1
|
Fernando K, Reddy P, Spangenberg GC, Rochfort SJ, Guthridge KM. Metabolic Potential of Epichloë Endophytes for Host Grass Fungal Disease Resistance. Microorganisms 2021; 10:64. [PMID: 35056512 PMCID: PMC8781568 DOI: 10.3390/microorganisms10010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Asexual species of the genus Epichloë (Clavicipitaceae, Ascomycota) form endosymbiotic associations with Pooidae grasses. This association is important both ecologically and to the pasture and turf industries, as the endophytic fungi confer a multitude of benefits to their host plant that improve competitive ability and performance such as growth promotion, abiotic stress tolerance, pest deterrence and increased host disease resistance. Biotic stress tolerance conferred by the production of bioprotective metabolites has a critical role in an industry context. While the known antimammalian and insecticidal toxins are well characterized due to their impact on livestock welfare, antimicrobial metabolites are less studied. Both pasture and turf grasses are challenged by many phytopathogenic diseases that result in significant economic losses and impact livestock health. Further investigations of Epichloë endophytes as natural biocontrol agents can be conducted on strains that are safe for animals. With the additional benefits of possessing host disease resistance, these strains would increase their commercial importance. Field reports have indicated that pasture grasses associated with Epichloë endophytes are superior in resisting fungal pathogens. However, only a few antifungal compounds have been identified and chemically characterized, and these from sexual (pathogenic) Epichloë species, rather than those utilized to enhance performance in turf and pasture industries. This review provides insight into the various strategies reported in identifying antifungal activity from Epichloë endophytes and, where described, the associated antifungal metabolites responsible for the activity.
Collapse
Affiliation(s)
- Krishni Fernando
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Priyanka Reddy
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
| |
Collapse
|
2
|
Abstract
Rice blast disease is both the most explosive and potentially damaging disease of the world's rice (Oryza sativa) crop and a model system for research on the molecular mechanisms that fungi use to cause plant disease. The blast fungus, Magnaporthe oryzae, is highly evolved to sense when it is on a leaf surface; to develop a pressurized cell, the appressorium, to punch through the leaf cuticle; and then to hijack living rice cells to assist it in causing disease. Host specificity, determining which plants particular fungal strains can infect, is also an important topic for research. The blast fungus is a moving target, quickly overcoming rice resistance genes we deploy to control it, and recently emerging to cause devastating disease on an entirely new cereal crop, wheat. M. oryzae is highly adaptable, with multiple examples of genetic instability at certain gene loci and in certain genomic regions. Understanding the biology of the fungus in the field, and its potential for genetic and genome variability, is key to keep it from adapting to life in the research laboratory and losing relevance to the significant impact it has on global food security.
Collapse
Affiliation(s)
- Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Fernando K, Reddy P, Hettiarachchige IK, Spangenberg GC, Rochfort SJ, Guthridge KM. Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes. Microorganisms 2020; 8:microorganisms8060955. [PMID: 32599897 PMCID: PMC7355949 DOI: 10.3390/microorganisms8060955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
Asexual Epichloë spp. fungal endophytes have been extensively studied for their functional secondary metabolite production. Historically, research mostly focused on understanding toxicity of endophyte-derived compounds on grazing livestock. However, endophyte-derived compounds also provide protection against invertebrate pests, disease, and other environmental stresses, which is important for ensuring yield and persistence of pastures. A preliminary screen of 30 strains using an in vitro dual culture bioassay identified 18 endophyte strains with antifungal activity. The novel strains NEA12, NEA21, and NEA23 were selected for further investigation as they are also known to produce alkaloids associated with protection against insect pests. Antifungal activity of selected endophyte strains was confirmed against three grass pathogens, Ceratobasidium sp., Dreschlera sp., and Fusarium sp., using independent isolates in an in vitro bioassay. NEA21 and NEA23 showed potent activity against Ceratobasidium sp. and NEA12 showed moderate inhibition against all three pathogens. Crude extracts from liquid cultures of NEA12 and NEA23 also inhibited growth of the phytopathogens Ceratobasidium sp. and Fusarium sp. and provided evidence that the compounds of interest are stable, constitutively expressed, and secreted. Comparative analysis of the in vitro and in planta metabolome of NEA12 and NEA23 using LCMS profile data revealed individual metabolites unique to each strain that are present in vitro and in planta. These compounds are the best candidates for the differential bioactivity observed for each strain. Novel endophyte strains show promise for endophyte-mediated control of phytopathogens impacting Lolium spp. pasture production and animal welfare.
