1
|
Hudson AI, Wagner MR, Sermons S, Balint-Kurti PJ. Diverse modes of gene action contribute to heterosis for quantitative disease resistance in maize. Genetics 2025; 230:iyaf049. [PMID: 40127185 DOI: 10.1093/genetics/iyaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025] Open
Abstract
Disease resistance in plants can be conferred by single genes of large effect or by multiple genes each conferring incomplete resistance. The latter case, termed quantitative resistance, may be difficult for pathogens to overcome through evolution due to the low selection pressures exerted by the actions of any single gene and, for some diseases, is the only identified source of genetic resistance. We evaluated quantitative resistance to 2 diseases of maize in a biparental mapping population as well as backcrosses to both parents. Quantitative trait locus analysis shows that the genetic architecture of resistance to these diseases is characterized by several modes of gene action including additivity as well as dominance, overdominance, and epistasis. Heterosis or hybrid vigor, the improved performance of a hybrid compared with its parents, can be caused by nonadditive gene action and is fundamental to the breeding of several crops including maize. In the backcross populations and a diverse set of maize hybrids, we find heterosis for resistance in many cases and that the degree of heterosis appears to be dependent on both hybrid genotype and disease.
Collapse
Affiliation(s)
- Asher I Hudson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS 66045, USA
| | - Shannon Sermons
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC 27695, USA
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Danso Ofori A, Zheng T, Titriku JK, Appiah C, Xiang X, Kandhro AG, Ahmed MI, Zheng A. The Role of Genetic Resistance in Rice Disease Management. Int J Mol Sci 2025; 26:956. [PMID: 39940724 PMCID: PMC11817016 DOI: 10.3390/ijms26030956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Rice (Oryza sativa) is a crucial staple crop for global food security, particularly in Asia. However, rice production faces significant challenges from various diseases that can cause substantial yield losses. This review explores the role of genetic resistance in rice disease management, focusing on the molecular mechanisms underlying plant-pathogen interactions and strategies for developing resistant varieties. The paper discusses qualitative and quantitative resistance, emphasizing the importance of resistance (R) genes, defense-regulator genes, and quantitative trait loci (QTLs) in conferring broad-spectrum disease resistance. Gene-for-gene relationships in rice-pathogen interactions are examined, particularly for Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae. The review also covers recent advancements in breeding techniques, including marker-assisted selection, genetic engineering, and genome editing technologies like CRISPR-Cas. These approaches offer promising avenues for enhancing disease resistance in rice while maintaining yield potential. Understanding and exploiting genetic resistance mechanisms is crucial for developing durable and broad-spectrum disease-resistant rice varieties, essential for ensuring sustainable rice production and global food security in the face of evolving pathogen threats and changing environmental conditions.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Charlotte Appiah
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Tang L, Song J, Cui Y, Fan H, Wang J. Detection and Evaluation of Blast Resistance Genes in Backbone Indica Rice Varieties from South China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2134. [PMID: 39124252 PMCID: PMC11314011 DOI: 10.3390/plants13152134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Rice blast caused by the pathogenic fungus Magnaporthe oryzae poses a significant threat to rice cultivation. The identification of robust resistance germplasm is crucial for breeding resistant varieties. In this study, we employed functional molecular markers for 10 rice blast resistance genes, namely Pi1, Pi2, Pi5, Pi9, Pia, Pid2, Pid3, Pigm, Pikh, and Pita, to assess blast resistance across 91 indica rice backbone varieties in South China. The results showed a spectrum of resistance levels ranging from highly resistant (HR) to highly susceptible (HS), with corresponding frequencies of 0, 19, 40, 27, 5, and 0, respectively. Yearly correlations in blast resistance genes among the 91 key indica rice progenitors revealed Pid2 (60.44%), Pia (50.55%), Pita (45.05%), Pi2 (32.97%), Pikh (4.4%), Pigm (2.2%), Pi9 (2.2%), and Pi1 (1.1%). Significant variations were observed in the distribution frequencies of these 10 resistance genes among these progenitors across different provinces. Furthermore, as the number of aggregated resistance genes increased, parental resistance levels correspondingly improved, though the efficacy of different gene combinations varied significantly. This study provides the initial steps toward strategically distributing varieties of resistant indica rice genotypes across South China.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.T.); (J.S.); (Y.C.); (H.F.)
| |
Collapse
|
4
|
Zhang H, Jiao J, Zhao T, Zhao E, Li L, Li G, Zhang B, Qin QM. GERWR: Identifying the Key Pathogenicity- Associated sRNAs of Magnaporthe Oryzae Infection in Rice Based on Graph Embedding and Random Walk With Restart. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:227-239. [PMID: 38153818 DOI: 10.1109/tcbb.2023.3348080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae(M.oryzae), is a destructive rice disease that reduces rice yield by 10% to 30% annually. It also affects other cereal crops such as barley, wheat, rye, millet, sorghum, and maize. Small RNAs (sRNAs) play an essential regulatory role in fungus-plant interaction during the fungal invasion, but studies on pathogenic sRNAs during the fungal invasion of plants based on multi-omics data integration are rare. This paper proposes a novel approach called Graph Embedding combined with Random Walk with Restart (GERWR) to identify pathogenic sRNAs based on multi-omics data integration during M.oryzae invasion. By constructing a multi-omics network (MRMO), we identified 29 pathogenic sRNAs of rice blast fungus. Further analysis revealed that these sRNAs regulate rice genes in a many-to-many relationship, playing a significant regulatory role in the pathogenesis of rice blast disease. This paper explores the pathogenic factors of rice blast disease from the perspective of multi-omics data analysis, revealing the inherent connection between pathogenic factors of different omics. It has essential scientific significance for studying the pathogenic mechanism of rice blast fungus, the rice blast fungus-rice model system, and the pathogen-host interaction in related fields.
