1
|
Mainello-Land A, Saville AC, Acharya J, Ristaino J. Loop-Mediated Isothermal Amplification Detection of Phytophthora kernoviae, P. ramorum, and the P. ramorum NA1 Lineage on a Microfluidic Chip and Smartphone Platform. PHYTOPATHOLOGY 2025; 115:192-203. [PMID: 39434003 DOI: 10.1094/phyto-02-24-0055-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Rapid, field-deployable assays such as loop-mediated isothermal amplification (LAMP) are critical for detecting nursery and forest pathogens such as Phytophthora ramorum and P. kernoviae to prevent pathogen spread. We developed and validated four LAMP assays for genus-level detection of Phytophthora spp., species-level detection of P. kernoviae and P. ramorum, and lineage-level detection of the P. ramorum NA1 lineage. The cross-reactivity of the two species-specific LAMP assays was evaluated using a set of 18 Phytophthora spp. known to infect nursery crop hosts. The correct target species were detected by the species-level LAMP assays. The Phytophthora spp. LAMP assay was evaluated against 27 Phytophthora spp. and other bacterial and fungal pathogens and reacted with all the Phytophthora spp. evaluated but no other bacterial or fungal species. The limit of detection (LOD) of the P. kernoviae LAMP was 100 fg/µl, and the LOD of the P. ramorum LAMP assay was 1 pg/µl of DNA. The NA1 LAMP assay was tested against the NA1, NA2, EU1, and EU2 lineages of P. ramorum and was lineage-specific but had a higher LOD (100 pg/µl) than the species-specific LAMP assays. Both P. ramorum and P. kernoviae LAMP assays were highly precise (>0.94) in detecting the respective pathogens in symptomatic rhododendron leaves and co-inoculation experiments. The four LAMP assays were run in tandem on a microfluidic chip and smartphone platform and can be used in the field to detect and monitor spread of these regulatory Phytophthora spp. in forest and/or nursery settings.
Collapse
Affiliation(s)
- Amanda Mainello-Land
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Jyotsna Acharya
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Jean Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695, U.S.A
| |
Collapse
|
2
|
Yadav A, Yadav K. Portable solutions for plant pathogen diagnostics: development, usage, and future potential. Front Microbiol 2025; 16:1516723. [PMID: 39959158 PMCID: PMC11825793 DOI: 10.3389/fmicb.2025.1516723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
The increasing prevalence of plant pathogens presents a critical challenge to global food security and agricultural sustainability. While accurate, traditional diagnostic methods are often time-consuming, resource-intensive, and unsuitable for real-time field applications. The emergence of portable diagnostic tools represents a paradigm shift in plant disease management, offering rapid, on-site detection of pathogens with high accuracy and minimal technical expertise. This review explores portable diagnostic technologies' development, deployment, and future potential, including handheld analyzers, smartphone-integrated systems, microfluidics, and lab-on-a-chip platforms. We examine the core technologies underlying these devices, such as biosensors, nucleic acid amplification techniques, and immunoassays, highlighting their applicability to detect bacterial, viral, and fungal pathogens in diverse agricultural settings. Furthermore, the integration of these devices with digital technologies, including the Internet of Things (IoT), artificial intelligence (AI), and machine learning (ML), is transforming disease surveillance and management. While portable diagnostics have clear advantages in speed, cost-effectiveness, and user accessibility, challenges related to sensitivity, durability, and regulatory standards remain. Innovations in nanotechnology, multiplex detection platforms, and personalized agriculture promise to further enhance the efficacy of portable diagnostics. By providing a comprehensive overview of current technologies and exploring future directions, this review underscores the critical role of portable diagnostics in advancing precision agriculture and mitigating the impact of plant pathogens on global food production.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
3
|
Aglietti C, Benigno A, Cacciola SO, Moricca S. LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives. Life (Basel) 2024; 14:1549. [PMID: 39768257 PMCID: PMC11678381 DOI: 10.3390/life14121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Movements of plant pathogenic microorganisms in uncontaminated areas occur today at an alarming rate, driven mainly by global trade and climate change. These invaders can trigger new disease outbreaks able to impact the biodiversity and economies of vast territories and affect a variety of ecosystem services. National and supranational regulatory deficiencies, such as inadequate quarantine measures and ineffective early pathogen detection at ports of entry, exacerbate the issue. Thus, there is an urgent need for accurate and rapid diagnostic tools to intercept invasive and nonindigenous plant pathogens. The LAMP (Loop-mediated isothermal AMPlification) technique is a robust, flexible tool representing a significant advance in point-of-care (POC) diagnostics. Its user-friendliness and sensitivity offer a breakthrough in phytosanitary checks at points of entry (harbors and airports), for disease and pest surveillance at vulnerable sites (e.g., nurseries and wood-processing and storage facilities), and for territorial monitoring of new disease outbreaks. This review highlights the strengths and weaknesses of LAMP, emphasizing its potential to revolutionize modern plant disease diagnostics.
Collapse
Affiliation(s)
- Chiara Aglietti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (A.B.); (S.M.)
| | - Alessandra Benigno
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (A.B.); (S.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Salvatore Moricca
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (A.B.); (S.M.)