Collapse
Affiliation(s)
- Krishni Fernando
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia
| | - Priyanka Reddy
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
| | - Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- Correspondence: ; Tel.: +61390327062
| |
Collapse
|
4
|
Yasuhara-Bell J, Pedley KF, Farman M, Valent B, Stack JP. Specific Detection of the Wheat Blast Pathogen (Magnaporthe oryzae Triticum) by Loop-Mediated Isothermal Amplification. PLANT DISEASE 2018; 102:2550-2559. [PMID: 30320534 DOI: 10.1094/pdis-03-18-0512-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Wheat blast, caused by the Magnaporthe oryzae Triticum pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for M. oryzae Triticum. Loop-mediated isothermal amplification (LAMP) primers were designed to target the PoT2 and MoT3 loci, previously shown to be specific for M. oryzae and M. oryzae Triticum, respectively. Specificity was determined using 158 M. oryzae strains collected from infected wheat and other grasses and representing geographic and temporal variation. Negative controls included 50 Fusarium spp. isolates. Sensitivity was assessed using 10-fold serial dilutions of M. oryzae Triticum gDNA. PoT2- and MoT3-based assays showed high specificity for M. oryzae and M. oryzae Triticum, respectively, and sensitivity to approximately 5 pg of DNA per reaction. PoT2 and MoT3 assays were tested on M. oryzae Triticum-infected wheat seed and spikes and identified M. oryzae and M. oryzae Triticum, respectively, using a field DNA extraction kit and the portable Genie II system. The mitochondrial NADH-dehydrogenase (nad5) gene, an internal control for plant DNA, was multiplexed with PoT2 and MoT3 and showed results comparable with individual assays. These results show applicability for M. oryzae Triticum field surveillance, as well as identifying nonwheat species that may serve as a reservoir or source of inoculum for nearby wheat fields.
Collapse
Affiliation(s)
| | - Kerry F Pedley
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | | | - James P Stack
- Department of Plant Pathology, Kansas State University
| |
Collapse
|
5
|
Comparative Methods for Molecular Determination of Host-Specificity Factors in Plant-Pathogenic Fungi. Int J Mol Sci 2018; 19:ijms19030863. [PMID: 29543717 PMCID: PMC5877724 DOI: 10.3390/ijms19030863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Many plant-pathogenic fungi are highly host-specific. In most cases, host-specific interactions evolved at the time of speciation of the respective host plants. However, host jumps have occurred quite frequently, and still today the greatest threat for the emergence of new fungal diseases is the acquisition of infection capability of a new host by an existing plant pathogen. Understanding the mechanisms underlying host-switching events requires knowledge of the factors determining host-specificity. In this review, we highlight molecular methods that use a comparative approach for the identification of host-specificity factors. These cover a wide range of experimental set-ups, such as characterization of the pathosystem, genotyping of host-specific strains, comparative genomics, transcriptomics and proteomics, as well as gene prediction and functional gene validation. The methods are described and evaluated in view of their success in the identification of host-specificity factors and the understanding of their functional mechanisms. In addition, potential methods for the future identification of host-specificity factors are discussed.
Collapse
|
6
|
Farman M, Peterson G, Chen L, Starnes J, Valent B, Bachi P, Murdock L, Hershman D, Pedley K, Fernandes JM, Bavaresco J. The Lolium Pathotype of Magnaporthe oryzae Recovered from a Single Blasted Wheat Plant in the United States. PLANT DISEASE 2017; 101:684-692. [PMID: 30678560 DOI: 10.1094/pdis-05-16-0700-re] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wheat blast is a devastating disease that was first identified in Brazil and has subsequently spread to surrounding countries in South America. In May 2011, disease scouting in a University of Kentucky wheat trial plot in Princeton, KY identified a single plant with disease symptoms that differed from the Fusarium head blight that was present in surrounding wheat. The plant in question bore a single diseased head that was bleached yellow from a point about one-third up the rachis to the tip. A gray mycelial mass was observed at the boundary of the healthy tissue and microscopic examination of this material revealed pyriform spores consistent with a Magnaporthe sp. The pathogen was subsequently identified as Magnaporthe oryzae through amplification and sequencing of molecular markers, and genome sequencing revealed that the U.S. wheat blast isolate was most closely related to an M. oryzae strain isolated from annual ryegrass in 2002 and quite distantly related to M. oryzae strains causing wheat blast in South America. The suspect isolate was pathogenic to wheat, as indicated by growth chamber inoculation tests. We conclude that this first occurrence of wheat blast in the United States was most likely caused by a strain that evolved from an endemic Lolium-infecting pathogen and not by an exotic introduction from South America. Moreover, we show that M. oryzae strains capable of infecting wheat have existed in the United States for at least 16 years. Finally, evidence is presented that the environmental conditions in Princeton during the spring of 2011 were unusually conducive to the early production of blast inoculum.
Collapse
Affiliation(s)
- Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Gary Peterson
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702
| | - Li Chen
- Department of Plant Pathology, University of Kentucky
| | - John Starnes
- Department of Plant Pathology, University of Kentucky
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan 66506
| | - Paul Bachi
- Department of Plant Pathology, University of Kentucky; and University of Kentucky Research and Education Center, Princeton 42445
| | - Lloyd Murdock
- University of Kentucky Research and Education Center, Princeton
| | - Don Hershman
- Department of Plant Pathology, University of Kentucky; and University of Kentucky Research and Education Center, Princeton
| | | | | | | |
Collapse
|
7
|
Villari C, Mahaffee WF, Mitchell TK, Pedley KF, Pieck ML, Hand FP. Early Detection of Airborne Inoculum of Magnaporthe oryzae in Turfgrass Fields Using a Quantitative LAMP Assay. PLANT DISEASE 2017; 101:170-177. [PMID: 30682295 DOI: 10.1094/pdis-06-16-0834-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gray leaf spot (GLS) is a destructive disease of perennial ryegrass caused by a host specific pathotype of the ascomycete Magnaporthe oryzae. Early diagnosis is crucial for effective disease management and the implementation of Integrated Pest Management practices. However, a rapid protocol for the detection of low levels of airborne inoculum is still missing. We developed a pathogen-specific quantitative loop-mediated isothermal amplification (qLAMP) assay coupled with a spore trap system for rapid detection and quantification of airborne inoculum of the M. oryzae perennial ryegrass pathotype, and tested its suitability for implementation in GLS-infected turfgrass fields. In summer 2015, two perennial ryegrass plots were artificially inoculated with the pathogen, with four continuously running custom impaction spore traps placed in each plot. Sampling units were replaced daily and tested with the developed qLAMP assay, while plots were monitored for symptom development. Results confirmed that the qLAMP assay-trap system was able to detect as few as 10 conidia up to 12 days before symptoms developed in the field. LAMP technology is particularly appropriate for field implementation by nontechnical users, and has the potential to be a powerful decision support tool to guide timing of fungicide applications for GLS management.
