1
|
Gryzunov N, Morozov SY, Suprunova T, Samarskaya V, Spechenkova N, Yakunina S, Kalinina NO, Taliansky M. Genomes of Alphanucleorhabdovirus Physostegiae Isolates from Two Different Cultivar Groups of Solanum melongena. Viruses 2024; 16:1538. [PMID: 39459872 PMCID: PMC11512384 DOI: 10.3390/v16101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Plant rhabdoviruses cause considerable economic losses and are a threat to the agriculture of Solanaceae plants. Two novel virus isolates belonging to the family Rhabdoviridae are identified by high-throughput sequencing (HTS) in Russian eggplant cultivars grown in the Volga river delta region for the first time. The phylogenetic inference of L protein (polymerase) shows that these virus isolates belong to Alphanucleorhabdovirus physostegia (Physostegia chlorotic mottle virus-PhCMoV), and their minus-sense RNA genomes have the typical gene order 3'-nucleocapsid (N)-X protein (X)-phosphoprotein (P)-Y protein (Y)-matrix protein (M)-glycoprotein (G)-polymerase (L)-5' observed in some plant-infecting alphanucleorhabdoviruses. One of the PhCMoV isolates from the eggplant cultivar Almaz is genetically very similar to the Russian PhCMoV isolate from tomato and grouped in a subclade together with four isolates from Belgium, Germany, the Netherlands, and France. However, another eggplant-infecting isolate from the Russian cultivar Boggart is the most divergent compared with the other 45 virus genomes of European PhCMoV isolates. Thus, our comparative analysis reveals that two virus isolates from Russia may either share a close evolutionary relationship with European isolates or significantly diverge from all known virus isolates. The potential to use the protein sequence comparative analysis of accessory polypeptides, along with the early developed strategy of the nucleotide sequence comparison of the RNA genomes, is shown.
Collapse
Affiliation(s)
- Nikita Gryzunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (N.G.); (V.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Sergey Yu. Morozov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | | - Viktoriya Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (N.G.); (V.S.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (N.G.); (V.S.)
| | - Sofiya Yakunina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (N.G.); (V.S.)
| | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (N.G.); (V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (N.G.); (V.S.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
2
|
Temple C, Blouin AG, Boezen D, Botermans M, Durant L, De Jonghe K, de Koning P, Goedefroit T, Minet L, Steyer S, Verdin E, Zwart M, Massart S. Biological Characterization of Physostegia Chlorotic Mottle Virus, an Emergent Virus Infecting Vegetables in Diversified Production Systems. PHYTOPATHOLOGY 2024; 114:1680-1688. [PMID: 38648112 DOI: 10.1094/phyto-06-23-0194-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In 2014, Physostegia chlorotic mottle virus (PhCMoV) was discovered in Austria in Physostegia virginiana. Subsequent collaborative efforts established a link between the virus and severe fruit symptoms on important crops such as tomato, eggplant, and cucumber across nine European countries. Thereafter, specific knowledge gaps, which are crucial to assess the risks PhCMoV can pose for production and how to manage it, needed to be addressed. In this study, the transmission, prevalence, and disease severity of PhCMoV were examined. This investigation led to the identification of PhCMoV presence in a new country, Switzerland. Furthermore, our research indicates that the virus was already present in Europe 30 years ago. Bioassays demonstrated PhCMoV can result in up to 100% tomato yield losses depending on the phenological stage of the plant at the time of infection. PhCMoV was found to naturally infect 12 new host plant species across eight families, extending its host range to 21 plant species across 15 plant families. The study also identified a polyphagous leafhopper (genus Anaceratagallia) as a natural vector of PhCMoV. Overall, PhCMoV was widespread in small-scale diversified vegetable farms in Belgium where tomato is grown in soil under tunnels, occurring in approximately one-third of such farms. However, outbreaks were sporadic and were associated at least once with the cultivation in tomato tunnels of perennial plants that can serve as a reservoir host for the virus and its vector. To further explore this phenomenon and manage the virus, studying the ecology of the vector would be beneficial.