| |
Collapse
|
4
|
Shymanovich T, Saville AC, Paul R, Wei Q, Ristaino JB. Rapid Detection of Viral, Bacterial, Fungal, and Oomycete Pathogens on Tomatoes with Microneedles, LAMP on a Microfluidic Chip, and Smartphone Device. PHYTOPATHOLOGY 2024; 114:1975-1983. [PMID: 38829831 DOI: 10.1094/phyto-12-23-0481-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Rapid detection of plant diseases before they escalate can improve disease control. Our team has developed rapid nucleic acid extraction methods with microneedles and combined these with loop-mediated amplification (LAMP) assays for pathogen detection in the field. In this work, we developed LAMP assays for early blight (Alternaria linariae, A. alternata, and A. solani) and bacterial spot of tomato (Xanthomonas perforans) and validated these LAMP assays and two previously developed LAMP assays for tomato spotted wilt virus and late blight. Tomato plants were inoculated, and disease severity was measured. Extractions were performed using microneedles, and LAMP assays were run in tubes (with hydroxynaphthol blue) on a heat block or on a newly designed microfluidic slide chip on a heat block or a slide heater. Fluorescence on the microfluidic chip slides was visualized using EvaGreen and photographed on a smartphone. Plants inoculated with X. perforans or tomato spotted wilt virus tested positive prior to visible disease symptoms, whereas Phytophthora infestans and A. linariae were detected at the time of visual disease symptoms. LAMP assays were more sensitive than PCR, and the limit of detection was 1 pg of DNA for both A. linariae and X. perforans. The LAMP assay designed for early blight detected all three species of Alternaria that infect tomato and is thus an Alternaria spp. assay. This study demonstrates the utility of rapid microneedle extraction followed by LAMP on a microfluidic chip for rapid diagnosis of four important tomato pathogens.
Collapse
Affiliation(s)
- Tatsiana Shymanovich
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
- Emerging Plant Disease and Global Food Security Cluster, Plant Sciences Initiative, North Carolina State University, Raleigh, NC
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- Emerging Plant Disease and Global Food Security Cluster, Plant Sciences Initiative, North Carolina State University, Raleigh, NC
| |
Collapse
|
5
|
Lee IS, Kim W, Jo G, Yang KY. Rapid Detection of a Downy Mildew Pathogen, Peronospora destructor, in Infected Onion Tissues and Soils by Loop-Mediated Isothermal Amplification. PHYTOPATHOLOGY 2024; 114:1237-1243. [PMID: 38349769 DOI: 10.1094/phyto-11-23-0440-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Downy mildew of onion caused by a soil-inhabiting water mold, Peronospora destructor, is one of the most devastating diseases that can destroy entire onion fields in a matter of days. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay that allows for rapid detection of P. destructor by visual inspection. The internal transcribed spacer 2 region of P. destructor was used to design primer sets for LAMP reactions. The optimal temperature and incubation time were determined for the most efficient primer set. In the optimized condition, the LAMP assay exhibited at least 100 times more sensitivity than conventional PCR, detecting femtogram levels of P. destructor genomic DNA (gDNA). Detection of the pathogen from a small number of spores without gDNA extraction further confirmed the high sensitivity of the assay. For specificity, the LAMP assay was negative for gDNA of other fungal pathogens that cause various diseases on onion and oomycetes, whereas the assay was positive for gDNA extracted from onion tissues showing the typical downy mildew symptoms. Finally, we examined the efficacy of the LAMP assay in detection of P. destructor in soils. Soils collected from onion fields that had been contaminated with P. destructor were solarized for 60 days. Whereas the LAMP assay was negative for the solarized soils, we were able to detect P. destructor that oversummers in fields. The LAMP assay developed in this study enables rapid detection and diagnosis of downy mildew of onion in infected tissues and in soil.
Collapse
Affiliation(s)
- In Seong Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Wonyong Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Gyeongpyo Jo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Kwang-Yeol Yang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
6
|
Maizatul-Suriza M, Dickinson M, Al-Jaf B, Madihah AZ. Cross-pathogenicity of Phytophthora palmivora associated with bud rot disease of oil palm and development of biomarkers for detection. World J Microbiol Biotechnol 2024; 40:55. [PMID: 38165501 DOI: 10.1007/s11274-023-03860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Phytophthora palmivora has caused disease in many crops including oil palm in the South America region. The pathogen has had a significant economic impact on oil palm cultivation in Colombia, and therefore poses a threat to oil palm cultivation in other regions of the World, especially in Southeast Asia, the largest producer of the crop. This study aimed to look at the ability of isolates from Malaysia, Colombia, and other regions to cross-infect Malaysian oil palm, durian, and cocoa and to develop specific biomarkers and assays for identification, detection, and diagnosis of P. palmivora as a key component for the oil palm biosecurity continuum in order to contain the disease especially at the ports of entry. We have developed specific molecular biomarkers to identify and detect Phytophthora palmivora using polymerase chain reaction (PCR) and real-time loop mediated isothermal amplification (rt-LAMP) in various sample types such as soil and plants. The limit of detection (DNA template, pure culture assay) for the PCR assay is 5.94 × 10-2 ng µl-1 and for rt-LAMP is 9.28 × 10-4 ng µl-1. Diagnosis using rt-LAMP can be achieved within 30 min of incubation. In addition, PCR primer pair AV3F/AV3R developed successfully distinguished the Colombian and Malaysian P. palmivora isolates.
Collapse
Affiliation(s)
- Mohamed Maizatul-Suriza
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK.
| | - Matthew Dickinson
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
| | - Bryar Al-Jaf
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Gan Z, Zhou Q, Zheng C, Wang J. Challenges and applications of volatile organic compounds monitoring technology in plant disease diagnosis. Biosens Bioelectron 2023; 237:115540. [PMID: 37523812 DOI: 10.1016/j.bios.2023.115540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Biotic and abiotic stresses are well known to increase the emission of volatile organic compounds (VOCs) from plants. The analysis of VOCs emissions from plants enables timely diagnostic of plant diseases, which is critical for prompting sustainable agriculture. Previous studies have predominantly focused on the utilization of commercially available devices, such as electronic noses, for diagnosing plant diseases. However, recent advancements in nanomaterials research have significantly contributed to the development of novel VOCs sensors featuring exceptional sensitivity and selectivity. This comprehensive review presents a systematic analysis of VOCs monitoring technologies for plant diseases diagnosis, providing insights into their distinct advantages and limitations. Special emphasis is placed on custom-made VOCs sensors, with detailed discussions on their design, working principles, and detection performance. It is noteworthy that the application of VOCs monitoring technologies in the diagnostic process of plant diseases is still in its emerging stage, and several critical challenges demand attention and improvement. Specifically, the identification of specific stress factors using a single VOC sensor remains a formidable task, while environmental factors like humidity can potentially interfere with sensor readings, leading to inaccuracies. Future advancements should primarily focus on addressing these challenges to enhance the overall efficacy and reliability of VOCs monitoring technologies in the field of plant disease diagnosis.