Collapse
Affiliation(s)
- Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus 43210
| | - Walter F Mahaffee
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Corvallis, OR 97330
| | | | - Kerry F Pedley
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Fort Detrick, MD 21702
| | - Michael L Pieck
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Fort Detrick, MD 21702
| | | |
Collapse
|
8
|
Yamada K, Sonoda R, Ishikawa K. Population Genetic Structure of QoI-Resistant Pestalotiopsis longiseta Isolates Causing Tea Gray Blight. PLANT DISEASE 2016; 100:1686-1691. [PMID: 30686227 DOI: 10.1094/pdis-09-15-1114-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resistance to the quinone outside inhibitor (QoI) fungicides in the tea gray blight-causing fungus Pestalotiopsis longiseta is a serious problem in Japanese tea cultivation. We conducted a population genetic analysis of QoI-resistant P. longiseta isolates on the Makinohara Plateau, Shizuoka Prefecture, Japan's largest tea-growing area, to elucidate the disease's epidemiology and the spread of QoI resistance. Inter simple sequence repeat (ISSR) analysis of 1,083 isolates from 395 fields collected from 2009 to 2012 detected 42 ISSR types, designated as PL01 to PL42. A total of 18, seven, and 38 ISSR types were detected in highly resistant, moderately resistant, and sensitive isolates, respectively. No distinct phylogenetic relationship corresponding to QoI sensitivity or sampling location was observed. No annual changes in the population genetic structure of highly resistant isolates were observed during the study period. A different ISSR type was predominant among QoI-resistant isolates in each region. Analysis of molecular variance revealed significant genetic differentiation in populations of highly resistant isolates among regions (FCT = 0.213) and farmers (FCT = 0.071). Consequently, we speculate that QoI-resistant P. longiseta strains occurred in a number of clonal lineages and spread by both natural and artificial transmission, such as rain splash and plucking machines, throughout each region on the Makinohara Plateau.
Collapse
Affiliation(s)
- Kengo Yamada
- NARO Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization (NARO), Shimada, Shizuoka 428-8501, Japan
| | - Ryoichi Sonoda
- National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan
| | - Koichi Ishikawa
- NARO Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization (NARO), Shimada, Shizuoka 428-8501, Japan
| |
Collapse
|
9
|
Douhan GW, de la Cerda KA, Huryn KL, Greer CA, Wong FP. Contrasting genetic structure between Magnaporthe grisea populations associated with the golf course turfgrasses Lolium perenne (perennial ryegrass) and Pennisetum clandestinum (kikuyugrass). PHYTOPATHOLOGY 2011; 101:85-91. [PMID: 21142782 DOI: 10.1094/phyto-08-10-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gray leaf spot (GLS) disease of perennial ryegrass (Lolium perenne) and kikuyugrass (Pennisetum clandestinum) in golf courses in California was first noted in 2001 and 2003, respectively, and within 5 years had become well established. The causal agent of the disease is the fungus Magnaporthe grisea, which is known to consist primarily of clonal lineages that are highly host specific. Therefore, our objective was to investigate host specificity and population dynamics among isolates associated primarily from perennial ryegrass and kikuyugrass since the disease emerged at similar times in California. We also obtained isolates from additional hosts (tall fescue, St. Augustinegrass, weeping lovegrass, and rice) and from the eastern United States for comparative purposes. A total of 38 polymorphic amplified fragment length polymorphism makers were scored from 450 isolates which clustered by host with high bootstrap support (71 to 100%). Genetic structure between kikuyugrass and perennial ryegrass isolates differed significantly. Isolates from kikuyugrass were genotypically diverse (n = 34), possessed both mating types, and some tests for random mating could not be rejected, whereas isolates from perennial ryegrass were less genotypically diverse (n = 10) and only consisted of a single mating type. Low genotypic diversity was also found among the other host specific isolates which also only consisted of a single mating type. This is the first study to document evidence for the potential of sexual reproduction to occur in M. grisea isolates not associated with rice (Oryza sativa). Moreover, given the significant host specificity and contrasting genetic structures between turfgrass-associated isolates, the recent emergence of GLS on various grass hosts in California suggests that potential cultural practices or environmental changes have become conducive for the disease and that the primary inoculum may have already been present in the state, despite the fact that two genotypes associated with perennial ryegrass and St. Augustinegrass in California were the same as isolates collected from the eastern United States.
