1
|
Mubashir SS, Bhat ZA, Bhat MA, Masoodi KZ, Shafi F, Mukhtar M, Nargis S, Farhana W, Gul A. Profiling difenoconazole and flusilazole resistance, fitness penalty and phenotypic stability in Venturia inaequalis. Sci Rep 2025; 15:4855. [PMID: 39924568 PMCID: PMC11808096 DOI: 10.1038/s41598-025-89536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
Apple scab disease causes significant losses in apple crop production. In the north western Himalayas of India, the indiscriminate use of triazole fungicides to manage apple scab has led to the emergence of triazole-resistant strains of V. inaequalis. To investigate the resistance profile in three Venturia inaequalis populations collected from North, South and Central Kashmir, baseline sensitivity assays were conducted on 30 V. inaequalis isolates unexposed to any fungicides. The mean ED50 value and discriminatory dose of difenoconazole and flusilazole were determined to be 0.584, 0.15 µg ml-1 and 0.018, 0.02 µg ml-1 respectively. The assessment at these discriminatory doses revealed a major shift in sensitivity against both fungicides. The sequencing of conserved region-2 of CYP51A1 revealed that the resistant isolates have TTT (Phenylalanine) instead of TAT (Tyrosine) codon at position 133. Moreover, the same mutation was observed in some shifted isolates which confirmed that this mutation is not solely responsible for the development of resistance. From linear mixed-model regression analyses, the fitness parameters of resistant isolates were assessed which revealed that except for oxidative stress at 1 mm H2O2 (wherein a decreased micro colony growth linearly increases with resistance), there is no fitness cost associated with the development of resistance against difenoconazole and flusilazole. Meanwhile, the resistance against both fungicides is phenotypically stable. Consequently, it is speculated that these populations are unlikely to regain their sensitivity even in the absence of these frequently used fungicides.
Collapse
Affiliation(s)
- Syed Shoaib Mubashir
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India.
| | - Zahoor A Bhat
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India.
| | - Mushtaq A Bhat
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India
| | - Khalid Z Masoodi
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India
| | - Fozia Shafi
- Division of Basic Sciences, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, 190025, Srinagar, India
| | - M Mukhtar
- Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India
| | - Sayima Nargis
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India
| | - Wani Farhana
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India
| | - Aqib Gul
- Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology, FoH, Shalimar, 190025, Srinagar, India
| |
Collapse
|
2
|
Dutra PSS, Carraro TA, Nesi CN, Amorim L, May De Mio LL. Comparative Fitness of Monilinia fructicola Isolates with Multiple Fungicide-Resistant Phenotypes. PLANT DISEASE 2024; 108:3300-3310. [PMID: 38971961 DOI: 10.1094/pdis-12-23-2549-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study characterized 52 isolates of Monilinia fructicola from peach and nectarine orchards for their multiresistance patterns to thiophanate-methyl (TF), tebuconazole (TEB), and azoxystrobin (AZO) using in vitro sensitivity assays and molecular analysis. The radial growth of M. fructicola isolates was measured on media amended with a single discriminatory dose of 1 μg/ml for TF and AZO and 0.3 μg/ml for TEB. Cyt b, CYP51, and β-tubulin were tested for point mutations that confer resistance to quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs), and methyl benzimidazole carbamates (MBCs), respectively. Eight phenotypes were identified, including isolates with single, double, and triple in vitro resistance to QoI, MBC, and DMI fungicides. All resistant phenotypes to TF and TEB presented the H6Y mutation in β-tubulin and the G641S mutation in CYP51. None of the point mutations typically linked to QoI resistance were present in the Monilinia isolates examined. Moreover, fitness of the M. fructicola phenotypes was examined in vitro and in detached fruit assays. Phenotypes with single resistance displayed equal fitness in vitro and in fruit assays compared with the wild type. In contrast, the dual- and triple-resistance phenotypes suffered fitness penalties based on osmotic sensitivity and aggressiveness on peach fruit. In this study, multiple resistance to MBC, DMI, and QoI fungicide groups was confirmed in M. fructicola. Results suggest that Monilinia populations with multiple resistance phenotypes are likely to be less competitive in the field than those with single resistance, thereby impeding their establishment over time and facilitating disease management.