Collapse
Affiliation(s)
- Ziyu Gan
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qin'an Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengyu Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Guo H, Zhang Y, Kong F, Wang C, Chen S, Wang J, Wang D. A Cas12a-based platform combined with gold nanoparticles for sensitive and visual detection of Alternaria solani. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115220. [PMID: 37418936 DOI: 10.1016/j.ecoenv.2023.115220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Alternaria solani (A. solani), the causal agent of early blight in potatoes, poses a serious and persistent threat to potato production worldwide. Therefore, developing a method that can accurately detect A. solani in the early stage to avoid further spread is urgent. However, the conventional PCR-based method is not appropriate for application in the fields. Recently, the CRISPR-Cas system has been developed for nucleic acids analysis at point-of-care. Here, we propose a gold nanoparticles-based visual assay combining loop-mediated isothermal amplification with CRISPR-Cas12a to detect A. solani. After optimization, the method could detect 10-3 ng/μL genomic gene of A. solani. The specificity of the method was confirmed by discriminating A. solani from other three highly homologous pathogens. We also developed a portable device that could be used in the fields. By integrating with the smartphone readout, this platform holds significant potential in high-throughput detection of multiple pathogens in the fields.
Collapse
Affiliation(s)
- Hangyu Guo
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
9
|
Saville AC, McGrath MT, Jones C, Polo J, Ristaino JB. Understanding the Genotypic and Phenotypic Structure and Impact of Climate on Phytophthora nicotianae Outbreaks on Potato and Tomato in the Eastern United States. PHYTOPATHOLOGY 2023; 113:1506-1514. [PMID: 36989124 DOI: 10.1094/phyto-11-22-0411-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Samples from potato fields with lesions with late blight-like symptoms were collected from eastern North Carolina in 2017 and the causal agent was identified as Phytophthora nicotianae. We have identified P. nicotianae in potato and tomato samples from North Carolina, Virginia, Maryland, Pennsylvania, and New York. Ninety-two field samples were collected from 46 fields and characterized for mefenoxam sensitivity, mating type, and simple sequence repeat genotype using microsatellites. Thirty-two percent of the isolates were the A1 mating type, while 53% were the A2 mating type. In six cases, both A1 and A2 mating types were detected in the same field in the same year. All isolates tested were sensitive to mefenoxam. Two genetic groups were discerned based on STRUCTURE analysis: one included samples from North Carolina and Maryland, and one included samples from all five states. The data suggest two different sources of inoculum from the field sites sampled. Multiple haplotypes within a field and the detection of both mating types in close proximity suggests that P. nicotianae may be reproducing sexually in North Carolina. There was a decrease in the average number of days with weather suitable for late blight, from 2012 to 2016 and 2017 to 2021 in all of the North Carolina counties where P. nicotianae was reported. P. nicotianae is more thermotolerant than P. infestans and grows at higher temperatures (25 to 35°C) than P. infestans (18 to 22°C). Late blight outbreaks have decreased in recent years and first reports of disease are later, suggesting that the thermotolerant P. nicotianae may cause more disease as temperatures rise due to climate change.
Collapse
Affiliation(s)
- Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606
| | - Margaret T McGrath
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901
| | - Chris Jones
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695
| | - John Polo
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
10
|
Mao S, Zhao J, Ding X, Vuong VA, Song J, Que L. Integrated Sensing Chip for Ultrasensitive Label-Free Detection of the Products of Loop-Mediated Isothermal Amplification. ACS Sens 2023; 8:2255-2262. [PMID: 37276452 DOI: 10.1021/acssensors.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification technique that has been widely used for the detection of pathogens in many organisms. Current LAMP-based sensors usually require the LAMP products to be labeled in order for them to be detected. Here, we present a novel label-free LAMP chip, which consists of a nanopore thin-film sensor embedded inside a LAMP reaction chamber. A fraction of LAMP primers is immobilized on the sensor surface, allowing the LAMP products to be synthesized and bound to the sensor surface via immobilized primers. After the LAMP reaction components are removed from the reaction chamber, the amplified LAMP products bound to the sensor surface give rise to significantly increased transducing signals, which can be measured by a portable optical spectrometer through an optical fiber probe. As a demonstration, we used the LAMP chip to detect the causal agent of late blight, Phytophthora infestans, which is one of the most devastating plant pathogens and poses a major threat to sustainable crop production worldwide. We show that this chip can detect as low as 1 fg/μL of P. infestans DNA in 30 min, which corresponds to an attomolar level of 1.6 × 10-6 attomole/μL and is at least 10 times more sensitive than the currently available methods. This label-free sensing technology holds great promise to open up a new avenue for ultrasensitive, highly specific, rapid, and cost-effective point-of-care diagnostics of plant, animal, human, and foodborne pathogens.
Collapse
Affiliation(s)
- Subin Mao
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| | - Jinping Zhao
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, Texas 75252, United States
| | - Xiaoke Ding
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| | - Van Anh Vuong
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, Texas 75252, United States
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, Texas 75252, United States
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas 77843, United States
| | - Long Que
- Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Huang F, Chen A. Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection. Food Chem 2023; 411:135508. [PMID: 36701913 DOI: 10.1016/j.foodchem.2023.135508] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Most microfluidic-based "sample-in-result-out" systems suffer sophisticated microfluidic production processes, high-cost chips, and expensive instruments. They cannot be used in the meat market as well as farmer's markets in rural areas. Here, we developed a hand-held microfluidic chip system for on-site meat species qualitative authentication detection which integrated a simple microneedle DNA extraction and a visual loop-mediated isothermal amplification (LAMP). The chip can be used by easily pricking meat samples, simply hand-shaking the chip, and readily available isothermal heating instead of a complicated DNA extraction process and microfluidic control device. The system demonstrates high specificity and sensitivity for selected six species of meat samples and low to 1% simulated adulteration could be detected within 60 min. Besides, the whole cost was less than 1 dollar. The integrated hand-held microfluidic detection system offers a simple, fast, low-cost "sample-in-result-out" point-of-care device which could be extended to medical diagnosis and animal/plant disease identification.