Collapse
Affiliation(s)
- Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside 92521, USA.
| | | | | | | | | |
Collapse
|
10
|
Tosa Y, Uddin W, Viji G, Kang S, Mayama S. Comparative Genetic Analysis of Magnaporthe oryzae Isolates Causing Gray Leaf Spot of Perennial Ryegrass Turf in the United States and Japan. PLANT DISEASE 2007; 91:517-524. [PMID: 30780695 DOI: 10.1094/pdis-91-5-0517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gray leaf spot caused by Magnaporthe oryzae is a serious disease of perennial ryegrass (Lolium perenne) turf in golf course fairways in the United States and Japan. Genetic relationships among M. oryzae isolates from perennial ryegrass (prg) isolates within and between the two countries were examined using the repetitive DNA elements MGR586, Pot2, and MAGGY as DNA fingerprinting probes. In all, 82 isolates of M. oryzae, including 57 prg isolates from the United States collected from 1995 to 2001, 1 annual ryegrass (Lolium multiflorum) isolate from the United States collected in 1972, and 24 prg isolates from Japan collected from 1996 to 1999 were analyzed in this study. Hybridization with the MGR586 probe resulted in approximately 30 DNA fragments in 75 isolates (designated major MGR586 group) and less than 15 fragments in the remaining 7 isolates (designated minor MGR586 group). Both groups were represented among the 24 isolates from Japan. All isolates from the United States, with the exception of one isolate from Maryland, belonged to the major MGR586 group. Some isolates from Japan exhibited MGR586 fingerprints that were identical to several isolates collected in Pennsylvania. Similarly, fingerprinting analysis with the Pot2 probe also indicated the presence of two distinct groups: isolates in the major MGR586 group showed fingerprinting profiles comprising 20 to 25 bands, whereas the isolates in the minor MGR586 group had less than 10 fragments. When MAGGY was used as a probe, two distinct fingerprint types, one exhibiting more than 30 hybridizing bands (type I) and the other with only 2 to 4 bands (type II), were identified. Although isolates of both types were present in the major MGR586 group, only the type II isolates were identified in the minor MGR586 group. The parsimony tree obtained from combined MGR586 and Pot2 data showed that 71 of the 82 isolates belonged to a single lineage, 5 isolates formed four different lineages, and the remaining 6 (from Japan) formed a separate lineage. This study indicates that the predominant groups of M. oryzae associated with the recent outbreaks of gray leaf spot in Japan and the United States belong to the same genetic lineage.
Collapse
Affiliation(s)
| | | | | | - S Kang
- Associate Professor, Department of Plant Pathology, The Pennsylvania State University, University Park 16802
| | - S Mayama
- Professor, Faculty of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Jo YK, Wang GL, Boehm MJ. Expression Analysis of Rice Defense-Related Genes in Turfgrass in Response to Magnaporthe grisea. PHYTOPATHOLOGY 2007; 97:170-178. [PMID: 18944372 DOI: 10.1094/phyto-97-2-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Magnaporthe grisea (anamorph = Pyricularia grisea) causes blast on rice (Oryza sativa) and gray leaf spot on turfgrass. Gray leaf spot is a serious disease on St. Augustinegrass (Stenotaphrum secundatum), perennial ryegrass (Lolium perenne), and tall fescue (Festuca arundinacea). Virulence assays performed in this study revealed that M. grisea collected from rice could also cause disease on St. Augustinegrass and tall fescue. One rice isolate, Che86061, caused similar disease reactions on susceptible cultivars of rice and St. Augustinegrass and an incompatible interaction on resistant cultivars of both species. To explore whether similar defense-related genes are expressed in rice and St. Augustinegrass, a rice cDNA library was screened using pooled cDNAs derived from M. grisea-infected St. Augustinegrass. Thirty rice EST (expressed sequence tag) clones showing differential expression in St. Augustinegrass following M. grisea inoculation were identified and classified into six putative functional groups. Northern blot analyses of seven EST clones that collectively represented each putative functional group confirmed that the expression of five out of seven EST clones was similar in both rice and St. Augustinegrass. This study represents one of the first attempts to use a broad-scale genomic approach and resources of a model monocot system to study defense gene expression in St. Augustinegrass following M. grisea infection.
Collapse
|
12
|
Peyyala R, Farman ML. Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass possess a functional copy of the AVR1-CO39 avirulence gene. MOLECULAR PLANT PATHOLOGY 2006; 7:157-165. [PMID: 20507436 DOI: 10.1111/j.1364-3703.2006.00325.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Gray leaf spot of perennial ryegrass (Lolium perenne) is a severe foliar disease caused by the ascomycete fungus Magnaporthe oryzae (formerly known as Magnaporthe grisea). Control of gray leaf spot is completely dependent on the use of fungicides because currently available perennial ryegrass cultivars lack genetic resistance to this disease. M. oryzae isolates from perennial ryegrass (prg) were unable to cause disease on rice cultivars CO39 and 51583, and instead triggered a hypersensitive response. Southern hybridization analysis of DNA from over 50 gray leaf spot isolates revealed that all of them contain sequences corresponding to AVR1-CO39, a host specificity gene that confers avirulence to rice cultivar CO39, which carries the corresponding resistance gene Pi-CO39(t). There was also an almost complete lack of restriction site polymorphism at the avirulence locus. Cloning and sequencing of the AVR1-CO39 gene (AVR1-CO39(Lp)) from 16 different gray leaf spot isolates revealed just two point mutations, both of which were located upstream of the predicted open reading frame. When an AVR1-CO39(Lp) gene copy was transferred into ML33, a rice pathogenic isolate that is highly virulent to rice cultivar CO39, the transformants were unable to cause disease on CO39 but retained their virulence to 51583, a rice cultivar that lacks Pi-CO39(t). These data demonstrate that the AVR1-CO39 gene in the gray leaf spot pathogens is functional, and suggest that interaction of AVR1-CO39(Lp) and Pi-CO39(t) is responsible, at least in part, for the host specificity expressed on CO39. This indicates that it may be possible to use the Pi-CO39(t) resistance gene as part of a transgenic strategy to complement the current deficiency of gray leaf spot resistance in prg. Furthermore, our data indicate that, if Pi-CO39(t) can function in prg, the resistance provided should be broadly effective against a large proportion of the gray leaf spot pathogen population.
