMC7387336 DOI: 10.1038/s41467-020-17573-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/05/2020] [Indexed: 11/18/2022] Open
Abstract
In both animals and plants, the perception of bacterial flagella by immune receptors elicits the activation of defence responses. Most plants are able to perceive the highly conserved epitope flg22 from flagellin, the main flagellar protein, from most bacterial species. However, flagellin from Ralstonia solanacearum, the causal agent of the bacterial wilt disease, presents a polymorphic flg22 sequence (flg22Rso) that avoids perception by all plants studied to date. In this work, we show that soybean has developed polymorphic versions of the flg22 receptors that are able to perceive flg22Rso. Furthermore, we identify key residues responsible for both the evasion of perception by flg22Rso in Arabidopsis and the gain of perception by the soybean receptors. Heterologous expression of the soybean flg22 receptors in susceptible plant species, such as tomato, enhances resistance to bacterial wilt disease, demonstrating the potential of these receptors to enhance disease resistance in crop plants.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexandra Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
21
|
Xue H, Lozano-Durán R, Macho AP. Insights into the Root Invasion by the Plant Pathogenic Bacterium Ralstonia solanacearum. PLANTS (BASEL, SWITZERLAND) 2020; 9:E516. [PMID: 32316375 PMCID: PMC7238422 DOI: 10.3390/plants9040516] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
The plant pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soil-borne microbe that infects host plants through their roots. The initial mutual recognition between host plants and bacteria and the ensuing invasion of root tissues by R. solanacearum are critical steps in the establishment of the infection, and can determine the outcome of the interaction between plant and pathogen. In this minireview, we will focus on the early stages of the bacterial invasion, offering an overview of the defence mechanisms deployed by the host plants, the manipulation exerted by the pathogen in order to promote virulence, and the alterations in root development concomitant to bacterial colonization.
Collapse
Affiliation(s)
- Hao Xue
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| |
Collapse
|
22
|
Tian SN, Liu DD, Zhong CL, Xu HY, Yang S, Fang Y, Ran J, Liu JZ. Silencing GmFLS2 enhances the susceptibility of soybean to bacterial pathogen through attenuating the activation of GmMAPK signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110386. [PMID: 32005391 DOI: 10.1016/j.plantsci.2019.110386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The plasma membrane (PM)-localized receptor-like kinases (RLKs) play important roles in pathogen defense. One of the first cloned RLKs is the Arabidopsis receptor kinase FLAGELLIN SENSING 2 (FLS2), which specifically recognizes a conserved 22 amino acid N-terminal sequence of Pseudomonas syringae pv.tomato DC3000 (Pst) flagellin protein (flg22). Although extensively studied in Arabidopsis, the functions of RLKs in crop plants remain largely uninvestigated. To understand the roles of RLKs in soybean (Glycine max), GmFLS2 was silenced via virus induced gene silencing (VIGS) mediated by Bean pod mottle virus (BPMV). No significant morphological differences were observed between GmFLS2-silenced plants and the vector control plants. However, silencing GmFLS2 significantly enhanced the susceptibility of the soybean plants to Pseudomonas syringae pv.glycinea (Psg). Kinase activity assay showed that silencing GmFLS2 significantly reduced the phosphorylation level of GmMPK6 in response to flg22 treatment. However, reduced phosphorylation level of both GmMPK3 and GmMPK6 in response to Psg infection was observed in GmFLS2-silenced plants, implying that defense response is likely transduced through activation of the downstream GmMAPK signaling pathway upon recognition of bacterial pathogen by GmFLS2. The core peptides of flg22 from Pst and Psg were highly conserved and only 4 amino acid differences were seen at their N-termini. Interestingly, it appeared that the Psg-flg22 was more effective in activating soybean MAPKs than activating Arabidopsis MAPKs, and conversely, Pst-flg22 was more effective in activating Arabidopsis MAPKs than activating soybean MAPKs, suggesting that the cognate recognition is more potent than heterologous recognition in activating downstream signaling. Taken together, our results suggest that the function of FLS2 is conserved in immunity against bacteria pathogens across different plant species.