Collapse
|
5
|
Li C, Chen Z, Deng Y, Jiang S, Su Y, Yang S, Lin Y, Tian D. iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes. STRESS BIOLOGY 2023; 3:39. [PMID: 37698658 PMCID: PMC10497467 DOI: 10.1007/s44154-023-00118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases. Developing blast-resistant rice cultivars represents the most economical and environmentally friend strategy for managing the disease. In our previous study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the resistance gene Piz-t gene-mediated resistance response to infection in two contrasting rice genotypes of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and its wild-type Nipponbare (NPB). Here, from the comparisons of differentially expressed proteins (DEPs) of NPB-Piz-t to the avirulent isolate KJ201 (KJ201-Piz-t)and the virulent isolate RB22 (RB22-Piz-t) with mock-treated NPB-Piz-t (Mock-Piz-t), NPB to the virulent isolate KJ201(KJ201-NPB) and RB22 (RB22-NPB) with mock-treated NPB (Mock-NPB), 1, 1, and 6 common DEPs were, respectively, identified at 24, 48 and 72 h post-inoculation (hpi) in the susceptible comparisons of RB22-Pizt/Mock-Piz-t, KJ201-NPB/Mock-NPB, and RB22-NPB/Mock-NPB, involving in gi|54,290,836 and gi|59,800,021 were identified in the resistance comparison KJ201-Piz-t/Mock-Piz-t at 48 and 72 hpi respectively. Moreover, four genes of Os01g0138900 (gi|54,290,836), Os04g0659300 (gi|59,800,021), Os09g0315700 (gi|125,563,186) or Os04g0394200 (gi|21,740,743) were knocked out or overexpressed in NPB using gene over-expression and CRISPR/Cas9 technology, and results verified that the Os01g0138900 obviously affected the rice blast resistance. Further, expression and targeted metabolomics analysis illuminated the resistance response of cysteine-containing substances as gi|59,800,021 under blast infection. These results provide new targets for basal resistance gene identification and open avenues for developing novel rice blast resistant materials.
Collapse
Affiliation(s)
- Chenchen Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
- College of Agriculture, College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - Yun Deng
- Nanping Institute of Agricultural Sciences, Fujian, China
| | - Shuyu Jiang
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
- College of Agriculture, College of Life Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Yan Su
- Nanping Institute of Agricultural Sciences, Fujian, China
| | - Shaohua Yang
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China.
| |
Collapse
|
6
|
Xu Y, Bai L, Liu M, Liu Y, Peng S, Hu P, Wang D, Liu Q, Yan S, Gao L, Wang X, Ning Y, Zuo S, Zheng W, Liu S, Xiang W, Wang G, Kang H. Identification of two novel rice S genes through combination of association and transcription analyses with gene-editing technology. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1628-1641. [PMID: 37154202 PMCID: PMC10363757 DOI: 10.1111/pbi.14064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023]
Abstract
Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.
Collapse
Affiliation(s)
- Yuchen Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Minghao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shasha Peng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Pei Hu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic BreedingTianjin Crop Research Institute, Tianjin Academy of Agriculture SciencesTianjinChina
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOhioUSA
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
7
|
Sahu KP, Kumar A, Sakthivel K, Reddy B, Kumar M, Patel A, Sheoran N, Gopalakrishnan S, Prakash G, Rathour R, Gautam RK. Deciphering core phyllomicrobiome assemblage on rice genotypes grown in contrasting agroclimatic zones: implications for phyllomicrobiome engineering against blast disease. ENVIRONMENTAL MICROBIOME 2022; 17:28. [PMID: 35619157 PMCID: PMC9134649 DOI: 10.1186/s40793-022-00421-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - K Sakthivel
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - R K Gautam
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| |
Collapse
|
8
|
Zhang Y, Song J, Wang L, Yang M, Hu K, Li W, Sun X, Xue H, Dong Q, Zhang M, Lou S, Yang X, Du H, Li Y, Dong L, Che Z, Cheng Q. Identifying Quantitative Trait Loci and Candidate Genes Conferring Resistance to Soybean Mosaic Virus SC7 by Quantitative Trait Loci-Sequencing in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:843633. [PMID: 35295631 PMCID: PMC8919070 DOI: 10.3389/fpls.2022.843633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Soybean mosaic virus (SMV) is detrimental to soybean (Glycine max) breeding, seed quality, and yield worldwide. Improving the basic resistance of host plants is the most effective and economical method to reduce damage from SMV. Therefore, it is necessary to identify and clone novel SMV resistance genes. Here, we report the characterization of two soybean cultivars, DN50 and XQD, with different levels of resistance to SMV. Compared with XQD, DN50 exhibits enhanced resistance to the SMV strain SC7. By combining bulked-segregant analysis (BSA)-seq and fine-mapping, we identified a novel resistance locus, R SMV -11, spanning an approximately 207-kb region on chromosome 11 and containing 25 annotated genes in the reference Williams 82 genome. Of these genes, we identified eleven with non-synonymous single-nucleotide polymorphisms (SNPs) or insertion-deletion mutations (InDels) in their coding regions between two parents. One gene, GmMATE68 (Glyma.11G028900), harbored a frameshift mutation. GmMATE68 encodes a multidrug and toxic compound extrusion (MATE) transporter that is expressed in all soybean tissues and is induced by SC7. Given that MATE transporter families have been reported to be linked with plant disease resistance, we suggest that GmMATE68 is responsible for SC7 resistance in DN50. Our results reveal a novel SMV-resistance locus, improving understanding of the genetics of soybean disease resistance and providing a potential new tool for marker-assisted selection breeding in soybean.