Collapse
Affiliation(s)
- Pamela S S Dutra
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Thiago A Carraro
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Cristiano N Nesi
- Research Center for Family Agriculture - EPAGRI, Chapecó, Santa Catarina, Brazil
| | - Lilian Amorim
- Department of Plant Pathology, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Louise L May De Mio
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Zhang Z, Li Y, Xu J, Zou H, Guo Y, Mao Y, Zhang J, Cai Y, Wang J, Zhu C, Wang X, Zhou M, Duan Y. The G143S mutation in cytochrome b confers high resistance to pyraclostrobin in Fusarium pseudograminearum. PEST MANAGEMENT SCIENCE 2024; 80:4941-4949. [PMID: 38837541 DOI: 10.1002/ps.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Wheat crown rot (WCR), primarily caused by Fusarium pseudograminearum has become more and more prevalent in winter wheat areas in China. However, limited fungicides have been registered for the control of WCR in China so far. Pyraclostrobin is a representative quinone outside inhibitor (QoI) with excellent activity against Fusarium spp. There is currently limited research on the resistance risk and resistance mechanism of F. pseudograminearum to pyraclostrobin. RESULTS Here, we determined the activity of pyraclostrobin against F. pseudograminearum. The EC50 values ranged from 0.022 to 0.172 μg mL-1 with an average EC50 value of 0.071 ± 0.030 μg mL-1. Four highly pyraclostrobin-resistant mutants were obtained from two sensitive strains by ultraviolet (UV) mutagenesis in the laboratory. The mutants showed decreased mycelial growth rate and virulence as compared with the corresponding wild-type strains, indicating that pyraclostrobin resistance suffered a fitness penalty in F. pseudograminearum. It was found that the high resistance of four mutants was caused by the G143S mutation in Cytb. Molecular docking analysis also further confirms that the G143S mutation in Cytb decreased the binding affinity between pyraclostrobin and Cytb. CONCLUSION The resistance risk of F. pseudograminearum to pyraclostrobin could be low to medium. Although a mutation at the G143S position of Cytb could potentially occur, this mutation decreases the fitness of the mutant, which may reduce its survival in the environment. Therefore, the negative consequences of a possible mutation are lower. This makes pyraclostrobin a good candidate for controlling crown rot in wheat. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziyang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yige Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jinke Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huaihao Zou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhu
- Nanjing Liuhe District Chunhua Family Farm, Nanjing, China
| | - Xiaoqing Wang
- Nanjing Liuhe District Agriculture and Rural Bureau, Nanjing, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Nasonov AI, Yakuba GV, Astapchuk IL. Sensitivity of Krasnodar Venturia inaequalis Populations to the Sterol Demethylation Inhibitor Difenoconazole. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:463-472. [PMID: 36781541 DOI: 10.1134/s001249662206014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 02/15/2023]
Abstract
Difenoconazole sensitivity was assessed in three populations of the apple scab agent Venturia inaequalis of the Krasnodar region. One of the populations was fungicide naïve population; its sample was collected in natural habitats of the eastern crabapple Malus orientalis in foothills of the Severskii raion. The two other populations were from commercial orchards of the apple variety Reinette Simirenko (the Krasnoarmeiskii and Dinskoi raions), where fungicide treatments with various agents, including those with difenoconazole as an active ingredient, were performed on a regular basis. Single-spore V. inaequalis isolates were isolated from fresh leaves with signs of the disease or fallen leaves with fungal fruiting bodies. The median effective concentration (EC50) was defined as the concentration that halves the colony growth and was estimated in a series of in vitro experiments with 120 isolates. Difenoconazole (Score EC, 250 mg/L, Syngenta) was used at six concentrations: 0.005, 0.01, 0.025, 0.05, 0.5, and 1 mg a.i./L. Mean EC50 values were 0.0078 mg a.i./L in the natural population and 0.12 and 0.25 mg a.i./L in the orchard populations. Fungicide sensitivity was lower in both of the orchard populations; their resistance factors were estimated at 16 and 32. The proportion of sensitive and low-sensitive isolates differed between the two orchard populations. A discriminatory dose, or single-assessment concentration (SAC), of 0.01 mg a.i./L was proposed to simplify the laboratory monitoring of the difenoconazole sensitivity in V. inaequalis by using a test for relative growth (RG) of the mycelium. Comparable results were obtained with EC50 and RG at the discriminatory dose. The portion of isolates with RGs exceeding the threshold (RG > 70%) was 97% in one of the orchard populations. The results indicate that difenoconazole resistance develops in V. inaequalis populations from commercial orchards of the Krasnodar region.