Collapse
Affiliation(s)
- Sheng-Nan Tian
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Dan-Dan Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Chen-Li Zhong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Hui-Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Shuo Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China.
| |
Collapse
|
23
|
Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity. J Bacteriol 2020; 202:JB.00418-19. [PMID: 31740494 DOI: 10.1128/jb.00418-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Flagella power bacterial movement through liquids and over surfaces to access or avoid certain environmental conditions, ultimately increasing a cell's probability of survival and reproduction. In some cases, flagella and chemotaxis are key virulence factors enabling pathogens to gain entry and attach to suitable host tissues. However, flagella are not always beneficial; both plant and animal immune systems have evolved receptors to sense the proteins that make up flagellar filaments as signatures of bacterial infection. Microbes poorly adapted to avoid or counteract these immune functions are unlikely to be successful in host environments, and this selective pressure has driven the evolution of diverse and often redundant pathogen compensatory mechanisms. We tested the role of AlgU, the Pseudomonas extracytoplasmic function sigma factor σE/σ22 ortholog, in regulating flagellar expression in the context of Pseudomonas syringae-plant interactions. We found that AlgU is necessary for downregulating bacterial flagellin expression in planta and that this results in a corresponding reduction in plant immune elicitation. This AlgU-dependent regulation of flagellin gene expression is beneficial to bacterial growth in the course of plant infection, and eliminating the plant's ability to detect flagellin makes this AlgU-dependent function irrelevant for bacteria growing in the apoplast. Together, these results add support to an emerging model in which P. syringae AlgU functions at a key control point that serves to optimize the expression of bacterial functions during host interactions, including minimizing the expression of immune elicitors and concomitantly upregulating beneficial virulence functions.IMPORTANCE Foliar plant pathogens, like Pseudomonas syringae, adjust their physiology and behavior to facilitate host colonization and disease, but the full extent of these adaptations is not known. Plant immune systems are triggered by bacterial molecules, such as the proteins that make up flagellar filaments. In this study, we found that during plant infection, AlgU, a gene expression regulator that is responsive to external stimuli, downregulates expression of fliC, which encodes the flagellin protein, a strong elicitor of plant immune systems. This change in gene expression and resultant change in behavior correlate with reduced plant immune activation and improved P. syringae plant colonization. The results of this study demonstrate the proximate and ultimate causes of flagellar regulation in a plant-pathogen interaction.
Collapse
|
24
|
Cross-Microbial Protection via Priming a Conserved Immune Co-Receptor through Juxtamembrane Phosphorylation in Plants. Cell Host Microbe 2019; 26:810-822.e7. [DOI: 10.1016/j.chom.2019.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
25
|
Sarowar S, Alam ST, Makandar R, Lee H, Trick HN, Dong Y, Shah J. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2019; 20:626-640. [PMID: 30597698 PMCID: PMC6637896 DOI: 10.1111/mpp.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis-F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.
Collapse
Affiliation(s)
- Sujon Sarowar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Present address:
Botanical GeneticsBuffaloNYUSA
| | - Syeda T. Alam
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| | - Ragiba Makandar
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- Department of Plant SciencesUniversity of HyderabadGachibowliHyderabad 500046India
| | - Hyeonju Lee
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKS 66506USA
| | - Yanhong Dong
- Department of Plant PathologyUniversity of MinnesotaSt. PaulMN 55108USA
| | - Jyoti Shah
- Department of Biological SciencesUniversity of North TexasDentonTX 76201USA
- BioDiscovery InstituteUniversity of North TexasDentonTX 76201USA
| |
Collapse
|
26
|
Eckshtain‐Levi N, Weisberg AJ, Vinatzer BA. The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:2187-2192. [PMID: 29660239 PMCID: PMC6638162 DOI: 10.1111/mpp.12688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The detection of pathogen-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is an essential part of plant immunity. Until recently, elf18, an epitope of elongation factor-Tu (EF-Tu), was the sole confirmed PAMP of Ralstonia solanacearum, the causal agent of bacterial wilt disease, limiting our understanding of R. solanacearum-plant interactions. Therefore, we set out to identify additional R. solanacearum PAMPs based on the hypothesis that genes encoding PAMPs are under selection to avoid recognition by plant PRRs. We calculated Tajima's D, a population genetic test statistic which identifies genes that do not evolve neutrally, for 3003 genes conserved in 37 R. solanacearum genomes. The screen flagged 49 non-neutrally evolving genes, including not only EF-Tu but also the gene for Cold Shock Protein C, which encodes the PAMP csp22. Importantly, an R. solanacearum allele of this PAMP was recently identified in a parallel independent study. Genes coding for efflux pumps, some with known roles in virulence, were also flagged by Tajima's D. We conclude that Tajima's D is a straightforward test to identify genes encoding PAMPs and other virulence-related genes in plant pathogen genomes.