Collapse
Affiliation(s)
- Bin Xiao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiming Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Tavakoli-Koopaei R, Javadi-Zarnaghi F, Aboutalebian S, Mirhendi H. Malachite Green-Based Detection of SARS-CoV-2 by One-Step Reverse Transcription Loop-Mediated Isothermal Amplification. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9898859 DOI: 10.1007/s40995-022-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The pandemic of severe acute respiratory syndrome 2 (SARS-CoV-2) revealed the necessity of diagnosis of the infected people to prevent the prevalence infection cycle. Many commercial pathogen diagnosis methods are based on the detection of genomic materials. Isothermal amplification methods such as loop-mediated-isothermal amplification (LAMP) are the method of choice in these cases. Reverse transcription steps are efficiently coupled to LAMP for the detection of pathogens with genomic RNAs such as SARS-CoV-2. Many detection systems for LAMP include fluorescent readout systems. Although such systems result in desirable limits of detection, the need for special instrumentation is the main dispute of such systems to become real point of care assays. In contrast, colorimetric detection methods would reduce costs and improve the applicability of the system. In this study one-step reverse transcription-LAMP reaction was established that enables visual detection of the SARS-CoV-2 genome. Nasopharyngeal RNA samples were first validated by reverse transcription quantitative polymerase chain reaction and then subjected to RT-LAMP. To lower the cost associated with the readout system equipment, malachite green (MG) was used. The color change of MG to blue allowed visual detection of the virus. Firstly, experiments were set up as two-step RT-LAMP reaction to identify the best primer sets. In addition, MG concentration was optimized with the significant colorimetric signal for the positive samples. Next, a one-step colorimetric method was developed for the detection of SARS-CoV-2 based on MG color shift in 2 h.
Collapse
Affiliation(s)
- Reyhaneh Tavakoli-Koopaei
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Javadi-Zarnaghi
- grid.411750.60000 0001 0454 365XDepartment of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Shima Aboutalebian
- grid.411036.10000 0001 1498 685XDepartment of Medical Parasitology and Mycology, School of Medicine, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- grid.411036.10000 0001 1498 685XDepartment of Medical Parasitology and Mycology, School of Medicine, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Patel R, Mitra B, Vinchurkar M, Adami A, Patkar R, Giacomozzi F, Lorenzelli L, Baghini MS. A review of recent advances in plant-pathogen detection systems. Heliyon 2022; 8:e11855. [DOI: 10.1016/j.heliyon.2022.e11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/19/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
|
14
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Chen A. Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Pavić D, Grbin D, Hudina S, Prosenc Zmrzljak U, Miljanović A, Košir R, Varga F, Ćurko J, Marčić Z, Bielen A. Tracing the oomycete pathogen Saprolegnia parasitica in aquaculture and the environment. Sci Rep 2022; 12:16646. [PMID: 36198674 PMCID: PMC9534867 DOI: 10.1038/s41598-022-16553-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Saprolegnia parasitica causes saprolegniosis, a disease responsible for significant economic losses in aquaculture and declines of fish populations in the wild, but the knowledge of its distribution and prevalence in the environment is limited. We developed a fast, sensitive and specific S. parasitica droplet digital PCR (ddPCR) assay and demonstrated its applicability for the detection and quantification of the pathogen in environmental samples: swab DNA collected from the host (trout skin, surface of eggs) and environmental DNA extracted from water. The developed assay was used to assess how abiotic (i.e. physico-chemical parameters of the water) and biotic (health status of the host) factors influence the S. parasitica load in the environment. The pathogen load in water samples was positively correlated with some site-specific abiotic parameters such as electrical conductivity (EC) and calcium, while fluorides were negatively correlated, suggesting that physico-chemical parameters are important for determining S. parasitica load in natural waters. Furthermore, skin swabs of injured trout had significantly higher pathogen load than swabs collected from healthy fish, confirming that S. parasitica is a widespread opportunistic pathogen. Our results provide new insights into various environmental factors that influence the distribution and abundance of S. parasitica.
Collapse
Affiliation(s)
- Dora Pavić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Dorotea Grbin
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.,Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Anđela Miljanović
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Rok Košir
- Labena Ltd, BIA Separations CRO - Molecular Biology Laboratory, 1000, Ljubljana, Slovenia
| | - Filip Varga
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, 10000, Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding, CoE CroP-BioDiv), 10000, Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Zoran Marčić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Mu K, Ren X, Yang H, Zhang T, Yan W, Yuan F, Wu J, Kang Z, Han D, Deng R, Zeng Q. CRISPR-Cas12a-Based Diagnostics of Wheat Fungal Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7240-7247. [PMID: 35578739 DOI: 10.1021/acs.jafc.1c08391] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum (F. graminearum) infection, reduces crop yield and contaminates grain with mycotoxins. We report a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-based nucleic acid assay for an early and rapid diagnosis of wheat FHB. Guide RNA (gRNA) was screened for highly specific recognition of polymerase chain reaction (PCR) amplicon of the internal transcribed spacer (ITS) region and the transcription elongation factor 1α (EF1α) of F. graminearum. The trans-activation of Cas12a protein cleaves the single-stranded DNA probes with the terminal fluorophore and quencher groups, thus allowing us to report the presence of ITS and EF1α of F. graminearum. Owing to the dual recognition process through PCR primers and gRNA hybridization, the approach realized specific discrimination of F. graminearum from other pathogenic fungi. It also allowed us to detect as low as 1 fg/μL total DNA from F. graminearum, which is sufficient to diagnose a 4 day F. graminearum infection. CRISPR-Cas12a-based nucleic acid assay promises the molecular diagnosis of crop diseases and broadens the application of CRISPR tools.