Collapse
Affiliation(s)
- A I Nasonov
- North Caucasian Federal Research Center of Horticulture, Viniculture, and Wine Industry, Krasnodar, Russia.
| | - G V Yakuba
- North Caucasian Federal Research Center of Horticulture, Viniculture, and Wine Industry, Krasnodar, Russia.
| | - I L Astapchuk
- North Caucasian Federal Research Center of Horticulture, Viniculture, and Wine Industry, Krasnodar, Russia.
| |
Collapse
|
5
|
Detection of Venturia inaequalis Isolates with Multiple Resistance in Greece. Microorganisms 2022; 10:microorganisms10122354. [PMID: 36557607 PMCID: PMC9780820 DOI: 10.3390/microorganisms10122354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
The excessive use of fungicides against Venturia inaequalis, the causal agent of apple scab, has led to the emergence of resistant populations to multiple fungicides over the years. In Greece, there is no available information on fungicide resistance, despite the fact that control failures have been reported on certain areas. An amount of 418 single-spore isolates were collected from three major apple production areas and tested for their sensitivity to eight commonly used fungicides from unrelated chemical groups. The isolates were tested on malt extract agar media enriched with the discriminatory dose of each fungicide using the point inoculation method. To define the discriminatory dose for assessing the levels of resistance, EC50 values on both spore germination and mycelial growth assays were previously determined. Isolates exhibiting high resistance to trifloxystrobin (92% in total) and difenoconazole (3%); and moderate resistance to cyprodinil (75%), dodine (28%), difenoconazole (36%), boscalid (5%), and fludioxonil (7%) were found for the first time in Greece. A small percentage of the isolates were also found less sensitive to captan (8%) and dithianon (6%). Two isolates showed various levels of resistance to all eight fungicides. Despite the occurrence of strains with multiple resistances to many fungicides, we concluded that this practical resistance in the field arose mainly due to the poor control of apple scab with trifloxystrobin and difenoconazole.
Collapse
|
6
|
Cowger C, Meyers E, Whetten R. Sensitivity of the U.S. Wheat Powdery Mildew Population to Quinone Outside Inhibitor Fungicides and Determination of the Complete Blumeria graminis f. sp. tritici Cytochrome b Gene. PHYTOPATHOLOGY 2022; 112:249-260. [PMID: 34156265 DOI: 10.1094/phyto-04-21-0132-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is managed primarily with cultivar resistance and foliar fungicides. Quinone outside inhibitors (QoIs), which target the mitochondrial cytochrome b (cytb) gene, are one of the two main fungicide classes used on wheat. While European populations of B. graminis f. sp. tritici are widely insensitive to QoIs, largely because of the cytb mutation G143A, the QoI sensitivity of the U.S. B. graminis f. sp. tritici population had never been evaluated despite years of QoI use on U.S. wheat. A total of 381 B. graminis f. sp. tritici isolates from 15 central and eastern U.S. states were screened for sensitivity to QoI fungicides pyraclostrobin and picoxystrobin. A modest range of sensitivities was observed, with maximum resistance factors of 11.2 for pyraclostrobin and 5.3 for picoxystrobin. The F129L, G137R, and G143A cytb mutations were not detected in the U.S. B. graminis f. sp. tritici population, nor were mutations identified in the PEWY loop, a key part of the Qo site. Thus, no genetic basis for the observed quantitative variation in QoI sensitivity of U.S. B. graminis f. sp. tritici was identified. Isolate sporulation was weakly negatively associated with reduced QoI sensitivity, suggesting a fitness cost. In the course of the study, the complete B. graminis f. sp. tritici cytb gene sequence was determined for the first time in the isolate 96224 v. 3.16 reference genome. Contrary to previous reports, the gene has an intron that appears to belong to intron group II, which is unusual in fungi. The study was the first QoI sensitivity screening of a large, geographically diverse set of U.S. B. graminis f. sp. tritici isolates, and while the population as a whole remains relatively sensitive, some quantitative loss of efficacy was observed.
Collapse
Affiliation(s)
- Christina Cowger
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
- Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC 27695
| | - Emily Meyers
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Rebecca Whetten
- Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC 27695
| |
Collapse
|
7
|
Nasonov A, Yakuba G, Marchenko N, Lobodina E, Astapchuk I. Evaluation of sensitivity of apple scab pathogen to difenoconazole using the discriminatory dose technique. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224710002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The most serious disease of the apple tree in all areas of its growth is scab. In the integrated apple tree protection system, the main method is chemical. However, the use of chemical fungicides is characterized by the risk of developing resistance to them by pathogen. The sensitivity of 118 monospore isolates of Venturia inaequalis was studied from three orchards of Jeromine, Reinette Simirenko and Gala cultivars, differing in the frequency of application of difenoconazole. Sensitivity was determined using the discriminatory dose technique (0.01 mg/l of active substance) in terms of RG, the relative growth of the mycelium. RG was expressed as the degree of change in mycelium growth in a nutrient medium with fungicide relative to the control variant in percent. All pathogen populations studied differed significantly in mean RG values. Populations treated three times per season with difenoconazole had higher RG values compared to populations treated two times. From Gala orchard, for some isolates, a stimulating effect of a discriminatory dose of difenoconazole on their growth was observed, that is, a hormesis effect was manifested. The proportion of isolates with RG values above the cutoff value, which was 84 and 100 % for the Reinette Simirenko and Gala orchards, may indicate that the pathogen populations studied are resistant, and in these orchards, there may be a decrease in the effectiveness of protection against apple scab. The discriminatory dose technique allowed us to objectively and promptly assess the sensitivity of V. inaequalis populations from orchards with varying intensity use of difenoconazole.