Collapse
Affiliation(s)
- Coline Temple
- Plant Pathology Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Arnaud G Blouin
- Plant Protection Department, Agroscope, 1260, Nyon, Switzerland
| | - Dieke Boezen
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700 AB, The Netherlands
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive plants and Plant health, Netherlands Food and Product Safety Authority, Wageningen, P.O. Box 9102, 6700 HC Wageningen, The Netherlands
| | - Laurena Durant
- Plant Pathology Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, 9820, Belgium
| | - Pier de Koning
- Netherlands Institute for Vectors, Invasive plants and Plant health, Netherlands Food and Product Safety Authority, Wageningen, P.O. Box 9102, 6700 HC Wageningen, The Netherlands
| | - Thomas Goedefroit
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, 9820, Belgium
| | - Laurent Minet
- Hortiforum asbl/Centre Technique Horticole de Gembloux, Gembloux, Belgium
| | - Stephan Steyer
- Crops and Forest Health Unit, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium
| | - Eric Verdin
- Unité de Pathologie Végétale, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Avignon, 84000, France
| | - Mark Zwart
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, 6700 AB, The Netherlands
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
3
|
Nyirakanani C, Tamisier L, Bizimana JP, Rollin J, Nduwumuremyi A, Bigirimana VDP, Selmi I, Lasois L, Vanderschuren H, Massart S. Going beyond consensus genome sequences: An innovative SNP-based methodology reconstructs different Ugandan cassava brown streak virus haplotypes at a nationwide scale in Rwanda. Virus Evol 2023; 9:vead053. [PMID: 37692897 PMCID: PMC10491861 DOI: 10.1093/ve/vead053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Cassava Brown Streak Disease (CBSD), which is caused by cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), represents one of the most devastating threats to cassava production in Africa, including in Rwanda where a dramatic epidemic in 2014 dropped cassava yield from 3.3 million to 900,000 tonnes (1). Studying viral genetic diversity at the genome level is essential in disease management, as it can provide valuable information on the origin and dynamics of epidemic events. To fill the current lack of genome-based diversity studies of UCBSV, we performed a nationwide survey of cassava ipomovirus genomic sequences in Rwanda by high-throughput sequencing (HTS) of pools of plants sampled from 130 cassava fields in thirteen cassava-producing districts, spanning seven agro-ecological zones with contrasting climatic conditions and different cassava cultivars. HTS allowed the assembly of a nearly complete consensus genome of UCBSV in twelve districts. The phylogenetic analysis revealed high homology between UCBSV genome sequences, with a maximum of 0.8 per cent divergence between genomes at the nucleotide level. An in-depth investigation based on Single Nucleotide Polymorphisms (SNPs) was conducted to explore the genome diversity beyond the consensus sequences. First, to ensure the validity of the result, a panel of SNPs was confirmed by independent reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Furthermore, the combination of fixation index (FST) calculation and Principal Component Analysis (PCA) based on SNP patterns identified three different UCBSV haplotypes geographically clustered. The haplotype 2 (H2) was restricted to the central regions, where the NAROCAS 1 cultivar is predominantly farmed. RT-PCR and Sanger sequencing of individual NAROCAS1 plants confirmed their association with H2. Haplotype 1 was widely spread, with a 100 per cent occurrence in the Eastern region, while Haplotype 3 was only found in the Western region. These haplotypes' associations with specific cultivars or regions would need further confirmation. Our results prove that a much more complex picture of genetic diversity can be deciphered beyond the consensus sequences, with practical implications on virus epidemiology, evolution, and disease management. Our methodology proposes a high-resolution analysis of genome diversity beyond the consensus between and within samples. It can be used at various scales, from individual plants to pooled samples of virus-infected plants. Our findings also showed how subtle genetic differences could be informative on the potential impact of agricultural practices, as the presence and frequency of a virus haplotype could be correlated with the dissemination and adoption of improved cultivars.