Collapse
Affiliation(s)
- Noam Eckshtain‐Levi
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| | - Alexandra J. Weisberg
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| | - Boris A. Vinatzer
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| |
Collapse
|
27
|
Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infestations of crop plants with pathogens pose a major threat to global food supply. Exploiting plant defense mechanisms to produce disease-resistant crop varieties is an important strategy to control plant diseases in modern plant breeding and can greatly reduce the application of agrochemicals. The discovery of different types of immune receptors and a detailed understanding of their activation and regulation mechanisms in the last decades has paved the way for the deployment of these central plant immune components for genetic plant disease management. This review will focus on a particular class of immune sensors, termed pattern recognition receptors (PRRs), that activate a defense program termed pattern-triggered immunity (PTI) and outline their potential to provide broad-spectrum and potentially durable disease resistance in various crop species—simply by providing plants with enhanced capacities to detect invaders and to rapidly launch their natural defense program.
Collapse
|
28
|
Wei Y, Caceres‐Moreno C, Jimenez‐Gongora T, Wang K, Sang Y, Lozano‐Duran R, Macho AP. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1349-1362. [PMID: 29265643 PMCID: PMC5999195 DOI: 10.1111/pbi.12874] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol ) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Carlos Caceres‐Moreno
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Keke Wang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yuying Sang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Alberto P. Macho
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
29
|
A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS One 2017; 12:e0190268. [PMID: 29284022 PMCID: PMC5746271 DOI: 10.1371/journal.pone.0190268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022] Open
Abstract
Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) or loss of Arabidopsis thaliana PARG1 (poly(ADP-ribose) glycohydrolase) disrupt a subset of plant defenses. In the present study we examined the impact of altered poly(ADP-ribosyl)ation on early gene expression induced by the microbe-associate molecular patterns (MAMPs) flagellin (flg22) and EF-Tu (elf18). Stringent statistical analyses and filtering identified 178 genes having MAMP-induced mRNA abundance patterns that were altered by either PARP inhibitor 3-aminobenzamide (3AB) or PARG1 knockout. From the identified set of 178 genes, over fifty Arabidopsis T-DNA insertion lines were chosen and screened for altered basal defense responses. Subtle alterations in callose deposition and/or seedling growth in response to those MAMPs were observed in knockouts of At3g55630 (FPGS3, a cytosolic folylpolyglutamate synthetase), At5g15660 (containing an F-box domain), At1g47370 (a TIR-X (Toll-Interleukin Receptor domain)), and At5g64060 (a predicted pectin methylesterase inhibitor). Over-represented GO terms for the gene expression study included "innate immune response" for elf18/parg1, highlighting a subset of elf18-activated defense-associated genes whose expression is altered in parg1 plants. The study also allowed a tightly controlled comparison of early mRNA abundance responses to flg22 and elf18 in wild-type Arabidopsis, which revealed many differences. The PARP inhibitor 3-methoxybenzamide (3MB) was also used in the gene expression profiling, but pleiotropic impacts of this inhibitor were observed. This transcriptomics study revealed targets for further dissection of MAMP-induced plant immune responses, impacts of PARP inhibitors, and the molecular mechanisms by which poly(ADP-ribosyl)ation regulates plant responses to MAMPs.
Collapse
|
30
|
Di X, Cao L, Hughes RK, Tintor N, Banfield MJ, Takken FLW. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition. THE NEW PHYTOLOGIST 2017; 216:897-914. [PMID: 28857169 PMCID: PMC5659127 DOI: 10.1111/nph.14733] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/03/2017] [Indexed: 05/09/2023]
Abstract
Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full virulence. Here we investigate the virulence function of Avr2 and determine its crystal structure. Transgenic tomato and Arabidopsis expressing either wild-type ΔspAvr2 (deleted signal-peptide) or the ΔspAvr2R45H variant become hypersusceptible to fungal, and even bacterial infections, suggesting that Avr2 targets a conserved defense mechanism. Indeed, Avr2 transgenic plants are attenuated in immunity-related readouts, including flg22-induced growth inhibition, ROS production and callose deposition. The crystal structure of Avr2 reveals that the protein shares intriguing structural similarity to ToxA from the wheat pathogen Pyrenophora tritici-repentis and to TRAF proteins. The I-2 resistance-breaking Avr2V41M , Avr2R45H and Avr2R46P variants cluster on a surface-presented loop. Structure-guided mutagenesis enabled uncoupling of virulence from I-2-mediated recognition. We conclude that I-2-mediated recognition is not based on monitoring Avr2 virulence activity, which includes suppression of immune responses via an evolutionarily conserved effector target, but by recognition of a distinct epitope.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Lingxue Cao