Collapse
Affiliation(s)
- Rebecca Peyyala
- Department of Plant Pathology, Plant Science Building, 1405 Veteran's Drive, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
13
|
Curley J, Sim SC, Warnke S, Leong S, Barker R, Jung G. QTL mapping of resistance to gray leaf spot in ryegrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1107-17. [PMID: 16133316 DOI: 10.1007/s00122-005-0036-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Abstract
Gray leaf spot (GLS) is a serious fungal disease caused by Magnaporthe grisea, recently reported on perennial ryegrass (Lolium perenne L.), an important turf grass and forage species. This fungus also causes rice blast and many other grass diseases. Rice blast is usually controlled by host resistance, but durability of resistance is a problem. Little GLS resistance has been reported in perennial ryegrass. However, greenhouse inoculations in our lab using one ryegrass isolate and one rice-infecting lab strain suggest presence of partial resistance. A high density linkage map of a three generation Italian x perennial ryegrass mapping population was used to identify quantitative trait loci (QTL) for GLS resistance. Potential QTL of varying effect were detected on four linkage groups, and resistance to the ryegrass isolate and the lab strain appeared to be controlled by different QTL. Of three potential QTL detected using the ryegrass isolate, the one with strongest effect for resistance was located on linkage group 3 of the MFB parent, explaining between 20% and 37% of the phenotypic variance depending on experiment. Another QTL was detected on linkage group 6 of the MFA parent, explaining between 5% and 10% of the phenotypic variance. The two QTL with strongest effect for resistance to the lab strain were located on linkage groups MFA 2 and MFB 4, each explaining about 10% of the phenotypic variance. Further, the QTL on linkage groups 3 and 4 appear syntenic to blast resistance loci in rice. This work will likely benefit users and growers of perennial ryegrass, by setting the stage for improvement of GLS resistance in perennial ryegrass through marker-assisted selection.
Collapse
Affiliation(s)
- J Curley
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
14
|
Paplomatas EJ, Pappas AC, Syranidou E. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants. PEST MANAGEMENT SCIENCE 2005; 61:691-698. [PMID: 15739234 DOI: 10.1002/ps.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice.
Collapse
Affiliation(s)
- Epaminondas J Paplomatas
- Agricultural University of Athens, Crop Production, Laboratory of Plant Pathology, Iera Odos 75, 118 55 Votanikos, Athens, Greece
| | | | | |
Collapse
|
15
|
Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, van Kim P, Nottéghem JL, Kohn LM. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 2005; 170:613-30. [PMID: 15802503 PMCID: PMC1450392 DOI: 10.1534/genetics.105.041780] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 03/02/2005] [Indexed: 11/18/2022] Open
Abstract
Rice, as a widely and intensively cultivated crop, should be a target for parasite host shifts and a source for shifts to co-occurring weeds. Magnaporthe oryzae, of the M. grisea species complex, is the most important fungal pathogen of rice, with a high degree of host specificity. On the basis of 10 loci from six of its seven linkage groups, 37 multilocus haplotypes among 497 isolates of M. oryzae from rice and other grasses were identified. Phylogenetic relationships among isolates from rice (Oryza sativa), millet (Setaria spp.), cutgrass (Leersia hexandra), and torpedo grass (Panicum repens) were predominantly tree like, consistent with a lack of recombination, but from other hosts were reticulate, consistent with recombination. The single origin of rice-infecting M. oryzae followed a host shift from a Setaria millet and was closely followed by additional shifts to weeds of rice, cutgrass, and torpedo grass. Two independent estimators of divergence time indicate that these host shifts predate the Green Revolution and could be associated with rice domestication. The rice-infecting lineage is characterized by high copy number of the transposable element MGR586 (Pot3) and, except in two haplotypes, by a loss of AVR-Co39. Both mating types have been retained in ancestral, well-distributed rice-infecting haplotypes 10 (mainly temperate) and 14 (mainly tropical), but only one mating type was recovered from several derived, geographically restricted haplotypes. There is evidence of a common origin of both ACE1 virulence genotypes in haplotype 14. Host-haplotype association is evidenced by low pathogenicity on hosts associated with other haplotypes.