Collapse
Affiliation(s)
- Keqing Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Weiyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
17
|
Yang X, Sun L, Sun H, Hong Y, Xia Z, Pang W, Piao Z, Feng J, Liang Y. A Loop-Mediated Isothermal DNA Amplification (LAMP) Assay for Detection of the Clubroot Pathogen Plasmodiophora brassicae. PLANT DISEASE 2022; 106:1730-1735. [PMID: 34879734 DOI: 10.1094/pdis-11-21-2430-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is a serious threat to cruciferous crops around the world. The resting spores of P. brassicae are a primary source of infection and can survive in soil for many years. Detection of resting spores in soil is essential for forecasting clubroot prevalence. Detection of P. brassicae has been relying on plant bioassays or PCR-based methods. The loop-mediated isothermal DNA amplification (LAMP) is a promising approach for microorganism detection with the advantage of high sensitivity, accuracy, and convenience in viewing. In this study, we developed a LAMP assay for detection of P. brassicae in soil, roots, and seeds. This method can detect P. brassicae at a minimal amount of 1 fg of plasmid DNA or 10 resting spores in the soil. Compared with conventional PCR, the LAMP was more sensitive in detection of P. brassicae at the lower levels in soil samples. In conclusion, we elaborated a sensitive, accurate, and easy-to-use LAMP assay to detect P. brassicae, which will facilitate sustainable clubroot management and planning.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lin Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yingzhe Hong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jie Feng
- Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta T5Y 6H3, Canada
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
18
|
Stewart JE, Miller ST, Zink FA, Caballero JI, Tembrock LR. Genetic and Phenotypic Characterization of the Fungal Pathogen Cytospora plurivora from Western Colorado Peach Orchards and the Development of a ddPCR Assay for Detection and Quantification. PHYTOPATHOLOGY 2022; 112:917-928. [PMID: 34554008 DOI: 10.1094/phyto-05-21-0210-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytospora canker is one of the most important diseases affecting peach production in Colorado, yet previous efforts to characterize Cytospora species diversity in Colorado have relied exclusively on morphological traits. Recently, several new Cytospora species were described from peach orchards within the United States using molecular and morphological data, prompting the need to reexamine Cytospora spp. present on peach trees in Colorado. A total of 137 isolates of Cytospora spp. were collected from eight orchards in western Colorado. Isolates were sequenced at the internal transcribed spacer region and elongation factor 1-α and assessed with reference sequences in phylogenetic analyses. All isolates from western Colorado peach trees resolved with the newly described Cytospora plurivora. In addition to molecular characterization, temperature growth and virulence assays were conducted to assess phenotypic variation among the isolates from western Colorado. Variation across isolates was found both in growth at different temperatures and in virulence. Ancestral state reconstruction analyses resolved the most virulent (and most often collected) haplotypes together in a well-supported clade from which a single monophyletic origin of high virulence can be inferred. Finally, a droplet digital PCR assay was developed for use in ongoing and future studies to detect and quantify C. plurivora from field and laboratory samples.
Collapse
Affiliation(s)
- Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Stephan T Miller
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Frida A Zink
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
19
|
Li M, Guo Q, Liang M, Zhao Q, Lin T, Gao H, Hieno A, Kageyama K, Zhang X, Cui L, Yan Y, Qiang Y. Population Dynamics, Effective Soil Factors, and LAMP Detection Systems for Phytophthora Species Associated with Kiwifruit Diseases in China. PLANT DISEASE 2022; 106:846-853. [PMID: 34661453 DOI: 10.1094/pdis-04-21-0852-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
China has the largest area of kiwifruit production in the world. Pathogens associated with root diseases of kiwi trees have not been investigated extensively. In this research, three Phytophthora species, Phytophthora cactorum, Phytophthora cinnamomi, and Phytophthora lateralis, which are pathogenic to kiwi trees in the main planting areas of China, were studied. The population densities of these species in 128 soil samples from 32 kiwi orchards in 2017 and 2018 were measured using multiplex real-time quantitative PCR based on the ras-related protein gene Ypt1. P. cactorum was the most widely distributed of the three species in orchards of the Zhouzhi and Meixian prefectures. We used redundancy analysis to examine soil factors in the kiwi orchards to understand their effects on the population densities of the Phytophthora species. The redundancy analysis indicated that soil temperature and pH were significantly correlated with the abundance of P. cactorum and P. cinnamomi. In addition, two loop-mediated isothermal amplification detection systems for P. cactorum were developed based on the tigA gene. The color-change detection system proved to be accurate, sensitive, and faster than quantitative PCR. The results of this study, along with the loop-mediated isothermal amplification detection systems, will be of great use in the control of Phytophthora diseases for the production of kiwifruits in China.