Collapse
|
8
|
Cordero-Limon L, Shaw MW, Passey TA, Robinson JD, Xu X. Cross-resistance between myclobutanil and tebuconazole and the genetic basis of tebuconazole resistance in Venturia inaequalis. PEST MANAGEMENT SCIENCE 2021; 77:844-850. [PMID: 32926586 DOI: 10.1002/ps.6088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Myclobutanil is one of the most widely used demethylation inhibitor (DMI) fungicides for the management of apple scab, caused by Venturia inaequalis. Strains of V. inaequalis resistant to myclobutanil have been reported across the world. Tebuconazole, another DMI fungicide, has been proposed as an alternative to myclobutanil, and the extent of cross-resistance with myclobutanil therefore needs to be evaluated. The sensitivity to tebuconazole and myclobutanil of a total of 40 isolates was determined. Half the isolates came from an isolated orchard which had never been sprayed with fungicides and half from orchards sprayed regularly with myclobutanil, but still with disease control problems. The progeny of a tebuconazole resistant (R) × sensitive (S) V. inaequalis cross were analyzed in order to improve understanding of the genetic control of tebuconazole sensitivity. RESULTS There is cross-resistance between myclobutanil and tebuconazole (r = 0.91; P < 0.001). Sensitivity to tebuconazole of the progeny of a R × S cross varied quantitatively in a pattern which implied at least two gene loci differing between the parental strains. In addition, the asymmetric distribution of the sensitivity in the progeny implied possible epistatic effects. CONCLUSION Resistance to myclobutanil and tebuconazole is strongly correlated. At least two genes are involved in the control of tebuconazole resistance in V. inaequalis.
Collapse
Affiliation(s)
- Laura Cordero-Limon
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
- NIAB EMR, Kent, UK
| | - Michael W Shaw
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
9
|
The Effects of Succinate Dehydrogenase Inhibitor Fungicide Dose and Mixture on Development of Resistance in Venturia inaequalis. Appl Environ Microbiol 2020; 86:AEM.01196-20. [PMID: 32631859 DOI: 10.1128/aem.01196-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022] Open
Abstract
Understanding how fungicide application practices affect selection for fungicide resistance is imperative for continued sustainable agriculture. Here, we examined the effect of field applications of the succinate dehydrogenase inhibitor (SDHI) fluxapyroxad at different doses and mixtures on the SDHI sensitivity of Venturia inaequalis, the apple scab pathogen. Fungicide applications were part of selection programs involving different doses (high or low) and mixtures (with a second single-site fungicide or a multisite fungicide). These programs were tested in two apple orchards over 4 years to determine potential cumulative selection effects on resistance. Each year after program applications, apple scab lesions were collected, and relative growth assays were conducted to understand shifts in fluxapyroxad sensitivity. After 4 years, there was a trend toward a reduction in sensitivity to fluxapyroxad for most selection programs in comparison to that in the non-selective-pressure control. In most years, the selection program plots treated with low-dose fluxapyroxad applications resulted in a larger number of isolates with reduced sensitivity, supporting the use of higher doses for disease management. Few significant differences (P < 0.05) in fungicide sensitivity were observed between isolates collected from plots where fungicide mixtures were applied compared to that in untreated plots, supporting the use of multiple modes of action in field applications. In all, appropriate doses and mixtures may contribute to increased longevity of SDHI fungicides used on perennial crops like apples.IMPORTANCE Of much debate is the effect of fungicide application dose on resistance development, as fungicide resistance is a critical barrier to effective disease management in agricultural systems. Our field study in apples investigated the effect of fungicide application dose and mixture on the selection of succinate dehydrogenase inhibitor resistance in Venturia inaequalis, a fungal pathogen that causes the economically important disease apple scab. Understanding how to best delay the development of resistance can result in increased efficacy, fewer applications, and sustainable fungicide use. Results from this study may have relevance to other perennial crops that require multiple fungicide applications and that are impacted by the development of resistance.