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Richard K. Hughes
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nico Tintor
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Frank L. W. Takken
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| |
Collapse
|
31
|
Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. Interplay Between Innate Immunity and the Plant Microbiota. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:565-589. [PMID: 28645232 DOI: 10.1146/annurev-phyto-080516-035623] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Stijn Spaepen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Rodiuc N, Barlet X, Hok S, Perfus-Barbeoch L, Allasia V, Engler G, Séassau A, Marteu N, de Almeida-Engler J, Panabières F, Abad P, Kemmerling B, Marco Y, Favery B, Keller H. Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease. PLANT, CELL & ENVIRONMENT 2016; 39:1396-407. [PMID: 26290138 DOI: 10.1111/pce.12627] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 05/10/2023]
Abstract
Secreted peptides and their specific receptors frequently orchestrate cell-to-cell communication in plants. Phytosulfokines (PSKs) are secreted tyrosine-sulphated peptide hormones, which trigger cellular dedifferentiation and redifferentiation upon binding to their membrane receptor. Biotrophic plant pathogens frequently trigger the differentiation of host cells into specialized feeding structures, which are essential for successful infection. We found that oomycete and nematode infections were characterized by the tissue-specific transcriptional regulation of genes encoding Arabidopsis PSKs and the PSK receptor 1 (PSKR1). Subcellular analysis of PSKR1 distribution showed that the plasma membrane-bound receptor internalizes after binding of PSK-α. Arabidopsis pskr1 knockout mutants were impaired in their susceptibility to downy mildew infection. Impaired disease susceptibility depends on functional salicylic acid (SA) signalling, but not on the massive up-regulation of SA-associated defence-related genes. Knockout pskr1 mutants also displayed a major impairment of root-knot nematode reproduction. In the absence of functional PSKR1, giant cells arrested their development and failed to fully differentiate. Our findings indicate that the observed restriction of PSK signalling to cells surrounding giant cells contributes to the isotropic growth and maturation of nematode feeding sites. Taken together, our data suggest that PSK signalling in Arabidopsis promotes the differentiation of host cells into specialized feeding cells.
Collapse
Affiliation(s)
- Natalia Rodiuc
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Xavier Barlet
- Laboratoire des Interactions Plantes-Microorganismes, UMR CNRS 2594 - INRA 441, 31326, Castanet Tolosan, France
| | - Sophie Hok
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Laetitia Perfus-Barbeoch
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Valérie Allasia
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Gilbert Engler
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Aurélie Séassau
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nathalie Marteu
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Janice de Almeida-Engler
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Franck Panabières
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Pierre Abad
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Birgit Kemmerling
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Yves Marco
- Laboratoire des Interactions Plantes-Microorganismes, UMR CNRS 2594 - INRA 441, 31326, Castanet Tolosan, France
| | - Bruno Favery
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Harald Keller
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| |
Collapse
|
33
|
Helft L, Thompson M, Bent AF. Directed Evolution of FLS2 towards Novel Flagellin Peptide Recognition. PLoS One 2016; 11:e0157155. [PMID: 27270917 PMCID: PMC4894583 DOI: 10.1371/journal.pone.0157155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wild-type Arabidopsis FLS2 confers little or no response. A targeted approach generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. These studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.
Collapse
Affiliation(s)
- Laura Helft
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mikayla Thompson
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
34
|
Tran TM, MacIntyre A, Hawes M, Allen C. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum. PLoS Pathog 2016; 12:e1005686. [PMID: 27336156 PMCID: PMC4919084 DOI: 10.1371/journal.ppat.1005686] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.
Collapse
Affiliation(s)
- Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Martha Hawes
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
35
|
Ye W, Murata Y. Microbe Associated Molecular Pattern Signaling in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:583. [PMID: 27200056 PMCID: PMC4855242 DOI: 10.3389/fpls.2016.00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Stomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion. The perception of MAMPs induces signal transduction including recruitment of second messengers, such as Ca(2+) and H2O2, phosphorylation events, and change of transporter activity, leading to stomatal movement. In the present review, we summarize recent findings in signaling underlying MAMP-induced stomatal movement by comparing with other signalings.