Collapse
Affiliation(s)
- Yong Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jiling Song
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lei Wang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Mengping Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Kaifeng Hu
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Weiwei Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xuhong Sun
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hong Xue
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Quanzhong Dong
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Mingming Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Shubao Lou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xingyong Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hao Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhijun Che
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
9
|
Identification of broad-spectrum resistance QTLs against rice blast fungus and their application in different rice genetic backgrounds. J Genet 2022. [DOI: 10.1007/s12041-021-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Nihad SAI, Hasan MK, Kabir A, Hasan MAI, Bhuiyan MR, Yusop MR, Latif MA. Linkage of SSR markers with rice blast resistance and development of partial resistant advanced lines of rice ( Oryza sativa) through marker-assisted selection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:153-169. [PMID: 35221577 PMCID: PMC8847655 DOI: 10.1007/s12298-022-01141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Rice blast disease is one of the major bottlenecks of rice production in the world including Bangladesh. To develop blast resistant lines, a cross was made between a high yielding but blast susceptible variety MR263 and a blast resistant variety Pongsu seribu 2. Marker-assisted backcross breeding was followed to develop F1, BC1F1, BC2F1, BC2F2, BC2F3, BC2F4 and BC2F5 population. DNA markers i.e., RM206, RM1359 and RM8225 closely linked to Pb1, pi21 and Piz blast resistant genes, respectively and marker RM276 linked to panicle blast resistant QTL (qPbj-6.1) were used in foreground selection. Calculated chi-square (χ2) value of phenotypic and genotypic segregation data of BC2F1 population followed goodness of fit to the expected ratio (1:1) (phenotypic data χ2 = 1.08, p = 0.701; genotypic data χ2 = range from 0.33 to 3.00, p = 0.08-0.56) and it indicates that the inheritance pattern of blast resistance was followed by a single gene model. Eighty-nine advanced lines of BC2F5 population were developed and out of them, 58 lines contained Piz, Pb1, pi21, and qPbj-6.1 while 31 lines contained Piz, Pb1, and QTL qPbj-6.1. Marker-trait association analysis revealed that molecular markers i.e., RM206, RM276, and RM8225 were tightly linked with blast resistance, and each marker was explained by 33.33% phenotypic variation (resistance reaction). Morphological and pathogenicity performance of advanced lines was better compared to the recurrent parent. Developed blast resistance advanced lines could be used as donors or blast resistant variety for the management of devastating rice blast disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01141-3.
Collapse
Affiliation(s)
| | - Mohammad Kamrul Hasan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Amirul Kabir
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Md. Al-Imran Hasan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Md. Rejwan Bhuiyan
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Mohd Rafii Yusop
- Institute of Tropical Agriculture and Food Security (ITAFoS), University of Putra Malaysia, Serdang, Malaysia
| | - Mohammad Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| |
Collapse
|
11
|
Sahu KP, Patel A, Kumar M, Sheoran N, Mehta S, Reddy B, Eke P, Prabhakaran N, Kumar A. Integrated Metabarcoding and Culturomic-Based Microbiome Profiling of Rice Phyllosphere Reveal Diverse and Functional Bacterial Communities for Blast Disease Suppression. Front Microbiol 2021; 12:780458. [PMID: 34917058 PMCID: PMC8669949 DOI: 10.3389/fmicb.2021.780458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pierre Eke
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
12
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
13
|
Sahu KP, Kumar A, Patel A, Kumar M, Gopalakrishnan S, Prakash G, Rathour R, Gogoi R. Rice Blast Lesions: an Unexplored Phyllosphere Microhabitat for Novel Antagonistic Bacterial Species Against Magnaporthe oryzae. MICROBIAL ECOLOGY 2021; 81:731-745. [PMID: 33108474 DOI: 10.1007/s00248-020-01617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/05/2020] [Indexed: 05/28/2023]
Abstract