Collapse
Affiliation(s)
- Mingzhu Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengyi Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qing Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Han Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Xin Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| | - Yaping Yan
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| | - Yi Qiang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
20
|
Douillet A, Laurent B, Beslay J, Delmotte F, Raynal M. In-field LAMP quantification of Plasmopara viticola airborne inoculum to improve the forecast of epidemic risk. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Paul R, Ostermann E, Wei Q. Rapid Extraction of Plant Nucleic Acids by Microneedle Patch for In-Field Detection of Plant Pathogens. Methods Mol Biol 2022; 2536:77-90. [PMID: 35819598 DOI: 10.1007/978-1-0716-2517-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant diseases pose a significant threat to global food security. Molecular diagnosis currently plays a crucial role in mitigating the negative impacts of plant diseases by accurately identifying the disease-causing pathogens and revealing their genotypes. However, current molecular assays are constrained to the laboratory because of the cumbersome protocols involved in plant nucleic acid extraction. To streamline this, we have developed a polymeric microneedle (MN) patch-based nucleic acid extraction method, which can be applied to various plant tissues and easily performed in field settings without using bulky laboratory equipment. The MN patch instantly isolates both host and pathogen's DNA and RNA from plant leaves by two simple steps: press and rinse with a buffer solution or nuclease-free water. The MN-extracted DNA and RNA are purification-free and directly applicable to downstream molecular assays such as polymerase chain reaction (PCR), reverse transcription-polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and reverse transcription loop-mediated isothermal amplification (RT-LAMP). Here, we describe the fabrication procedures of the MN patch and demonstrate the application of the MN method by extracting Phytophthora infestans DNA and tomato spotted wilt virus (TSWV) RNA from infected tomato leaves. After MN extraction, we directly utilize the MN-extracted nucleic acid samples to run PCR, RT-PCR, LAMP, or RT-LAMP reactions to amplify various biomarker genes, such as the ribulose-bisphosphate carboxylase (rbcL) gene of host tomato DNA, internal transcribed spacer (ITS) region of P. infestans DNA, and nucleocapsid (N) gene of TSWV RNA. Furthermore, this simple and rapid nucleic acid method can be integrated with portable nucleic acid amplification platforms such as smartphone-based microscopy devices to achieve "sample-to-answer" detection of plant pathogens directly in the field.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
22
|
Siegieda DG, Panek J, Frąc M. "Shining a LAMP" (Loop-Mediated Isothermal Amplification) on the Molecular Detection of Phytopathogens Phytophthora spp. and Phytophthora cactorum in Strawberry Fields. Pathogens 2021; 10:pathogens10111453. [PMID: 34832609 PMCID: PMC8619305 DOI: 10.3390/pathogens10111453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Phytopathogenic microorganisms belonging to the genus Phytophthora have been recognized many times as causal agents of diseases that lower the yield of many plants important for agriculture. Meanwhile, Phytophthora cactorum causes crown rot and leather rot of berry fruits, mainly strawberries. However, widely-applied culture-based methods used for the detection of pathogens are time-consuming and often inaccurate. What is more, molecular techniques require costly equipment. Here we show a rapid and effective detection method for the aforementioned targets, deploying a simple molecular biology technique, Loop-Mediated Isothermal Amplification (LAMP). We optimized assays to amplify the translation elongation factor 1-α (EF1a) gene for two targets: Phytophthora spp. And Phytophthora cactorum. We optimized the LAMP on pure strains of the pathogens, isolated from organic plantations of strawberry, and successfully validated the assay on biological material from the environment including soil samples, rhizosphere, shoots and roots of strawberry, and with SYBR Green. Our results demonstrate that a simple and reliable molecular detection method, that requires only a thermoblock and simple DNA isolation kit, can be successfully applied to detect pathogens that are difficult to separate from the field. We anticipate our findings to be a starting point for developing easier and faster modifications of the isothermal detection methods and which can be applied directly in the plantation, in particular with the use of freeze-dried reagents and chemistry, allowing observation of the results with the naked eye.
Collapse
|
23
|
Arocha Rosete Y, To H, Evans M, White K, Saleh M, Trueman C, Tomecek J, Van Dyk D, Summerbell RC, Scott JA. Assessing the Use of DNA Detection Platforms Combined with Passive Wind-Powered Spore Traps for Early Surveillance of Potato and Tomato Late Blight in Canada. PLANT DISEASE 2021; 105:3610-3622. [PMID: 34743538 DOI: 10.1094/pdis-12-20-2695-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantitative PCR (qPCR), loop-mediated amplification (LAMP), and lateral flow strip-based recombinase polymerase amplification (RPA-LFS) assays were assessed for early detection of Phytophthora infestans, the global causal agent of potato and tomato late blight, on passive wind-powered spore traps known as Spornados. Spore traps were deployed in potato and tomato fields during the 2018, 2019, and 2020 growing seasons in the provinces of Alberta, British Columbia, Manitoba, Prince Edward Island, and Ontario. All assays used DNA extracts from Spornado cassette membranes targeting the P. infestans nuclear ribosomal internal transcribed spacer. A total of 1,003 Spornado samples were qPCR tested, yielding 115 positive samples for P. infestans spores. In further assessment of these samples, LAMP detected P. infestans in 108 (93.9%) of 115 qPCR positive samples, and RPA-LFS detected it in 103 (89.6%). None of the assays showed cross-reaction with other Phytophthora species or pathogenic fungi known to infect potato and tomato. The qPCR detected ≤1 fg of P. infestans DNA, and LAMP and RPA-LFS amplified 10 fg in as little as 10 min. All assays detected P. infestans before the first report of late blight symptoms in commercial potato or tomato fields within each region or province. The combination of Spornado passive samplers with qPCR, LAMP, or RPA-LFS proved a valuable spore trapping system for early surveillance of late blight in potato and tomato. Both LAMP and RPA-LFS showed potential as alternative approaches to qPCR for in-field monitoring of P. infestans.