Collapse
Affiliation(s)
- Brett C Couch
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
McDonald B, Zhan J. Analytical and Experimental Methods for Estimating Population Genetic Structure of Fungi. Mycology 2005. [DOI: 10.1201/9781420027891.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Tredway LP, Stevenson KL, Burpee LL. Genetic Structure of Magnaporthe grisea Populations Associated with St. Augustinegrass and Tall Fescue in Georgia. PHYTOPATHOLOGY 2005; 95:463-471. [PMID: 18943310 DOI: 10.1094/phyto-95-0463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Amplified fragment length polymorphisms (AFLPs) were used to estimate phylogenetic relationships within Magnaporthe grisea and determine the genetic structure of M. grisea populations associated with tall fescue and St. Augustinegrass in Georgia. Sixteen clonal lineages were identified in a sample population of 948 isolates. Five lineages were isolated from tall fescue (E, G1, G2, G4, and H), with lineage G4 comprising 90% of the population. Isolates from tall fescue were closely related to those from perennial ryegrass, weeping lovegrass, and wheat. Two M. grisea lineages were isolated from St. Augustinegrass (C and K), with lineage C comprising 99.8% of the population. Populations from crabgrass were dominated (98%) by lineage K, but also contained a single lineage C isolate. Haplotype diversity indices ranged from 0.00 to 0.29 in tall fescue populations and from 0.00 to 0.04 in St. Augustinegrass populations. Selection due to host species was the primary factor determining population structure according to analysis of molecular variance; host cultivar and geographical region had no significant effect. The host range of M. grisea lineages from turfgrasses was determined in growth chamber experiments and supports the prominent role of host species in determining the genetic structure of M. grisea populations from turfgrasses in Georgia.
Collapse
|
18
|
Tosa Y, Hirata K, Tamba H, Nakagawa S, Chuma I, Isobe C, Osue J, Urashima AS, Don LD, Kusaba M, Nakayashiki H, Tanaka A, Tani T, Mori N, Mayama S. Genetic Constitution and Pathogenicity of Lolium Isolates of Magnaporthe oryzae in Comparison with Host Species-Specific Pathotypes of the Blast Fungus. PHYTOPATHOLOGY 2004; 94:454-62. [PMID: 18943763 DOI: 10.1094/phyto.2004.94.5.454] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
ABSTRACT Fungal isolates from gray leaf spot on perennial ryegrass (prg isolates) were characterized by DNA analyses, mating tests, and pathogenicity assays. All of the prg isolates were interfertile with Triticum isolates and clustered into the crop isolate group (CC group) on a dendrogram constructed from rDNA-internal transcribed spacer 2 sequences. Since the CC group corresponded to a newly proposed species, Magnaporthe oryzae, all of the prg isolates were designated M. oryzae. However, DNA fingerprinting with MGR586, MGR583, and Pot2 showed that the prg isolates are divided into two distinct populations, i.e., TALF isolates and WK isolates. The TALF isolates were virulent only on Lolium species, whereas the WK isolates were less specific, suggesting that gray leaf spot can be caused not only by Lolium-specific isolates but also by less specific isolates. We designated the TALF isolates as Lolium pathotype. The TALF isolates showed diverse karyotypes in spite of being uniform in DNA fingerprints, suggesting that theyare unstable in genome organization.
Collapse
|
19
|
Uddin W, Viji G, Vincelli P. Gray Leaf Spot (Blast) of Perennial Ryegrass Turf: An Emerging Problem for the Turfgrass Industry. PLANT DISEASE 2003; 87:880-889. [PMID: 30812789 DOI: 10.1094/pdis.2003.87.8.880] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Wakar Uddin
- The Pennsylvania State University, University Park
| | - Gnana Viji
- The Pennsylvania State University, University Park
| | | |
Collapse
|
20
|
Kim YS, Dixon EW, Vincelli P, Farman ML. Field Resistance to Strobilurin (Q(o)I) Fungicides in Pyricularia grisea Caused by Mutations in the Mitochondrial Cytochrome b Gene. PHYTOPATHOLOGY 2003; 93:891-900. [PMID: 18943171 DOI: 10.1094/phyto.2003.93.7.891] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Gray leaf spot caused by Pyricularia grisea is a highly destructive disease of perennial ryegrass turf. Control of gray leaf spot is dependent on the use of preventative fungicide treatments. Strobilurin-based (Q(o)I) fungicides, which inhibit the cytochrome bc(1) respiratory complex, have proven to be very effective against gray leaf spot. However, in August 2000, disease was diagnosed in Q(o)I-treated perennial ryegrass turf on golf courses in Lexington, KY, Champaign, IL, and Bloomington, IL. To determine if resistance was due to a mutation in the fungicide target, the cytochrome b gene (CYTB) was amplified from baseline and resistant isolates. Nucleotide sequence analysis revealed an intronless coding region of 1,179 bp. Isolates that were resistant to Q(o)I fungicides possessed one of two different mutant alleles, each of which carried a single point mutation. The first mutant allele had a guanine-to-cytosine transition at nucleotide position +428, resulting in a replacement of glycine 143 by alanine (G143A). Mutant allele two exhibited a cytosine-to-adenine transversion at position +387, causing a phenylalanine-to-leucine change (F129L). Cleavable amplified polymorphic sequence analysis revealed that neither mutation was present in a collection of baseline isolates collected before Q(o)I fungicide use and indicated that suspected Q(o)I- resistant isolates found in 2001 in Indiana and Maryland possessed the F129L mutation. The Pyricularia grisea isolates possessing the G143A substitution were significantly more resistant to azoxystrobin and trifloxystrobin, in vitro, than those having F129L. DNA fingerprinting of resistant isolates revealed that the mutations occurred in just five genetic backgrounds, suggesting that field resistance to the Q(o)I fungicides in Pyricularia grisea is due to a small number of ancestral mutations.