Dark brown necrotic lesions caused by Magnaporthe oryzae on rice foliage is a contrasting microhabitat for leaf-colonizing microbiome as compared with the surrounding healthy chlorophyll-rich tissues. We explored culturable bacterial communities of blast lesions by adopting microbiological tools for isolating effective biocontrol bacterial strains against M. oryzae. 16S rRNA gene sequencing-based molecular identification revealed a total of 17 bacterial species belonging to Achromobacter (2), Comamonas (1), Curtobacterium (1), Enterobacter (1), Leclercia (2), Microbacterium (1), Pantoea (3), Sphingobacterium (1), and Stenotrophomonas (5) found colonizing the lesion. Over 50% of the bacterial isolates were able to suppress the mycelial growth of M. oryzae either by secretory or volatile metabolites. Volatiles released by Achromobacter sp., Curtobacterium luteum, Microbacterium oleivorans, Pantoea ananatis, Stenotrophomonas maltophilia, and Stenotrophomonas sp., and were found to be fungicidal while others showed fungistatic action. In planta pathogen challenged evaluation trial revealed the biocontrol potential of Stenotrophomonas sp. and Microbacterium oleivorans that showed over 60% blast severity suppression on the rice leaf. The lesion-associated bacterial isolates were found to trigger expression of defense genes such as OsCEBiP, OsCERK1, OsEDS1, and OsPAD4 indicating their capability to elicit innate defense in rice against blast disease. The investigation culminated in the identification of potential biocontrol agents for the management of rice blast disease.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Gopalakrishnan
- Division of Genetics, ICAR -Indian Agricultural Research Institute, New Delhi, 110012, India
| | - G Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - R Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
14
|
Lee SB, Kim N, Jo S, Hur YJ, Lee JY, Cho JH, Lee JH, Kang JW, Song YC, Bombay M, Kim SR, Lee J, Seo YS, Ko JM, Park DS. Mapping of a Major QTL, qBK1Z, for Bakanae Disease Resistance in Rice. PLANTS 2021; 10:plants10030434. [PMID: 33668736 PMCID: PMC7996363 DOI: 10.3390/plants10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
Bakanae disease is a fungal disease of rice (Oryza sativa L.) caused by the pathogen Gibberella fujikuroi (also known as Fusarium fujikuroi). This study was carried out to identify novel quantitative trait loci (QTLs) from an indica variety Zenith. We performed a QTL mapping using 180 F2:9 recombinant inbred lines (RILs) derived from a cross between the resistant variety, Zenith, and the susceptible variety, Ilpum. A primary QTL study using the genotypes and phenotypes of the RILs indicated that the locus qBK1z conferring bakanae disease resistance from the Zenith was located in a 2.8 Mb region bordered by the two RM (Rice Microsatellite) markers, RM1331 and RM3530 on chromosome 1. The log of odds (LOD) score of qBK1z was 13.43, accounting for 30.9% of the total phenotypic variation. A finer localization of qBK1z was delimited at an approximate 730 kb interval in the physical map between Chr01_1435908 (1.43 Mbp) and RM10116 (2.16 Mbp). Introducing qBK1z or pyramiding with other previously identified QTLs could provide effective genetic control of bakanae disease in rice.
Collapse
Affiliation(s)
- Sais-Beul Lee
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Pusan 46241, Korea; (N.K.); (Y.-S.S.)
| | - Sumin Jo
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Yeon-Jae Hur
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Ji-Youn Lee
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Jun-Hyeon Cho
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Jong-Hee Lee
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Ju-Won Kang
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - You-Chun Song
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Maurene Bombay
- International Rice Research Institute, Pili Drive, Los Baños 4031, Laguna, Philippines; (M.B.); (S.-R.K.)
| | - Sung-Ryul Kim
- International Rice Research Institute, Pili Drive, Los Baños 4031, Laguna, Philippines; (M.B.); (S.-R.K.)
| | - Jungkwan Lee
- College of Natural Resources and Life Science, Dong-A University, Pusan 49135, Korea;
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Pusan 46241, Korea; (N.K.); (Y.-S.S.)
| | - Jong-Min Ko
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
| | - Dong-Soo Park
- National Institute of Crop Science, Milyang 50424, Korea; (S.-B.L.); (S.J.); (Y.-J.H.); (J.-Y.L.); (J.-H.C.); (J.-H.L.); (J.-W.K.); (Y.-C.S.); (J.-M.K.)
- International Rice Research Institute, Pili Drive, Los Baños 4031, Laguna, Philippines; (M.B.); (S.-R.K.)