Collapse
Affiliation(s)
| | - Henry To
- Sporometrics Inc., Toronto, Ontario M6K 3J1, Canada
| | - Martin Evans
- Sporometrics Inc., Toronto, Ontario M6K 3J1, Canada
| | | | | | - Cheryl Trueman
- Department of Plant Agriculture, University of Guelph, Ridgetown, Ontario N0P 2C0, Canada
| | - Joseph Tomecek
- Department of Plant Agriculture, University of Guelph, Ridgetown, Ontario N0P 2C0, Canada
| | - Dennis Van Dyk
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada
| | - Richard C Summerbell
- Sporometrics Inc., Toronto, Ontario M6K 3J1, Canada
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1R4, Canada
| | - James A Scott
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 1R4, Canada
| |
Collapse
|
24
|
Mansotra R, Vakhlu J. Comprehensive account of present techniques for in-field plant disease diagnosis. Arch Microbiol 2021; 203:5309-5320. [PMID: 34410444 DOI: 10.1007/s00203-021-02529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
The early detection of plant pathogens is an appropriate preventive strategy for the management of crop yield and quality. For this reason, effective diagnostic techniques and tools, which are simple, specific, rapid and economic, are needed to be developed. Although several such technologies have been developed still most of them suffer one or the other limitation. Major limitations of the widely used diagnostic methods are requirement of trained staff and laboratory setup. Development of point-of-care diagnostic devices (handy portable devices) that require no specialized staff and can directly be used in fields is need of the hour. The aim of this review is to compile the information on current promising techniques that are in use for plant-pathogen diagnosis. Additionally, it focuses on the latest in-field pathogen diagnostic techniques with associated advantages and limitations.
Collapse
Affiliation(s)
- Ritika Mansotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, India.
| |
Collapse
|
25
|
Wang T, Ji H, Yu Y, Wang X, Cheng Y, Li Z, Chen J, Guo L, Xu J, Gao C. Development of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Phytopythium vexans. Front Microbiol 2021; 12:720485. [PMID: 34552572 PMCID: PMC8450588 DOI: 10.3389/fmicb.2021.720485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Brown root rot caused by Phytopythium vexans is a new destructive root disease on many plants such as Gingko, Citrus, kiwifruit, and ramie. The establishment of loop-mediated isothermal amplification (LAMP) technology for detecting P. vexans can help monitor and control brown root rot quickly, efficiently, and accurately. LAMP technology is known for its simplicity, sensitivity, and speed; and it does not require any specialized equipment – a water bath or a thermoblock is sufficient for isothermal amplifications. LAMP products can be visualized by using hydroxy naphthol blue (HNB) dye or agarose gel electrophoresis. In this study, by searching and comparing the internal transcribed spacer (ITS) sequences of P. vexans and the related species in oomycete genera Pythium, Phytopythium, and Phytophthora, we designed specific primers targeting the ITS gene region of P. vexans. Using HNB dye, we established a LAMP technique for rapid detection of P. vexans by visible color change. In addition, we optimized the protocol to enhance both sensitivity and specificity for P. vexans detection. Under the optimized condition, our protocol based on LAMP technology could detect as low as 24 copies of the P. vexans genomic DNA, which is ∼100 times more sensitive than conventional PCR. This method can successfully detect P. vexans using cell suspensions from P. vexans – infected ramie root tissues.
Collapse
Affiliation(s)
- Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haojun Ji
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yongting Yu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
26
|
Paul R, Ostermann E, Chen Y, Saville AC, Yang Y, Gu Z, Whitfield AE, Ristaino JB, Wei Q. Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases. Biosens Bioelectron 2021; 187:113312. [PMID: 34004545 DOI: 10.1016/j.bios.2021.113312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
We demonstrate an integrated microneedle (MN)-smartphone nucleic acid amplification platform for "sample-to-answer" diagnosis of multiplexed plant pathogens within 30 min. This portable system consists of a polymeric MN patch for rapid nucleic acid extraction within a minute and a 3D-printed smartphone imaging device for loop-mediated isothermal amplification (LAMP) reaction and detection. We expanded the extraction of the MN technology for DNA targets as in the previous study (ACS Nano, 2019, 13, 6540-6549) to more fragile RNA biomarkers, evaluated the storability of the extracted nucleic acid samples on MN surfaces, and developed a smartphone-based LAMP amplification and fluorescent reader device that can quantify four LAMP reactions on the same chip. In addition, we have found that the MN patch containing as few as a single needle tip successfully extracted enough RNA for RT-PCR or RT-LAMP analysis. Moreover, MN-extracted RNA samples remained stable on MN surfaces for up to three days. The MN-smartphone platform has been used to detect both Phytophthora infestans DNA and tomato spotted wilt virus (TSWV) RNA down to 1 pg, comparable to the results from a benchtop thermal cycler. Finally, multiplexed detection of P. infestans and TSWV through a single extraction from infected tomato leaves and amplification on the smartphone without benchtop equipment was demonstrated.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27696, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27696, USA
| | - Yuting Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuming Yang
- Department of Agrotechnology and Food Sciences, Wageningen University, 6708, PB, Wageningen, Netherlands
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Laboratory of Systems and Precision Medicine, Zhejiang University Medical Cencter, Hangzhou, Zhejing, 310058, China; Deparment of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27696, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27696, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27696, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27696, USA.
| |
Collapse
|
27
|
Sensing Methodologies in Agriculture for Monitoring Biotic Stress in Plants Due to Pathogens and Pests. INVENTIONS 2021. [DOI: 10.3390/inventions6020029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
Collapse
|
28
|
Osawa H, Suzuki N, Akino S, Araki H, Asano K, Akai K, Kondo N. Quantification of Phytophthora infestans population densities and their changes in potato field soil using real-time PCR. Sci Rep 2021; 11:6266. [PMID: 33737607 PMCID: PMC7973439 DOI: 10.1038/s41598-021-85492-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Tuber infection of Phytophthora infestans often occurs at harvest. However, it is difficult to accurately estimate the population densities of P. infestans in soil, especially Japanese soil. In the present study, P. infestans DNA was extracted from soil samples using a modified CTAB-bead method and quantified using real-time PCR to accurately, rapidly and easily estimate the P. infestans population densities in upland soils in Japan. P. infestans was well quantified in eleven types of soil samples, including nine types of upland soils in Japan, that were artificially inoculated with a zoosporangia suspension. The amounts of P. infestans DNA estimated by the real-time PCR were proportional to the inoculum densities. In the non-controlled experimental potato field, P. infestans population densities in soil corresponded to the development of symptoms and were correlated with the number of lesions on the potato foliage. These results imply that the proposed real-time PCR assay is suitable for the estimation or monitoring of P. infestans population densities in upland soils in Japan. The population densities at the ridge bottoms were larger than those at any other location in commercial potato fields. These results were similar to those of a previous report using a bioassay. Moreover, a correlation between DNA quantity and inoculum potential was observed. In conclusion, the real-time PCR assay developed in this study is suitable for indirect estimation of the inoculum potential of P. infestans.