Collapse
|
21
|
Uddin W, Viji G, Schumann GL, Boyd SH. Detection of Pyricularia grisea Causing Gray Leaf Spot of Perennial Ryegrass Turf by a Rapid Immuno-Recognition Assay. PLANT DISEASE 2003; 87:772-778. [PMID: 30812885 DOI: 10.1094/pdis.2003.87.7.772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An immuno-recognition assay using a monoclonal antibody was developed to detect Pyricularia grisea, the causal agent of gray leaf spot of perennial ryegrass (Lolium perenne). In vitro assays with isolates of P. grisea from perennial ryegrass, tall fescue (Festuca arundinacea), St. Augustinegrass (Stenotaphrum secundatum), crabgrass (Digitaria sanguinalis), finger millet (Eleusine coracana), wheat (Triticum aestivum), triticale (× Triticosecale rimpaui), and rice (Oryza sativa) showed positive reactions; however, the strength of the reactions differed among isolates. Reactions were more intense with isolates from perennial ryegrass, wheat, and triticale. All P. grisea isolates from perennial ryegrass collected from various regions of the United States showed positive reactions. P. grisea was detected at antigen dilution rates of 0.5×, 0.25×, 0.13×, 0.06×, and 0.03×. Dot-blot assays with Bipolaris sorokiniana, Colletotrichum graminicola, Curvularia lunata, Microdochium nivale, Pythium aphanidermatum, Rhizoctonia solani, or Sclerotinia homoeocarpa isolated from turfgrasses were negative. In vivo assays of symptomatic leaves of perennial ryegrass plants inoculated with P. grisea also showed positive reactions, and those inoculated with B. sorokiniana, P. aphanidermatum, R. solani, or S. homoeocarpa were negative. Intensity of reaction between the monoclonal antibody and P. grisea was proportional to disease severity in perennial ryegrass inoculated with P. grisea; however, there was no reaction in dot blots of leaf tissue collected during the latent period. P. grisea was detected in perennial ryegrass samples from golf course fairways affected by gray leaf spot in Connecticut, Massachusetts, Maine, New Jersey, Pennsylvania, and Rhode Island using this procedure. The monoclonal antibody recognition system is highly sensitive to P. grisea and can be used effectively for the rapid diagnosis of gray leaf spot of perennial ryegrass turf.
Collapse
Affiliation(s)
- W Uddin
- Department of Plant Pathology, The Pennsylvania State University, University Park 16802
| | - G Viji
- Department of Plant Pathology, The Pennsylvania State University, University Park 16802
| | - G L Schumann
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | - S H Boyd
- Hydros Environmental Diagnostics, Falmouth, MA 02540
| |
Collapse
|
22
|
Tredway LP, Stevenson KL, Burpee LL. Mating Type Distribution and Fertility Status in Magnaporthe grisea Populations from Turfgrasses in Georgia. PLANT DISEASE 2003; 87:435-441. [PMID: 30831842 DOI: 10.1094/pdis.2003.87.4.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Populations of Magnaporthe grisea associated with tall fescue and St. Augustinegrass in Georgia were analyzed for mating type distribution and fertility status in 1999 and 2000. A polymerase chain reaction based assay for mating type was developed to facilitate population analysis. M. grisea populations from St. Augustinegrass in Georgia were dominated by the Mat1-1 mating type, whereas populations from tall fescue were dominated by Mat1-2. The opposite mating type was found in low frequency (0 to 5.7%) associated with each host. The fertility status of isolates from two populations was determined using controlled crosses in vitro. Seventy-eight Mat1-1 isolates from St. Augustinegrass were sterile in test crosses, but a single Mat1-2 isolate from St. Augustinegrass was male fertile. Of 87 Mat1-2 isolates from tall fescue, 47 were male fertile in test crosses, but 19 produced perithecia that were barren. All Mat1-1 isolates from tall fescue were sterile. Although both mating types exist in M. grisea populations from turfgrasses in Georgia, no female fertile isolates were identified in sample populations. The predominance of one mating type in eight sample populations and absence of female fertile isolates in two sample populations indicates that sexual reproduction may not occur with significant frequency in M. grisea populations associated with turfgrasses in Georgia.