Collapse
|
36
|
Wang S, Sun Z, Wang H, Liu L, Lu F, Yang J, Zhang M, Zhang S, Guo Z, Bent AF, Sun W. Rice OsFLS2-Mediated Perception of Bacterial Flagellins Is Evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. MOLECULAR PLANT 2015; 8:1024-37. [PMID: 25617720 DOI: 10.1016/j.molp.2015.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 05/26/2023]
Abstract
Bacterial flagellins are often recognized by the receptor kinase FLAGELLIN SENSITIVE2 (FLS2) and activate MAMP-triggered immunity in dicotyledonous plants. However, the capacity of monocotyledonous rice to recognize flagellins of key rice pathogens and its biological relevance remain poorly understood. We demonstrate that ectopically expressed OsFLS2 in Arabidopsis senses the eliciting flg22 peptide and in vitro purified Acidovorax avenae (Aa) flagellin in an expression level-dependent manner, but does not recognize purified flagellins or derivative flg22(Xo) peptides of Xanthomonas oryzae pvs. oryzae (Xoo) and oryzicola (Xoc). Consistently, the flg22 peptide and purified Aa flagellin, but not Xoo/Xoc flagellins, induce various immune responses such as defense gene induction and MAPK activation in rice. Perception of flagellin by rice does induce strong resistance to Xoo infection, as shown after pre-treatment of rice leaves with Aa flagellin. OsFLS2 was found to differ from AtFLS2 in its perception specificities or sensitivities to different flg22 sequences. In addition, post-translational modification of Xoc flagellin was altered by deletion of glycosyltransferase-encoding rbfC, but this had little effect on Xoc motility and rpfC mutation did not detectably reduce Xoc virulence on rice. Deletion of flagellin-encoding fliC from Xoo/Xoc blocked swimming motility but also did not significantly alter Xoo/Xoc virulence. These results suggest that Xoo/Xoc carry flg22-region amino acid changes that allow motility while evading the ancient flagellin detection system in rice, which retains recognition capacity for other bacterial pathogens.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Zhe Sun
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Huiqin Wang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Lijuan Liu
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Fen Lu
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Rice Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong Province, China
| | - Min Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Shiyong Zhang
- Rice Research Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong Province, China
| | - Zejian Guo
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Cook DE, Mesarich CH, Thomma BPHJ. Understanding plant immunity as a surveillance system to detect invasion. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:541-63. [PMID: 26047564 DOI: 10.1146/annurev-phyto-080614-120114] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.
Collapse
Affiliation(s)
- David E Cook
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; ,
| | | | | |
Collapse
|
38
|
Trdá L, Boutrot F, Claverie J, Brulé D, Dorey S, Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. FRONTIERS IN PLANT SCIENCE 2015; 6:219. [PMID: 25904927 PMCID: PMC4389352 DOI: 10.3389/fpls.2015.00219] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 05/19/2023]
Abstract
Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition.
Collapse
Affiliation(s)
- Lucie Trdá
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
| | - Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research ParkNorwich, UK
| | - Justine Claverie
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Daphnée Brulé
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Stephan Dorey
- Laboratoire Stress, Défenses et Reproduction des Plantes, URVVC EA 4707, Université de Reims Champagne-ArdenneReims, France
| | - Benoit Poinssot
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
- *Correspondence: Benoit Poinssot, Université de Bourgogne, UMR 1347 Agroécologie INRA – uB – Agrosup, 17 rue Sully, 21000 Dijon, France
| |
Collapse
|
39
|
Beck M, Wyrsch I, Strutt J, Wimalasekera R, Webb A, Boller T, Robatzek S. Expression patterns of flagellin sensing 2 map to bacterial entry sites in plant shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6487-98. [PMID: 25205577 PMCID: PMC4246182 DOI: 10.1093/jxb/eru366] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pathogens can colonize all plant organs and tissues. To prevent this, each cell must be capable of autonomously triggering defence. Therefore, it is generally assumed that primary sensors of the immune system are constitutively present. One major primary sensor against bacterial infection is the flagellin sensing 2 (FLS2) pattern recognition receptor (PRR). To gain insights into its expression pattern, the FLS2 promoter activity in β-glucuronidase (GUS) reporter lines was monitored. The data show that pFLS2::GUS activity is highest in cells and tissues vulnerable to bacterial entry and colonization, such as stomata, hydathodes, and lateral roots. GUS activity is also high in the vasculature and, by monitoring Ca(2+) responses in the vasculature, it was found that this tissue contributes to flg22-induced Ca(2+) burst. The FLS2 promoter is also regulated in a tissue- and cell type-specific manner and is responsive to hormones, damage, and biotic stresses. This results in stimulus-dependent expansion of the FLS2 expression domain. In summary, a tissue- and cell type-specific map of FLS2 expression has been created correlating with prominent entry sites and target tissues of plant bacterial pathogens.