Collapse
Affiliation(s)
- Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Crop Sciences, School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze 210, Rwanda
| | - Lucie Tamisier
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Jean Pierre Bizimana
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Research, Rwanda Agriculture and Animal Resources Development Board, Huye 5016, Rwanda
| | - Johan Rollin
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Research, DNAVision, Gosselies, Charleroi 6041, Belgium
| | - Athanase Nduwumuremyi
- Department of Research, Rwanda Agriculture and Animal Resources Development Board, Huye 5016, Rwanda
| | - Vincent de Paul Bigirimana
- Department of Crop Sciences, School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze 210, Rwanda
| | - Ilhem Selmi
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Ludivine Lasois
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Tropical Crop Improvement Laboratory, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Leuven 3001, Belgium
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| |
Collapse
|
4
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
5
|
Temple C, Blouin AG, De Jonghe K, Foucart Y, Botermans M, Westenberg M, Schoen R, Gentit P, Visage M, Verdin E, Wipf-Scheibel C, Ziebell H, Gaafar YZA, Zia A, Yan XH, Richert-Pöggeler KR, Ulrich R, Rivarez MPS, Kutnjak D, Vučurović A, Massart S. Biological and Genetic Characterization of Physostegia Chlorotic Mottle Virus in Europe Based on Host Range, Location, and Time. PLANT DISEASE 2022; 106:2797-2807. [PMID: 35394335 DOI: 10.1094/pdis-12-21-2800-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Application of high throughput sequencing (HTS) technologies enabled the first identification of Physostegia chlorotic mottle virus (PhCMoV) in 2018 in Austria. Subsequently, PhCMoV was detected in Germany and Serbia on tomatoes showing severe fruit mottling and ripening anomalies. We report here how prepublication data-sharing resulted in an international collaboration across eight laboratories in five countries, enabling an in-depth characterization of PhCMoV. The independent studies converged toward its recent identification in eight additional European countries and confirmed its presence in samples collected 20 years ago (2002). The natural plant host range was expanded from two to nine species across seven families, and we confirmed the association of PhCMoV presence with severe fruit symptoms on economically important crops such as tomato, eggplant, and cucumber. Mechanical inoculations of selected isolates in the greenhouse established the causality of the symptoms on a new indexing host range. In addition, phylogenetic analysis showed a low genomic variation across the 29 near-complete genome sequences available. Furthermore, a strong selection pressure within a specific ecosystem was suggested by nearly identical sequences recovered from different host plants through time. Overall, this study describes the European distribution of PhCMoV on multiple plant hosts, including economically important crops on which the virus can cause severe fruit symptoms. This work demonstrates how to efficiently improve knowledge on an emergent pathogen by sharing HTS data and provides a solid knowledge foundation for further studies on plant rhabdoviruses.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Coline Temple
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège (ULIEGE), Gembloux 5030, Belgium
| | - Arnaud G Blouin
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège (ULIEGE), Gembloux 5030, Belgium
- Plant Protection Department, Agroscope, 1260 Nyon, Switzerland
| | - Kris De Jonghe
- Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke 9820, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke 9820, Belgium
| | - Marleen Botermans
- National Reference Centre of Plant Health, National Plant Protection Organization of the Netherlands, 6700 HC Wageningen, the Netherlands
| | - Marcel Westenberg
- National Reference Centre of Plant Health, National Plant Protection Organization of the Netherlands, 6700 HC Wageningen, the Netherlands
| | - Ruben Schoen
- National Reference Centre of Plant Health, National Plant Protection Organization of the Netherlands, 6700 HC Wageningen, the Netherlands
| | - Pascal Gentit
- Laboratoire de santé des végétaux, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Angers 49100, France
| | - Michèle Visage
- Laboratoire de santé des végétaux, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Angers 49100, France
| | - Eric Verdin