Collapse
|
10
|
Sweet Immunity: The Effect of Exogenous Fructans on the Susceptibility of Apple ( Malus × domestica Borkh.) to Venturia inaequalis. Int J Mol Sci 2020; 21:ijms21165885. [PMID: 32824325 PMCID: PMC7461573 DOI: 10.3390/ijms21165885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
There is an urgent need for novel, efficient and environmentally friendly strategies to control apple scab (Venturia inaequalis), for the purpose of reducing overall pesticide use. Fructans are recently emerging as promising “priming” compounds, standing out for their safety and low production costs. The objective of this work was to test a fructan-triggered defense in the leaves of apple seedlings. It was demonstrated that exogenous leaf spraying can reduce the development of apple scab disease symptoms. When evaluated macroscopically and by V. inaequalis-specific qPCR, levan-treated leaves showed a significant reduction of sporulation and V. inaequalis DNA in comparison to mock- and inulin-treated leaves, comparable to the levels in fosetyl-aluminum-treated leaves. Furthermore, we observed a significant reduction of in vitro mycelial growth of V. inaequalis on plates supplemented with levans when compared to controls, indicating a direct inhibition of fungal growth. Variations in endogenous sugar contents in the leaves were followed during priming and subsequent infection, revealing complex dynamics as a function of time and leaf ontogeny. Our data are discussed in view of the present theories on sugar signaling and fructan-based immunity, identifying areas for future research and highlighting the potential use of fructans in apple scab management in orchards.
Collapse
|
11
|
Ayer KM, Villani SM, Choi MW, Cox KD. Characterization of the VisdhC and VisdhD Genes in Venturia inaequalis, and Sensitivity to Fluxapyroxad, Pydiflumetofen, Inpyrfluxam, and Benzovindiflupyr. PLANT DISEASE 2019; 103:1092-1100. [PMID: 31012823 DOI: 10.1094/pdis-07-18-1225-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHI) are an important class of fungicides for management of apple scab, especially as resistance to other classes of fungicides has become prevalent in the northeastern United States. Considering their single-site mode of action, there is high risk of resistance development to SDHI fungicides. Such risk mandates the need for proper monitoring of shifts in population sensitivity. This study aims to provide a means for phenotypic and genotypic characterization of SDHI fungicide resistance for Venturia inaequalis, the causal agent of apple scab. To complement the published sequence of VisdhB, target genes VisdhC and VisdhD were identified using sequences of homologous genes in other fungal organisms and a draft genome of V. inaequalis. Using mycelial growth and conidial germination assays, baseline sensitivities and cross sensitivities of V. inaequalis were determined for several SDHI fungicides. Mean baseline EC50 values for conidial germination of benzovindiflupyr, fluxapyroxad, pydiflumetofen, and inpyrfluxam were found to be 0.0021, 0.0284, 0.014, and 0.0137 μg ml-1, respectively. Mean baseline EC50 values for mycelial growth of benzovindiflupyr, fluxapyroxad, pydiflumetofen, and inpyrfluxam were found to be 0.0575, 0.228, 0.062, and 0.0291 μg ml-1, respectively. A significant and positive correlation in sensitivity was found between benzovindiflupyr, fluxapyroxad, pydiflumetofen, and inpyrfluxam as well as penthiopyrad and fluopyram, with the highest correlation between benzovindiflupyr and penthiopyrad for mycelial inhibition of V. inaequalis (r = 0.950, P < 0.001). For inhibition of conidial germination, the highest correlation was observed between penthiopyrad and fluopyram (r = 0.775, P < 0.001). Furthermore, the sequences of the VisdhC and VisdhD genes were identified and characterized for baseline isolates of V. inaequalis. Residues of similar position to mutations found in other systems that confer resistance to SDHI fungicides were identified in baseline isolates, but no mutations were identified in baseline isolates or those previously exposed to SDHI fungicides. This study will serve as a reference for future monitoring of resistance to SDHI fungicides in V. inaequalis at both a phenotypic and genotypic level.