- Correspondence: ; Tel.: +82-55-530-1184
| |
Collapse
|
15
|
Mbinda W, Masaki H. Breeding Strategies and Challenges in the Improvement of Blast Disease Resistance in Finger Millet. A Current Review. FRONTIERS IN PLANT SCIENCE 2021; 11:602882. [PMID: 33488650 PMCID: PMC7820394 DOI: 10.3389/fpls.2020.602882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 05/11/2023]
Abstract
Climate change has significantly altered the biodiversity of crop pests and pathogens, posing a major challenge to sustainable crop production. At the same time, with the increasing global population, there is growing pressure on plant breeders to secure the projected food demand by improving the prevailing yield of major food crops. Finger millet is an important cereal crop in southern Asia and eastern Africa, with excellent nutraceutical properties, long storage period, and a unique ability to grow under arid and semi-arid environmental conditions. Finger millet blast disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae is the most devastating disease affecting the growth and yield of this crop in all its growing regions. The frequent breakdown of blast resistance because of the susceptibility to rapidly evolving virulent genes of the pathogen causes yield instability in all finger millet-growing areas. The deployment of novel and efficient strategies that provide dynamic and durable resistance against many biotypes of the pathogen and across a wide range of agro-ecological zones guarantees future sustainable production of finger millet. Here, we analyze the breeding strategies currently being used for improving resistance to disease and discuss potential future directions toward the development of new blast-resistant finger millet varieties, providing a comprehensive understanding of promising concepts for finger millet breeding. The review also includes empirical examples of how advanced molecular tools have been used in breeding durably blast-resistant cultivars. The techniques highlighted are cost-effective high-throughput methods that strongly reduce the generation cycle and accelerate both breeding and research programs, providing an alternative to conventional breeding methods for rapid introgression of disease resistance genes into favorable, susceptible cultivars. New information and knowledge gathered here will undoubtedly offer new insights into sustainable finger millet disease control and efficient optimization of the crop's productivity.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Hosea Masaki
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|
16
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
17
|
Liang T, Chi W, Huang L, Qu M, Zhang S, Chen ZQ, Chen ZJ, Tian D, Gui Y, Chen X, Wang Z, Tang W, Chen S. Bulked Segregant Analysis Coupled with Whole-Genome Sequencing (BSA-Seq) Mapping Identifies a Novel pi21 Haplotype Conferring Basal Resistance to Rice Blast Disease. Int J Mol Sci 2020; 21:ijms21062162. [PMID: 32245192 PMCID: PMC7139700 DOI: 10.3390/ijms21062162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/30/2023] Open
Abstract
Basal or partial resistance has been considered race-non-specific and broad-spectrum. Therefore, the identification of genes or quantitative trait loci (QTLs) conferring basal resistance and germplasm containing them is of significance in breeding crops with durable resistance. In this study, we performed a bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) to identify QTLs controlling basal resistance to blast disease in an F2 population derived from two rice varieties, 02428 and LiXinGeng (LXG), which differ significantly in basal resistance to rice blast. Four candidate QTLs, qBBR-4, qBBR-7, qBBR-8, and qBBR-11, were mapped on chromosomes 4, 7, 8, and 11, respectively. Allelic and genotypic association analyses identified a novel haplotype of the durable blast resistance gene pi21 carrying double deletions of 30 bp and 33 bp in 02428 (pi21-2428) as a candidate gene of qBBR-4. We further assessed haplotypes of Pi21 in 325 rice accessions, and identified 11 haplotypes among the accessions, of which eight were novel types. While the resistant pi21 gene was found only in japonica before, three Chinese indica varieties, ShuHui881, Yong4, and ZhengDa4Hao, were detected carrying the resistant pi21-2428 allele. The pi21-2428 allele and pi21-2428-containing rice germplasm, thus, provide valuable resources for breeding rice varieties, especially indica rice varieties, with durable resistance to blast disease. Our results also lay the foundation for further identification and functional characterization of the other three QTLs to better understand the molecular mechanisms underlying rice basal resistance to blast disease.
Collapse
Affiliation(s)
- Tingmin Liang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Wenchao Chi
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Likun Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.H.); (S.Z.)
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.H.); (S.Z.)
| | - Zi-Qiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Zai-Jie Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Yijie Gui
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Correspondence: (W.T.); (S.C.)
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Correspondence: (W.T.); (S.C.)
| |
Collapse
|
18
|
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 2020; 15:e0229155. [PMID: 32084193 PMCID: PMC7034821 DOI: 10.1371/journal.pone.0229155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild Oryza species, Oryza latifolia, conferring a race-specific resistance to Philippine Xoo race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from O. latifolia monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F2 (χ2[3:1] = 0.22 at p>0.05) and F3 (χ2[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F2, 1130 F3 and 288 F4 plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, O. latifolia conferring race-specific resistance to bacterial blight.
Collapse
Affiliation(s)
| | - Junghyun Shim
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ricky B. Vinarao
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ruby S. Lapis
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Joshua J. Singleton
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
19
|
Cobb JN, Biswas PS, Platten JD. Back to the future: revisiting MAS as a tool for modern plant breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:647-667. [PMID: 30560465 PMCID: PMC6439155 DOI: 10.1007/s00122-018-3266-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE New models for integration of major gene MAS with modern breeding approaches stand to greatly enhance the reliability and efficiency of breeding, facilitating the leveraging of traditional genetic diversity. Genetic diversity is well recognised as contributing essential variation to crop breeding processes, and marker-assisted selection is cited as the primary tool to bring this diversity into breeding programs without the associated genetic drag from otherwise poor-quality genomes of donor varieties. However, implementation of marker-assisted selection techniques remains a challenge in many breeding programs worldwide. Many factors contribute to this lack of adoption, such as uncertainty in how to integrate MAS with traditional breeding processes, lack of confidence in MAS as a tool, and the expense of the process. However, developments in genomics tools, locus validation techniques, and new models for how to utilise QTLs in breeding programs stand to address these issues. Marker-assisted forward breeding needs to be enabled through the identification of robust QTLs, the design of reliable marker systems to select for these QTLs, and the delivery of these QTLs into elite genomic backgrounds to enable their use without associated genetic drag. To enhance the adoption and effectiveness of MAS, rice is used as an example of how to integrate new developments and processes into a coherent, efficient strategy for utilising genetic variation. When processes are instituted to address these issues, new genes can be rolled out into a breeding program rapidly and completely with a minimum of expense.