- Unité de Pathologie Végétale, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Avignon 84000, France
| | - Catherine Wipf-Scheibel
- Unité de Pathologie Végétale, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Avignon 84000, France
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig 38104, Germany
| | - Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig 38104, Germany
| | - Amjad Zia
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig 38104, Germany
| | - Xiao-Hua Yan
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig 38104, Germany
| | - Katja R Richert-Pöggeler
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig 38104, Germany
| | | | - Mark Paul S Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), Ljubljana 1000, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), Ljubljana 1000, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), Ljubljana 1000, Slovenia
| | - Sébastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège (ULIEGE), Gembloux 5030, Belgium
| |
Collapse
|
6
|
Budziszewska M, Wieczorek P. A Novel Distinct Genetic Variant of Tomato Torrado Virus with Substantially Shorter RNA1-Specific 3’Untranslated Region (3’UTR). PLANTS 2021; 10:plants10112454. [PMID: 34834816 PMCID: PMC8621019 DOI: 10.3390/plants10112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Tomato torrado virus (ToTV) induces severe systemic necrosis in Solanum lycopersicum. This work aimed at describing the genetic variability of necrosis-inducing ToTV-Wal’17 collected in 2017, derived from the ToTV-Wal’03 after long-term passages in plants. Sequence analyses of the ToTV-Wal’17 indicated twenty-eight single nucleotide substitutions in coding sequence of both RNAs, twelve of which resulted in amino acid changes in viral polyproteins. Moreover the sequencing data revealed that the 3’UTR of ToTV-Wal’17 RNA1 was 394 nts shorter in comparison to Wal’03. The performed sequence analyses revealed that 3’UTR of RNA1 of ToTV-Wal’17 is the most divergent across all previously described European isolates.
Collapse
|
7
|
Kavalappara SR, Milner H, Konakalla NC, Morgan K, Sparks AN, McGregor C, Culbreath AK, Wintermantel WM, Bag S. High Throughput Sequencing-Aided Survey Reveals Widespread Mixed Infections of Whitefly-Transmitted Viruses in Cucurbits in Georgia, USA. Viruses 2021; 13:v13060988. [PMID: 34073397 PMCID: PMC8230054 DOI: 10.3390/v13060988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Viruses transmitted by the sweet potato whitefly (Bemisia tabaci) have been detrimental to the sustainable production of cucurbits in the southeastern USA. Surveys were conducted in the fall of 2019 and 2020 in Georgia, a major cucurbit-producing state of the USA, to identify the viruses infecting cucurbits and their distribution. Symptomatic samples were collected and small RNA libraries were prepared and sequenced from three cantaloupes, four cucumbers, and two yellow squash samples. An analysis of the sequences revealed the presence of the criniviruses cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and the begomovirus cucurbit leaf crumple virus (CuLCrV). CuLCrV was detected in 76%, CCYV in 60%, and CYSDV in 43% of the total samples (n = 820) tested. The level of mixed infections was high in all the cucurbits, with most plants tested being infected with at least two of these viruses. Near-complete genome sequences of two criniviruses, CCYV and CYSDV, were assembled from the small RNA sequences. An analysis of the coding regions showed low genetic variability among isolates from different hosts. In phylogenetic analysis, the CCYV isolates from Georgia clustered with Asian isolates, while CYSDV isolates clustered with European and USA isolates. This work enhances our understanding of the distribution of viruses on cucurbits in South Georgia and will be useful to develop strategies for managing the complex of whitefly-transmitted viruses in the region.
Collapse
Affiliation(s)
- Saritha Raman Kavalappara
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Hayley Milner
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Naga Charan Konakalla
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Kaelyn Morgan
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Alton N. Sparks
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA;
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - William M. Wintermantel
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, USA
- Correspondence: (W.M.W.); (S.B.)
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
- Correspondence: (W.M.W.); (S.B.)
| |
Collapse
|
8
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|