Collapse
Affiliation(s)
- Katrin M Ayer
- 1 Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456; and
| | - Sara M Villani
- 2 Department of Entomology and Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759
| | - Mei-Wah Choi
- 1 Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456; and
| | - Kerik D Cox
- 1 Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456; and
| |
Collapse
|
12
|
Wu JY, Hu XR, Zhang CQ. Molecular Detection of QoI Resistance in Colletotrichum gloeosporioides Causing Strawberry Anthracnose Based on Loop-Mediated Isothermal Amplification Assay. PLANT DISEASE 2019; 103:1319-1325. [PMID: 30998417 DOI: 10.1094/pdis-09-18-1593-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anthracnose is one of the most common diseases in strawberry plants. Colletotrichum gloeosporioides is the major cause of anthracnose in China, including Zhejiang Province. Early, specific, reliable, and time-saving detection is urgently needed to prevent the further spread of C. gloeosporioides, guiding farmers to utilize chemicals to control anthracnose. In this study, we showed that the high resistance to pyraclostrobin, caused by a point mutation at codon 143 (GGT→GCT) in the cytochrome b gene of C. gloeosporioides was prevalent in the strawberry growing regions, and we developed a loop-mediated isothermal amplification (LAMP) assay as a detection method. Primer sets S0 and S4 could be used to specifically detect C. gloeosporioides isolates and the G143A mutations, respectively. A detection limit of 10-2 ng (10 pg), which is at least 10-fold more sensitive than conventional polymerase chain reaction, was achieved by the LAMP assay. Here, we utilized lateral-flow devices (LFDs), nitrocellulose membranes that can absorb nucleic acids, to acquire the total genomic DNA of strawberry plants within 2 min. The LFD membranes were used as DNA templates for the LAMP assays to accurately detect strawberry plants infected with C. gloeosporioides. This diagnostic method for strawberry anthracnose was accomplished within 1 h, including the sample preparation and LAMP assays. Collectively, we developed a sensitive and practical method for monitoring C. gloeosporioides and its quinone outside inhibitor-resistant mutants. The LAMP assay for detection of C. gloeosporioides in strawberry plants has great potential for rapid strawberry anthracnose surveillance and will provide farmers with advice on preventing C gloeosporioides at the early stages of strawberry development.
Collapse
Affiliation(s)
- J Y Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P.R. China
| | - X R Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P.R. China
| | - C Q Zhang
- College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P.R. China
| |
Collapse
|
13
|
Beckerman J, Abbott C. Comparative Studies on the Effect of Adjuvants with Urea to Reduce the Overwintering Inoculum of Venturia inaequalis. PLANT DISEASE 2019; 103:531-537. [PMID: 30652961 DOI: 10.1094/pdis-06-18-1014-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 2-year study on the use of organic and conventional adjuvants alone, or mixed with urea, was conducted for management of overwintering inoculum of the apple scab pathogen, Venturia inaequalis. Select adjuvants (LI 700, Bond Max, Latron B-1956, and Organic Wet Betty [OWB]) have the potential to hasten urea-driven leaf litter decomposition and reduce V. inaequalis overwintering inoculum comparable to urea, and that one organic surfactant could perform the same level of leaf decomposition as urea. Combinations of adjuvants with urea significantly improved leaf litter degradation compared with urea alone, concomitant with reducing the number of pseudothecia present and pseudothecium fertility. We demonstrate that the combination of urea with Bond Max or OWB reduced pseudothecia fertility and ascospore production to less than 5% in the remaining pseudothecia, a significantly greater reduction than with urea alone. These results suggest that conventional growers combine urea with Bond Max or OWB to more effectively reduce overwintering inoculum, and that the adjuvant OWB can provide organic growers with comparable performance to urea used in conventional orchards for improved sanitation.
Collapse
Affiliation(s)
- Janna Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Chelsi Abbott
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
14
|
Hawkins NJ, Fraaije BA. Fitness Penalties in the Evolution of Fungicide Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:339-360. [PMID: 29958074 DOI: 10.1146/annurev-phyto-080417-050012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The evolution of resistance poses an ongoing threat to crop protection. Fungicide resistance provides a selective advantage under fungicide selection, but resistance-conferring mutations may also result in fitness penalties, resulting in an evolutionary trade-off. These penalties may result from the functional constraints of an evolving target site or from the resource allocation costs of overexpression or active transport. The extent to which such fitness penalties are present has important implications for resistance management strategies, determining whether resistance persists or declines between treatments, and for resistance risk assessments for new modes of action. Experimental results have proven variable, depending on factors such as temperature, nutrient status, osmotic or oxidative stress, and pathogen life-cycle stage. Functional genetics tools allow pathogen genetic background to be controlled, but this in turn raises the question of epistatic interactions. Combining fitness penalties under various conditions into a field-realistic scenario poses an important future challenge.
Collapse
Affiliation(s)
- N J Hawkins
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| | - B A Fraaije
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| |
Collapse
|
15
|
Deb D, Shrestha A, Maiti IB, Dey N. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:278. [PMID: 29556246 PMCID: PMC5844984 DOI: 10.3389/fpls.2018.00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/16/2018] [Indexed: 05/19/2023]
Abstract
Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter 'MUASCsV8CP' through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral 'Killer protein KP4' (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering "in-built" fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach.