Collapse
Affiliation(s)
- Joshua N Cobb
- International Rice Research Institute, National Road, Los Banos, Laguna, Philippines
| | - Partha S Biswas
- International Rice Research Institute, National Road, Los Banos, Laguna, Philippines
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - J Damien Platten
- International Rice Research Institute, National Road, Los Banos, Laguna, Philippines.
| |
Collapse
|
20
|
Qie Y, Liu Y, Wang M, Li X, See DR, An D, Chen X. Development, Validation, and Re-selection of Wheat Lines with Pyramided Genes Yr64 and Yr15 Linked on the Short Arm of Chromosome 1B for Resistance to Stripe Rust. PLANT DISEASE 2019; 103:51-58. [PMID: 30387683 DOI: 10.1094/pdis-03-18-0470-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. The disease is most preferably managed by developing and growing cultivars with high-level, durable resistance. To achieve high-level and long-lasting resistance, we developed a wheat line, RIL-Yr64/Yr15, by pyramiding Yr64 and Yr15, both on the chromosome 1BS and providing high resistance to all tested Pst races. To validate RIL-Yr64/Yr15 possessing both genes, we crossed it to Avocet S (AvS). The F4 RILs from this cross were phenotyped with Pst races under controlled greenhouse conditions and also under natural Pst infection in the field. The population was genotyped with SSR markers previously reported to be linked to the resistance gene loci and with additional SSR and SNP-KASP markers along chromosome 1B. Both phenotype and genotype data confirmed the copresence of Yr64 and Yr15 in RIL-Yr64/Yr15, and the high-resolution linkage map dissected the chromosomal regions and traced their origins. New lines possessing these genes were selected from the F5 population of cross AvS × RIL-Yr64/Yr15 by marker-assisted selection. These lines with the two highly effective genes should be more useful than individual gene lines for developing high-level, durable resistant wheat cultivars.
Collapse
Affiliation(s)
- Yanmin Qie
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021; University of Chinese Academy of Sciences, Beijing, 100049, China; and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Xing Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China and Department of Plant Pathology, Washington State University, Pullman, WA
| | - Deven R See
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
21
|
Lee SB, Hur YJ, Cho JH, Lee JH, Kim TH, Cho SM, Song YC, Seo YS, Lee J, Kim TS, Park YJ, Oh MK, Park DS. Molecular mapping of qBK1 WD , a major QTL for bakanae disease resistance in rice. RICE (NEW YORK, N.Y.) 2018; 11:3. [PMID: 29322324 PMCID: PMC5762613 DOI: 10.1186/s12284-017-0197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/27/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Bakanae or foot rot disease is a prominent disease of rice caused by Gibberella fujikuroi. This disease may infect rice plants from the pre-emergence stage to the mature stage. In recent years, raising rice seedlings in seed boxes for mechanical transplanting has increased the incidence of many seedling diseases; only a few rice varieties have been reported to exhibit resistance to bakanae disease. In this study, we attempted to identify quantitative trait loci (QTLs) conferring bakanae disease resistance from the highly resistant japonica variety Wonseadaesoo. RESULTS A primary QTL study using the genotypes/phenotypes of the recombinant inbred lines (RILs) indicated that the locus qBK1 WD conferring resistance to bakanae disease from Wonseadaesoo was located in a 1.59 Mb interval delimited on the physical map between chr01_13542347 (13.54 Mb) and chr01_15132528 (15.13 Mb). The log of odds (LOD) score of qBK1 WD was 8.29, accounting for 20.2% of the total phenotypic variation. We further identified a gene pyramiding effect of two QTLs, qBK WD and previously developed qBK1. The mean proportion of healthy plant for 31 F4 RILs that had no resistance genes was 35.3%, which was similar to that of the susceptible check variety Ilpum. The proportion of healthy plants for the lines with only qBK WD or qBK1 was 66.1% and 55.5%, respectively, which was significantly higher than that of the lines without resistance genes and that of Ilpum. The mean proportion of the healthy plant for 15 F4 RILs harboring both qBK WD and qBK1 was 80.2%, which was significantly higher than that of the lines with only qBK WD or qBK1. CONCLUSION Introducing qBK WD or pyramiding the QTLs qBK WD and qBK1 could provide effective tools for breeding rice with bakanae disease resistance. To our knowledge, this is the first report on a gene pyramiding effect that provides higher resistance against bakanae disease.