Collapse
Affiliation(s)
- L P Tredway
- Department of Plant Pathology, University of Georgia, Athens 30602
| | - K L Stevenson
- Department of Plant Pathology, University of Georgia, Athens 30602
| | - L L Burpee
- Department of Plant Pathology, Georgia Station, University of Georgia, Griffin 30223
| |
Collapse
|
23
|
Tooley PW, Goley ED, Carras MM, O'Neill NR. AFLP Comparisons Among Claviceps africana Isolates from the United States, Mexico, Africa, Australia, India, and Japan. PLANT DISEASE 2002; 86:1247-1252. [PMID: 30818476 DOI: 10.1094/pdis.2002.86.11.1247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eighty-seven isolates of the sorghum ergot pathogen, Claviceps africana, from diverse geographic locations were analyzed using four different amplified fragment length polymorphism (AFLP) primer combinations to determine genetic relationships among isolates. Most isolates showed unique AFLP haplotypes, indicating that substantial genetic variation is present within C. africana populations. Two major groupings of isolates were observable, with ca. 70% similarity between the two groups. One group consisted of Australian, Indian, and Japanese isolates and the other of U.S., Mexican, and African isolates. In spite of overall high levels of genetic diversity observed in C. africana, isolates within the two major groups were between 75 and 100% similar. The observed associations of C. africana isolates from worldwide sources could be the result of intercontinental trade and/or movement of seed. The data indicate that Africa was the likely source of C. africana that has become established in the Americas since 1996. Analysis of additional isolates in future studies will reveal whether these groupings are being maintained or whether population subdivision or reshuffling may occur.
Collapse
Affiliation(s)
- Paul W Tooley
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Ft. Detrick, MD 21702-5023
| | - Erin D Goley
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Ft. Detrick, MD 21702-5023
| | - Marie M Carras
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Ft. Detrick, MD 21702-5023
| | - Nichole R O'Neill
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705
| |
Collapse
|
24
|
Viji G, Uddin W. Distribution of Mating Type Alleles and Fertility Status of Magnaporthe grisea Causing Gray Leaf Spot of Perennial Ryegrass and St. Augustinegrass Turf. PLANT DISEASE 2002; 86:827-832. [PMID: 30818634 DOI: 10.1094/pdis.2002.86.8.827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of Magnaporthe grisea causing gray leaf spot of perennial ryegrass (PR) (Lolium perenne) and St. Augustinegrass (SA) (Stenotaphrum secundatum) were analyzed for mating compatibility and fertility. A total of 312 isolates of M. grisea from PR and 62 isolates from SA were paired with hermaphroditic tester strains from finger millet (Eleusine coracana), rice (Oryza sativa), and wheat (Triticum aestivum). All the PR isolates belonged to a single mating type, MAT1-2. Male fertility was observed in all these isolates. Asci and ascospores were not produced regardless of their developmental stage. Of the 139 (44.6%) isolates from PR that formed perithecia with the fertile tester strains, 83 (59.7%) were highly fertile, 33 (23.7%) were intermediately fertile, and 23 (16.5%) were low in fertility. Both mating types were observed among the isolates of SA, where MAT1-1 predominated the MAT1-2 type. An equal number of male and female fertile isolates were detected among these isolates obtained from a single location; however, none of the isolates behaved as hermaphrodites. Few ascospores were produced in crosses between two isolates of SA and a finger millet tester. Of the 62 monoconidial isolates of SA tested, 19 (30.6%) isolates formed perithecia, of which 5 (26.3%) were highly fertile, 7 (36.8%) were intermediately fertile, 7 (36.8%) were low in fertility, and 43 (69.4%) were infertile. The results of this study indicate that the sexual stage may not be a significant factor contributing to the genetic variation the gray leaf spot pathogen population.
Collapse
Affiliation(s)
- G Viji
- Department of Plant Pathology, The Pennsylvania State University, University Park 16802
| | - W Uddin
- Department of Plant Pathology, The Pennsylvania State University, University Park 16802
| |
Collapse
|
25
|
Farman ML. Pyricularia grisea Isolates Causing Gray Leaf Spot on Perennial Ryegrass (Lolium perenne) in the United States: Relationship to P. grisea Isolates from Other Host Plants. PHYTOPATHOLOGY 2002; 92:245-54. [PMID: 18943995 DOI: 10.1094/phyto.2002.92.3.245] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ABSTRACT Gray leaf spot of perennial ryegrass (prg) (Lolium perenne), caused by the fungus Pyricularia grisea (teleomorph = Magnaporthe grisea), has rapidly become the most destructive of all turf grass diseases in the United States. Fungal isolates from infected prg were analyzed with several molecular markers to investigate their relationship to P. grisea strains found on other hosts. All of the molecular markers used in this study revealed that isolates from prg are very distantly related to those found on crabgrass. Fingerprinting with MGR586 (Pot3) revealed zero to three copies of this transposon in the prg pathogens, distinguishing them from isolates pathogenic to rice, which typically have more than 50 copies of this element. RETRO5, a newly identified retroelement in P. grisea, was present at a copy number of >50 in isolates from rice and Setaria spp. but only six to eight copies were found in the isolates from prg. The MAGGY retrotransposon was unevenly distributed in the prg pathogens, with some isolates lacking this element, some possessing six to eight copies, and others having 10 to 30 copies. These results indicated that the P. grisea isolates causing gray leaf spot are distinct from those found on crabgrass, rice, or Setaria spp. This conclusion was supported by an unweighted pair-group method with arithmetic average cluster analysis of single-copy restriction fragment length polymorphism haplo-types. Fingerprints obtained with probes from the Pot2 and MGR583 transposons revealed that the prg pathogens are very closely related to isolates from tall fescue, and that they share similarity with isolates from wheat. However, the wheat pathogens had fewer copies of these elements than those found on prg. Therefore, I conclude that P. grisea isolates commonly found on other host plant species did not cause gray leaf spot epidemics on prg. Instead, the disease appears to be caused by a P. grisea population that is specific to prg and tall fescue.
Collapse
|