Collapse
Affiliation(s)
- Martina Beck
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ines Wyrsch
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Basel, Switzerland
| | - James Strutt
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Rinukshi Wimalasekera
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alex Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Thomas Boller
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Basel, Switzerland
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
40
|
González M, Brito N, González C. Identification of glycoproteins secreted by wild-type Botrytis cinerea and by protein O-mannosyltransferase mutants. BMC Microbiol 2014; 14:254. [PMID: 25305780 PMCID: PMC4197228 DOI: 10.1186/s12866-014-0254-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Botrytis cinerea secretes a high number of proteins that are predicted to have numerous O-glycosylation sites, frequently grouped in highly O-glycosylated regions, and analysis of mutants affected in O-glycosylation has shown, in B. cinerea and in other phytopathogenic fungi, that this process is important for fungal biology and virulence. Results We report here the purification of glycoproteins from the culture medium, for a wild-type strain of B. cinerea and for three mutants affected in the first step of O-glycosylation, and the identification of components in the purified protein samples. Overall, 158 proteins were identified belonging to a wide diversity of protein families, which possess Ser/Thr-rich regions (presumably highly O-glycosylated) twice as frequently as the whole secretome. Surprisingly, proteins predicted to be highly O-glycosylated tend to be more abundant in the secretomes of the mutants affected in O-glycosylation than in the wild type, possibly because a correct glycosylation of these proteins helps keep them in the cell wall or extracellular matrix. Overexpression of three proteins predicted to be O-glycosylated in various degrees allowed to confirm the presence of mannose α1-2 and/or α1-3 bonds, but no mannose α1-6 bonds, and resulted in an enhanced activity of the culture medium to elicit plant defenses. Conclusions Glycosylation of secretory proteins is very prevalent in B. cinerea and affects members of diverse protein families. O-glycosylated proteins play a role in the elicitation of plant defenses. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0254-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario González
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| | - Nélida Brito
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| | - Celedonio González
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| |
Collapse
|
41
|
Wang F, Shang Y, Fan B, Yu JQ, Chen Z. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLoS Pathog 2014; 10:e1004243. [PMID: 25010425 PMCID: PMC4092137 DOI: 10.1371/journal.ppat.1004243] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/24/2014] [Indexed: 01/28/2023] Open
Abstract
Multivesicular bodies (MVBs) play essential roles in many cellular processes. The MVB pathway requires reversible membrane association of the endosomal sorting complexes required for transports (ESCRTs) for sustained protein trafficking. Membrane dissociation of ESCRTs is catalyzed by the AAA ATPase SKD1, which is stimulated by LYST-INTERACTING PROTEIN 5 (LIP5). We report here that LIP5 is a target of pathogen-responsive mitogen-activated protein kinases (MPKs) and plays a critical role in plant basal resistance. Arabidopsis LIP5 interacts with MPK6 and MPK3 and is phosphorylated in vitro by activated MPK3 and MPK6 and in vivo upon expression of MPK3/6-activating NtMEK2DD and pathogen infection. Disruption of LIP5 has little effects on flg22-, salicylic acid-induced defense responses but compromises basal resistance to Pseudomonas syringae. The critical role of LIP5 in plant basal resistance is dependent on its ability to interact with SKD1. Mutation of MPK phosphorylation sites in LIP5 does not affect interaction with SKD1 but reduces the stability and compromises the ability to complement the lip5 mutant phenotypes. Using the membrane-selective FM1–43 dye and transmission electron microscopy, we demonstrated that pathogen infection increases formation of both intracellular MVBs and exosome-like paramural vesicles situated between the plasma membrane and the cell wall in a largely LIP5-dependent manner. These results indicate that the MVB pathway is positively regulated by pathogen-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in plant immune system likely through relocalization of defense-related molecules. Pathogen- and stress-responsive mitogen-activated protein kinases 3 and 6 (MPK3/6) cascade plays an important role in plant basal resistance to microbial pathogens. Here we showed that Arabidopsis MPK3 and MPK6 interact with and phosphorylate the LIP5 positive regulator of biogenesis of multivesicular bodies (MVBs), which are unique organelles containing small vesicles in their lumen. Disruption of LIP5 causes increased susceptibility to the bacterial pathogen Pseudomonas syringae. Compromised disease resistance of the lip5 mutants is associated with competent flg22- and salicylic acid-induced defense responses but compromised accumulation of intracellular MVBs and exosome-like paramural vesicles, which have previously been shown to be involved in the relocalization of defense-related molecules. Phosphorylation by MPK3/6 increases LIP5 stability, which is necessary for pathogen-induced MVB trafficking and basal disease resistance. Based on these results we conclude that the MVB pathway is positively regulated by pathogen-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in plant immune system probably through involvement in the relocalization of defense-related molecules.