Collapse
Affiliation(s)
- Hisashi Osawa
- Graduate School of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan. .,Hokkaido Agricultural Research Center, NARO, 1, Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido, 062-8555, Japan.
| | - Nobuyuki Suzuki
- Graduate School of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Seishi Akino
- Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Hiromichi Araki
- Potato Research Center, Calbee Potato Inc., 3-23, Minami, Higashimemuro, Memuro, Hokkaido, 082-0006, Japan
| | - Kenji Asano
- Hokkaido Agricultural Research Center, NARO, 9-4, Shinseiminami, Memuro, Hokkaido, 082-0081, Japan
| | - Kotaro Akai
- Hokkaido Agricultural Research Center, NARO, 9-4, Shinseiminami, Memuro, Hokkaido, 082-0081, Japan
| | - Norio Kondo
- Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| |
Collapse
|
29
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
30
|
Digital PCR: What Relevance to Plant Studies? BIOLOGY 2020; 9:biology9120433. [PMID: 33266157 PMCID: PMC7760125 DOI: 10.3390/biology9120433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
Simple Summary Digital PCR is a third-generation technology based on the subdivision of the analytical sample into numerous partitions that are amplified individually. This review presents the major applications of digital PCR (dPCR) technology developed so far in the field of plant science. In greater detail, dPCR assays have been developed to trace genetically modified plant components, pathogenic and non-pathogenic microorganisms, and plant species. Other applications have concerned the study of the aspects of structural and functional genetics. Abstract Digital PCR (dPCR) is a breakthrough technology that able to provide sensitive and absolute nucleic acid quantification. It is a third-generation technology in the field of nucleic acid amplification. A unique feature of the technique is that of dividing the sample into numerous separate compartments, in each of which an independent amplification reaction takes place. Several instrumental platforms have been developed for this purpose, and different statistical approaches are available for reading the digital output data. The dPCR assays developed so far in the plant science sector were identified in the literature, and the major applications, advantages, disadvantages, and applicative perspectives of the technique are presented and discussed in this review.
Collapse
|
31
|
Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q. Agricultural nanodiagnostics for plant diseases: recent advances and challenges. NANOSCALE ADVANCES 2020; 2:3083-3094. [PMID: 36134297 PMCID: PMC9417629 DOI: 10.1039/c9na00724e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/06/2020] [Indexed: 05/18/2023]
Abstract
Crop diseases caused by pathogenic microorganisms pose severe threats to the global food supply. Effective diagnostic tools for timely determination of plant diseases become essential to the assurance of agricultural sustainability and global food security. Nucleic acid- and antibody-based molecular assays are gold-standard methodologies for the diagnosis of plant diseases, but the analyzing procedures are complex and laborious. The prominent physical or chemical properties of nanomaterials have enabled their use as innovative and high-performance diagnostic tools for numerous plant pathogens and other important disease biomarkers. Engineered nanomaterials have been incorporated into traditional laboratory molecular assays or sequencing technologies that offer notable enhancement in sensitivity and selectivity. Meanwhile, nanostructure-supported noninvasive detection tools combined with portable imaging devices (e.g., smartphones) have paved the way for fast and on-site diagnosis of plant diseases and long-term monitoring of plant health conditions, especially in resource-poor settings.
Collapse
Affiliation(s)
- Zheng Li
- Institute for Advanced Study, Shenzhen University Shenzhen 518060 P. R. China
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
| | - Jingyuan Fan
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Yuming Yang
- Department of Agrotechnology and Food Sciences, Wageningen University 6708 PB Wageningen The Netherlands
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University 911 Partners Way, Campus Box 7905 Raleigh NC 27695 USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University USA
| |
Collapse
|
32
|
Wang T, Gao C, Cheng Y, Li Z, Chen J, Guo L, Xu J. Molecular Diagnostics and Detection of Oomycetes on Fiber Crops. PLANTS (BASEL, SWITZERLAND) 2020; 9:E769. [PMID: 32575466 PMCID: PMC7355704 DOI: 10.3390/plants9060769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Fiber crops are an important group of economic plants. Traditionally cultivated for fiber, fiber crops have also become sources of other materials such as food, animal feed, cosmetics and medicine. Asia and America are the two main production areas of fiber crops in the world. However, oomycete diseases have become an important factor limiting their yield and quality, causing devastating consequences for the production of fiber crops in many regions. To effectively control oomycete pathogens and reduce their negative impacts on these crops, it is very important to have fast and accurate detection systems, especially in the early stages of infection. With the rapid development of molecular biology, the diagnosis of plant pathogens has progressed from relying on traditional morphological features to the increasing use of molecular methods. The objective of this paper was to review the current status of research on molecular diagnosis of oomycete pathogens on fiber crops. Our search of PubMed identified nearly 30 species or subspecies of oomycetes on fiber crops, among which the top three species were Phytophthora boehmeriae, Phytophthora nicotianae and Pythium ultimum. The gene regions that have been used for molecular identifications of these pathogens include the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster, and genes coding for translation elongation factor 1α (EF-1α) and mitochondrial cytochrome c oxidase subunits I and II (Cox 1, Cox 2), etc. We summarize the molecular assays that have been used to identify these pathogens and discuss potential areas of future development for fast, specific, and accurate diagnosis of oomycetes on fiber crops.
Collapse
Affiliation(s)
- Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (T.W.); (C.G.); (Y.C.); (Z.L.); (J.C.); (L.G.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|