Collapse
Affiliation(s)
- Sais-Beul Lee
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Yeon-Jae Hur
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Jun-Hyeon Cho
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Jong-Hee Lee
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Tae-Heon Kim
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Soo-Min Cho
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - You-Chun Song
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Pusan, 46241 Republic of Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Pusan, 49135 Republic of Korea
| | - Tae-sung Kim
- Department of Agriculture, Korea National Open University, Seoul, 03087 Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, Kongju National University, Yesan, 32439 Republic of Korea
| | - Myung-Kyu Oh
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| | - Dong-Soo Park
- National Institute of Crop Science, Milyang, Miryang, 50424 Republic of Korea
| |
Collapse
|
22
|
Chaipanya C, Telebanco-Yanoria MJ, Quime B, Longya A, Korinsak S, Korinsak S, Toojinda T, Vanavichit A, Jantasuriyarat C, Zhou B. Dissection of broad-spectrum resistance of the Thai rice variety Jao Hom Nin conferred by two resistance genes against rice blast. RICE (NEW YORK, N.Y.) 2017; 10:18. [PMID: 28493203 PMCID: PMC5425360 DOI: 10.1186/s12284-017-0159-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the most important food crops in the world. Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. To effectively cope with this problem, the use of rice blast resistance varieties through innovative breeding programs is the best strategy to date. The Thai rice variety Jao Hom Nin (JHN) showed broad-spectrum resistance against Thai rice blast isolates. Two QTLs for blast resistance in JHN were reported on chromosome 1 (QTL1) and 11 (QTL11). RESULTS Monogenic lines of QTL1 (QTL1-C) and QTL11 (QTL11-C) in the CO39 genetic background were generated. Cluster analysis based on the disease reaction pattern of QTL1-C and QTL11-C, together with IRBLs, showed that those two monogenic lines were clustered with IRBLsh-S (Pish) and IRBL7-M (Pi7), respectively. Moreover, sequence analysis revealed that Pish and Pi7 were embedded within the QTL1 and QTL11 delimited genomic intervals, respectively. This study thus concluded that QTL1 and QTL11 could encode alleles of Pish and Pi7, designated as Pish-J and Pi7-J, respectively. To validate this hypothesis, the genomic regions of Pish-J and Pi7-J were cloned and sequenced. Protein sequence comparison revealed that Pish-J and Pi7-J were identical to Pish and Pi7, respectively. The holistic disease spectrum of JHN was found to be exactly attributed to the additive ones of both QTL1-C and QTL11-C. CONCLUSION JHN showed broad spectrum resistance against Thai and Philippine rice blast isolates. As this study demonstrated, the combination of two resistance genes, Pish-J and Pi7-J, in JHN, with each controlling broad-spectrum resistance to rice blast disease, explains the high level of resistance. Thus, the combination of Pish and Pi7 can provide a practical scheme for breeding durable resistance in rice against rice blast disease.
Collapse
Affiliation(s)
- Chaivarakun Chaipanya
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, 4031, Philippines
| | | | - Berlaine Quime
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, 4031, Philippines
| | - Apinya Longya
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Siripar Korinsak
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Siriporn Korinsak
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Theerayut Toojinda
- Plant Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
- Agronomy Department Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASNAR, NRU-KU), Chatuchak, Bangkok, 10900, Thailand.
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna, 4031, Philippines.
| |
Collapse
|
23
|
Karmakar S, Molla KA, Das K, Sarkar SN, Datta SK, Datta K. Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice. Sci Rep 2017; 7:7900. [PMID: 28801565 PMCID: PMC5554252 DOI: 10.1038/s41598-017-08180-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023] Open
Abstract
Sheath blight, caused by the necrotrophic fungal pathogen Rhizoctonia solani, is a serious and destructive disease of the rice. In order to improve sheath blight resistance, we developed three different kinds of transgenic rice lines. The first transgenic line overexpresses the rice chitinase gene (OsCHI11); the second contains the Arabidopsis NPR1 (AtNPR1) gene and, the third has pyramided constructs with both the genes (OsCHI11 and AtNPR1). This is a comparative study between the single-gene transgenic lines and the double gene transgenic in terms of their ability to activate the plant defense system. Rice plants of each individual construct were screened via PCR, Southern hybridization, activity assays, and expression analysis. The best transgenic lines of each construct were chosen for comparative study. The fold change in qRT-PCR and activity assays revealed that the pyramided transgenic rice plants show a significant upregulation of defense-related genes, PR genes, and antioxidant marker genes as compared to the single transgene. Simultaneous co-expression of both the genes was found to be more efficient in tolerating oxidative stress. In R. solani (RS) toxin assay, mycelial agar disc bioassay, and in vivo plant bioassay, pyramided transgenic plant lines were more competent at restricting the pathogen development and enhancing sheath blight tolerance as compared to single gene transformants.
Collapse
Affiliation(s)
- Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Kutubuddin A Molla
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Kaushik Das
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sailendra Nath Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Swapan K Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
- Visva Bharati University, Santiniketan, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
24
|
Zhang M, Coaker G. Harnessing Effector-Triggered Immunity for Durable Disease Resistance. PHYTOPATHOLOGY 2017; 107:912-919. [PMID: 28430023 PMCID: PMC5810938 DOI: 10.1094/phyto-03-17-0086-rvw] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Genetic control of plant diseases has traditionally included the deployment of single immune receptors with nucleotide-binding leucine-rich repeat (NLR) domain architecture. These NLRs recognize corresponding pathogen effector proteins inside plant cells, resulting in effector-triggered immunity (ETI). Although ETI triggers robust resistance, deployment of single NLRs can be rapidly overcome by pathogen populations within a single or a few growing seasons. In order to generate more durable disease resistance against devastating plant pathogens, a multitiered strategy that incorporates stacked NLRs combined with other sources of disease resistance is necessary. New genetic and genomic technologies have enabled advancements in identifying conserved pathogen effectors, isolating NLR repertoires from diverse plants, and editing plant genomes to enhance resistance. Significant advancements have also been made in understanding plant immune perception at the receptor level, which has promise for engineering new sources of resistance. Here, we discuss how to utilize recent scientific advancements in a multilayered strategy for developing more durable disease resistance.