Collapse
Affiliation(s)
- Fei Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yifen Shang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
42
|
Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J, Daire X, Adrian M, Clément C, Zipfel C, Dorey S, Poinssot B. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. THE NEW PHYTOLOGIST 2014; 201:1371-1384. [PMID: 24491115 DOI: 10.1111/nph.12592] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/06/2013] [Indexed: 05/21/2023]
Abstract
• The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. • The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H₂O₂ production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2 and AtFLS2. • In grapevine, flg22-triggered immune responses are conserved and led to partial resistance against Botrytis cinerea. Unlike flg22 peptides derived from Pseudomonas aeruginosa or Xanthomonas campestris, flg22 peptide derived from B. phytofirmans triggered only a small oxidative burst, weak and transient defense gene induction and no growth inhibition in grapevine. Although, in Arabidopsis, all the flg22 epitopes exhibited similar biological activities, the expression of VvFLS2 into the fls2 background conferred differential flg22 responses characteristic for grapevine. • These results demonstrate that VvFLS2 differentially recognizes flg22 from different bacteria, and suggest that flagellin from the beneficial PGPR B. phytofirmans has evolved to evade this grapevine immune recognition system.
Collapse
Affiliation(s)
- Lucie Trdá
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000, Dijon, France
| | - Olivier Fernandez
- Laboratoire Stress, Défenses et Reproduction des Plantes, URVVC EA 4707, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse Chemin des Rouliers, 51687, Reims, France
| | - Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marie-Claire Héloir
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000, Dijon, France
| | - Jani Kelloniemi
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000, Dijon, France
| | - Xavier Daire
- INRA, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000, Dijon, France
| | - Marielle Adrian
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000, Dijon, France
| | - Christophe Clément
- Laboratoire Stress, Défenses et Reproduction des Plantes, URVVC EA 4707, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse Chemin des Rouliers, 51687, Reims, France
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Stéphan Dorey
- Laboratoire Stress, Défenses et Reproduction des Plantes, URVVC EA 4707, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse Chemin des Rouliers, 51687, Reims, France
| | - Benoit Poinssot
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000, Dijon, France
| |
Collapse
|
43
|
Guo W, Zuo Z, Cheng X, Sun J, Li H, Li L, Qiu JL. The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1205-15. [PMID: 24449384 PMCID: PMC3935575 DOI: 10.1093/jxb/ert484] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloride channel (CLC) family genes are ubiquitous from prokaryotes to eukaryotes and encode proteins with both channel and transporter activities. The Arabidopsis thaliana genome encodes seven CLC genes, and their products are found in a variety of cellular compartments and have various physiological functions. However, a role for AtCLCs in plant innate immunity has not previously been demonstrated. Here it is reported that AtCLCd is a negative regulator of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). T-DNA insertion mutants of AtCLCd exhibited enhanced responses to the elicitor, flg22. The PTI phenotypes of the clcd mutants were rescued by expression of AtCLCd. Overexpression of AtCLCd led to impaired flg22-induced responses. In line with a role for AtCLCd in PTI, the clcd mutants were more resistant to a virulent strain of the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 when spray inoculated, while AtCLCd-overexpressing lines displayed increased susceptibility to this pathogen. Interestingly, flg22 treatment was found to repress the expression of AtCLCd. In addition, its expression was elevated in mutants of the flg22 pattern recognition receptor (PRR) FLS2 and the PRR regulatory proteins BAK1 and BKK1, and reduced in an FLS2-overexpressing line. These latter findings indicate that FLS2 complexes regulate the expression of AtCLCd, further supporting a role for AtCLCd in PTI.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhangli Zuo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huali Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
44
|
Abstract
Plants are confronted with several biotic stresses such as microbial pathogens and other herbivores. To defend against such attackers, plants possess an array of pattern recognition receptors (PRRs) that sense the danger and consequently initiate a defence programme that prevents further damage and spreading of the pest. Characteristic pathogenic structures, so-called microbe-associated molecular patterns (MAMPs), serve as signals that allow the plant to sense invaders. Additionally, pathogens wound or damage the plant and the resulting release of damage-associated molecular patterns (DAMPs) serves as a warning signal. This review focuses on peptides that serve as triggers or amplifiers of plant defence and thus follow the definition of a MAMP or a DAMP.