Collapse
Affiliation(s)
- Debasish Deb
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Ankita Shrestha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Indu B. Maiti
- Department of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Nrisingha Dey, ;
| |
Collapse
|
16
|
Abbott CP, Beckerman JL. Incorporating Adjuvants with Captan to Manage Common Apple Diseases. PLANT DISEASE 2018; 102:231-236. [PMID: 30673455 DOI: 10.1094/pdis-05-17-0629-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Captan has become an increasingly important fungicide in the management of common apple diseases such as apple scab (Venturia inaequalis) and bitter rot (Colletotrichum spp.) due to the low risk of fungicide resistance evolving in either pathogen population to this product. Restrictions on the amount of captan that can be applied per season limits the amount and the number of applications a grower may use, resulting in control failures during high disease pressure years. This 3-year field study evaluated how adjuvants combined with captan affected the incidence and severity of apple scab and bitter rot on two different apple cultivars. Results showed that Li700 plus captan and Bond Max plus captan reduced disease incidence of apple scab and bitter rot in years with moderate to high disease pressure by increasing the coverage and retention of captan. The addition of these adjuvants also resulted in possible yield losses due to russetting caused by phytotoxicity. The overall benefits of incorporating adjuvants with captan based on this study could reduce disease incidence while potentially saving a grower up to $5,329 ha-1 due to fungicide reduction.
Collapse
Affiliation(s)
- Chelsi P Abbott
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Janna L Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
17
|
Hu XR, Dai DJ, Wang HD, Zhang CQ. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea. Sci Rep 2017; 7:13861. [PMID: 29066786 PMCID: PMC5654771 DOI: 10.1038/s41598-017-13317-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Botrytis cinerea, a typical "high-risk" pathogenic fungus that rapidly develops resistance to fungicides, affects more than 1,000 species of 586 plant genera native to most continents and causes great economic losses. Therefore, a rapid and sensitive assay of fungicide resistance development in B. cinerea populations is crucial for scientific management. In this study, we established a Loop-mediated isothermal amplification (LAMP) system for the monitoring and evaluation of the risk of development of B. cinerea resistance to QoI fungicides; the method uses two LAMP assays. The first assay detects G143A mutants of B. cinerea, which are highly resistance to QoI fungicides. BCbi143/144 introns in B. cinerea are then detected by the second assay. HNB acts as a visual LAMP reaction indicator. The optimum reaction conditions of the LAMP assays were 61 °C for 50 min, and the detection limit of the LAMP assays was 100 × 10-4 ng/μl. We directly pre-treated the field samples by using All-DNA-Fast-Out to extract DNA within ten minutes, then performed the LAMP assay to achieve one-step rapid detection. In conclusion, we established a rapid and sensitive LAMP assay system for resistance risk assessment and for monitoring QoI-resistance of B. cinerea in the field.
Collapse
Affiliation(s)
- X R Hu
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Lin'an, 311300, China
| | - D J Dai
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Lin'an, 311300, China
- Institute for the Control of Agrochemicals of Zhejiang Province, Hangzhou, 310020, China
| | - H D Wang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Lin'an, 311300, China
- Institute for the Control of Agrochemicals of Zhejiang Province, Hangzhou, 310020, China
| | - C Q Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Lin'an, 311300, China.
| |
Collapse
|
18
|
Pereira WV, Primiano IV, Morales RGF, Peres NA, Amorim L, May De Mio LL. Reduced Sensitivity to Azoxystrobin of Monilinia fructicola Isolates From Brazilian Stone Fruits is Not Associated With Previously Described Mutations in the Cytochrome b Gene. PLANT DISEASE 2017; 101:766-773. [PMID: 30678575 DOI: 10.1094/pdis-09-16-1247-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quinone-outside inhibitor (QoI) fungicides are effective tools for preharvest control of brown rot of stone fruit. These fungicides have a very specific site of action so the risk of resistance selection is high. The sensitivity of Monilinia fructicola (G. Winter) Honey isolates to azoxystrobin (QoI) was investigated in 143 isolates collected between 2002 and 2011 from four Brazilian states in orchards with different frequencies of fungicide use (0 to 6 fungicides sprays/season). Sensitivity of the isolates to azoxystrobin was determined in vitro, by inhibition of mycelial growth and spore germination on fungicide-amended media or ex vivo by pathogen inoculation in untreated or treated fruit with azoxystrobin. Potential mutations in codons 143, 137, and 129 of the cytochrome b (Cyt b) gene and the occurrence of an intron immediately after codon 143 were analyzed in a subpopulation of the isolates. The M. fructicola population of São Paulo State was less sensitive to the fungicide than the population from the states of Paraná, Santa Catarina, and Rio Grande do Sul. The low sensitivity of the isolates was confirmed also by comparing to the sensitivity of the baseline isolates. Mutations in G143A, F129L, and G137R in Cyt b gene were not found. In addition, 58 isolates tested showed an intron after codon 143 in Cyt b gene. Our results indicate that other mechanisms of selection for low sensitivity to QoI fungicides should be investigated.