Collapse
Affiliation(s)
- Meixiang Zhang
- First and second authors: Department of Plant Pathology, University of California, Davis 95616; and first author: Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gitta Coaker
- First and second authors: Department of Plant Pathology, University of California, Davis 95616; and first author: Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Murithi HM, Haudenshield JS, Beed F, Mahuku G, Joosten MHAJ, Hartman GL. Virulence Diversity of Phakopsora pachyrhizi Isolates From East Africa Compared to a Geographically Diverse Collection. PLANT DISEASE 2017; 101:1194-1200. [PMID: 30682948 DOI: 10.1094/pdis-10-16-1470-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean rust, caused by the biotrophic pathogen Phakopsora pachyrhizi, is a highly destructive disease causing substantial yield losses in many soybean producing regions throughout the world. Knowledge about P. pachyrhizi virulence is needed to guide development and deployment of soybean germplasm with durable resistance against all pathogen populations. To assess the virulence diversity of P. pachyrhizi, 25 isolates from eight countries, including 17 isolates from Africa, were characterized on 11 soybean genotypes serving as differentials. All the isolates induced tan lesions with abundant sporulation on genotypes without any known resistance genes and on soybean genotypes with resistance genes Rpp4 and Rpp5b. The most durable gene was Rpp2, where 96% of the isolates induced reddish brown lesions with little or no sporulation. Of the African isolates tested, the South African isolate was the most virulent, whereas those from Kenya, Malawi, and some of the isolates from Tanzania had the lowest virulence. An Argentinian isolate was virulent on most host differentials, including two cultivars carrying multiple resistance genes. Ten distinct pathotypes were identified, four of which comprised the African isolates representing considerable P. pachyrhizi virulence. Soybean genotypes carrying Rpp1b, Rpp2, Rpp3, and Rpp5 resistance genes and cultivars Hyuuga and UG5 were observed to be resistant against most of the African isolates and therefore may be useful for soybean-breeding programs in Africa or elsewhere.
Collapse
Affiliation(s)
- H M Murithi
- International Institute of Tropical Agriculture (IITA), 34441, Dar es Salaam, Tanzania; and Laboratory of Phytopathology, Wageningen-UR, 6700 AA Wageningen, the Netherlands
| | - J S Haudenshield
- United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana, 61801
| | - F Beed
- AVRDC - The World Vegetable Center, (Kasetsart), Bangkok 10903, Thailand
| | - G Mahuku
- International Institute of Tropical Agriculture (IITA) 34441, Dar es Salaam, Tanzania
| | - M H A J Joosten
- Laboratory of Phytopathology, Wageningen-UR, 6700 AA Wageningen, the Netherlands
| | - G L Hartman
- United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana, 61801
| |
Collapse
|
26
|
Jiang CJ, Sugano S, Kaga A, Lee SS, Sugimoto T, Takahashi M, Ishimoto M. Evaluation of Resistance to Phytophthora sojae in Soybean Mini Core Collections Using an Improved Assay System. PHYTOPATHOLOGY 2017; 107:216-223. [PMID: 27775499 DOI: 10.1094/phyto-06-16-0233-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem and root rot disease caused by Phytophthora sojae is devastating to soybean crops worldwide. Developing host resistance to P. sojae, considered the most effective and stable means to control this disease, is partly hampered by limited germplasm resources. In this study, we first modified conventional methods for a P. sojae resistance assay to a simpler and more cost-effective version, in which the P. sojae inoculum was mixed into the soil and the resistance was evaluated by survival rate (%) of soybean seedlings. This rating had significant correlations (P < 0.01) with the reduction in root fresh weight and the visual root rot severity. Applying this method to evaluate P. sojae resistance in soybean mini core collections comprising either 79 accessions originating from Japan (JMC) or 80 accessions collected around the world (WMC) revealed a wide variation in resistance among the individual varieties. In total, 38 accessions from the JMC and 41 from the WMC exhibited resistance or moderate resistance to P. sojae isolate N1 (with virulence to Rps1b, 3c, 4, 5, and 6), with ≥50% survival. Of these, 26 from the JMC and 29 from the WMC showed at least moderate resistance to P. sojae isolate HR1 (vir Rps1a-c, 1k, 2, 3a-c, 4-6, and 8). Additionally, 24 WCS accessions, in contrast to only 6 from the JMC, exhibited 100% survival after being challenged with both the N1 and HR1 isolates, suggesting a biogeographical difference between the two collections. We further verified two JMC varieties, Daizu and Amagi zairai 90D, for their resistance to an additional four P. sojae isolates (60 to 100% survival), which may provide new and valuable genetic sources for P. sojae resistance breeding in soybean.
Collapse
Affiliation(s)
- Chang-Jie Jiang
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Shoji Sugano
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Akito Kaga
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Sung Shin Lee
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Takuma Sugimoto
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Mami Takahashi
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Masao Ishimoto
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| |
Collapse
|
27
|
Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop. FRONTIERS IN PLANT SCIENCE 2015; 6:886. [PMID: 26635817 PMCID: PMC4644793 DOI: 10.3389/fpls.2015.00886] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/06/2015] [Indexed: 05/20/2023]
Abstract
Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.
Collapse
Affiliation(s)
- Sadegh Ashkani
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
- Department of Agronomy and Plant Breeding, Yadegar –e- Imam Khomeini RAH Shahre-Rey Branch, Islamic Azad UniversityTehran, Iran
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | | | - Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Mahbod Sahebi
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Parisa Azizi
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Fatah A. Tanweer
- Department of Crop Science, Faculty of Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
- Department of Plant Breeding and Genetics, Faculty of Crop Production, Sindh Agriculture University TandojamSindh, Pakistan
| | - Mohd Sayeed Akhtar
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
- Department of Botany, Gandhi Faiz-e-Aam CollegeShahjahanpur, India
| | - Abbas Nasehi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| |
Collapse
|