Collapse
Affiliation(s)
- Markus Albert
- University of Tübingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
45
|
Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. THE NEW PHYTOLOGIST 2013; 200:847-860. [PMID: 23865782 PMCID: PMC3797164 DOI: 10.1111/nph.12408] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
Collapse
Affiliation(s)
- Christopher R. Clarke
- Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Sarah R. Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Fumiko Taguchi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | - Ryuji Miki
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; and Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Scotland Leman
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Georg Felix
- Zentrum für Molekularbiologie der Pflanzen, University Tübingen, 72076, Germany
| | - Boris A. Vinatzer
- Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
46
|
Meng F, Altier C, Martin GB. Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ Microbiol 2013; 15:2418-30. [PMID: 23517029 DOI: 10.1111/1462-2920.12113] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
Despite increasing incidences of human salmonellosis caused by consumption of contaminated vegetables, relatively little is known about how the plant immune system responds to and may inhibit Salmonella colonization. Here we show that Salmonella Typhimurium activates the plant immune system primarily due to its recognition of the flg22 region in Salmonella flagellin. Several previously identified plant genes that play a role in immunity were found to affect the host response to Salmonella. The Salmonella flg22 (Seflg22) peptide induced the immune response in leaves which effectively restricted the growth of Salmonella as well as the plant pathogenic bacterium, Pseudomonas syringae pv. tomato. Induction of immune responses by Seflg22 was dependent on the plant FLS2 receptor. Salmonella multiplied poorly on plant tissues similar to other bacteria which are non-pathogenic to plants. However, Salmonella populations increased significantly when co-inoculated with P. syringae pv. tomato but not when co-inoculated with a type III secretion system mutant of this pathogen. Our results suggest that Salmonella benefits from the immune-suppressing effects of plant pathogenic bacteria, and this growth enhancement may increase the risk of salmonellosis.
Collapse
Affiliation(s)
- Fanhong Meng
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
47
|
Mutations in FLS2 Ser-938 dissect signaling activation in FLS2-mediated Arabidopsis immunity. PLoS Pathog 2013; 9:e1003313. [PMID: 23637603 PMCID: PMC3630090 DOI: 10.1371/journal.ppat.1003313] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Flagellin-sensing 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2(S938A), while the acidic phosphomimic mutants FLS2(S938D) and FLS2(S938E) conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2(S938A), demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2(S938A) and FLS2(S938D) mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2(S938A) or FLS2(D997A) (a kinase catalytic site mutant), but was normally induced in FLS2(S938D) plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs.
Collapse
|
48
|
Pel MJC, Pieterse CMJ. Microbial recognition and evasion of host immunity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1237-48. [PMID: 23095994 DOI: 10.1093/jxb/ers262] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants are able to detect microbes by pattern recognition receptors in the host cells that, upon recognition of the enemy, activate effective immune responses in the invaded tissue. Recognition of microbes occurs by common conserved structures called microbe-associated molecular patterns (MAMPs). Plant pathogens and beneficial soil-borne microbes live in close contact with their host. Hence, prevention of the host's defence programme is essential for their survival. Active suppression of host defences by microbial effector proteins is a well-known strategy employed by many successful plant-associated microbes. Evasion of host immune recognition is less well studied but is emerging as another important strategy. Escape from recognition by the host's immune system can be caused by alterations in the structure of the recognized MAMPs, or by active intervention of ligand-receptor recognition. This paper reviews the structure and recognition of common MAMPs and the ways that plant-associated microbes have evolved to prevent detection by their host.
Collapse
Affiliation(s)
- Michiel J C Pel
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB Utrecht, The Netherlands
| | | |
Collapse
|
49
|
Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trémousaygue D, Deslandes L, Marco Y. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. THE NEW PHYTOLOGIST 2012; 194:1035-1045. [PMID: 22432714 DOI: 10.1111/j.1469-8137.2012.04113.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.
Collapse
Affiliation(s)
- Dong Xin Feng
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- Department of International Cooperation, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Céline Tasset
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Mathieu Hanemian
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Xavier Barlet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Jian Hu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dominique Trémousaygue
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Yves Marco
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| |
Collapse
|
50
|
Buschart A, Sachs S, Chen X, Herglotz J, Krause A, Reinhold-Hurek B. Flagella mediate endophytic competence rather than act as MAMPS in rice-Azoarcus sp. strain BH72 interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:191-9. [PMID: 22235904 DOI: 10.1094/mpmi-05-11-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azoarcus sp. strain BH72 is an endophytic betaproteobacterium able to colonize rice roots without induction of visible disease symptoms. BH72 possesses one polar flagellum. The genome harbors three copies of putative fliC genes, generally encoding the major structural protein flagellin. It is not clear whether, in endophytic interactions, flagella mediate endophytic competence or act as MAMPs (microbe-associated molecular patterns) inducing plant defense responses. Therefore, possible functions of the three FliC proteins were investigated. Only fliC3 was found to be highly expressed in pure culture and in association with rice roots and to be required for bacterial motility, suggesting that it encodes the major flagellin. Endophytic colonization of rice roots was significantly reduced in the in-frame deletion mutant, while the establishment of microcolonies on the root surface was not affected. Moreover, an elicitation of defense responses related to FliC3 was not observed. In conclusion, our data support the hypothesis that FliC3 does not play a major role as a MAMP but is required for endophytic colonization in the Azoarcus-rice interaction, most likely for spreading inside the plant.
Collapse
Affiliation(s)
- Anna Buschart
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|