Collapse
Affiliation(s)
- Wagner V Pereira
- Departamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná, R. Funcionários, 1540, 80.035-050, Curitiba, PR, Brazil
| | - Isabela V Primiano
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Rafael G F Morales
- Departamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná, R. Funcionários, 1540, 80.035-050, Curitiba, PR, Brazil
| | - Natalia A Peres
- University of Florida, Gulf Coast Research and Education Center, Wimauma 33598
| | - Lilian Amorim
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Louise L May De Mio
- Departamento de Fitotecnia e Fitossanitarismo, Universidade Federal do Paraná, R. Funcionários, 1540, 80.035-050, Curitiba, PR, Brazil
| |
Collapse
|
19
|
Villani SM, Ayer K, Cox KD. Molecular Characterization of the sdhB Gene and Baseline Sensitivity to Penthiopyrad, Fluopyram, and Benzovindiflupyr in Venturia inaequalis. PLANT DISEASE 2016; 100:1709-1716. [PMID: 30686234 DOI: 10.1094/pdis-12-15-1512-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The succinate dehydrogenase inhibiting (SDHI) fungicides are a class of single-site fungicides that are increasingly important in the management of Venturia inaequalis. In this study, the baseline sensitivity of V. inaequalis to penthiopyrad, fluopyram, and benzovindiflupyr was investigated. In all, 35 to 70 isolates with no prior exposure to single-site fungicides were used to determine the effective concentration at which growth was inhibited by 50% (EC50). Mean EC50 values for the conidial germ tube growth stage for penthiopyrad, fluopyram, and benzovindiflupyr were 0.086, 0.176, and 0.0016 μg ml-1, respectively. Linear correlation analysis revealed a significant and positive correlation between fluopyram and penthiopyrad (P ≤ 0.0001, r = 0.66) and fluopyram and benzovindiflupyr (P = 0.0014, r = 0.52). Baseline sensitivities of V. inaequalis during the mycelial growth stage were also determined for fluopyram and benzovindiflupyr. EC50 values were higher for fluopyram and benzovindiflupyr during this stage compared with the conidial germ tube growth stage, with means of 0.043 and 2.02 μg ml-1, respectively. In addition, the sdhB gene was characterized for three isolates of V. inaequalis collected from a research, baseline, and commercial orchard population. No common mutation sites associated with SDHI resistance in other phytopathogenic fungi were discovered in these isolates or isolates that were recovered following field applications of SDHI fungicides. The results of this study suggest that SDHI fungicides have a high level of activity during the conidial germ tube elongation stage in V. inaequalis and provide a basis for phenotypic and genotypic monitoring of shifts toward resistance of V. inaequalis populations to the SDHI fungicide class.
Collapse
Affiliation(s)
- Sara M Villani
- Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759
| | - Katrin Ayer
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
20
|
Villani SM, Hulvey J, Hily JM, Cox KD. Overexpression of the CYP51A1 Gene and Repeated Elements are Associated with Differential Sensitivity to DMI Fungicides in Venturia inaequalis. PHYTOPATHOLOGY 2016; 106:562-71. [PMID: 26863444 DOI: 10.1094/phyto-10-15-0254-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The involvement of overexpression of the CYP51A1 gene in Venturia inaequalis was investigated for isolates exhibiting differential sensitivity to the triazole demethylation inhibitor (DMI) fungicides myclobutanil and difenoconazole. Relative expression (RE) of the CYP51A1 gene was significantly greater (P < 0.0001) for isolates with resistance to both fungicides (MRDR phenotype) or with resistance to difenoconazole only (MSDR phenotype) compared with isolates that were resistant only to myclobutanil (MRDS phenotype) or sensitive to both fungicides (MSDS phenotype). An average of 9- and 13-fold increases in CYP51A1 RE were observed in isolates resistant to difenoconazole compared with isolates with MRDS and MSDS phenotypes, respectively. Linear regression analysis between isolate relative growth on myclobutanil-amended medium and log10 RE revealed that little to no variability in sensitivity to myclobutanil could be explained by CYP51A1 overexpression (R(2) = 0.078). To investigate CYP51A1 upstream anomalies associated with CYP51A1 overexpression or resistance to difenoconazole, Illumina sequencing was conducted for three isolates with resistance to difenoconazole and one baseline isolate. A repeated element, "EL 3,1,2", with the properties of a transcriptional enhancer was identified two to four times upstream of CYP51A1 in difenoconazole-resistant isolates but was not found in isolates with the MRDS phenotype. These results suggest that different mechanisms may govern resistance to different DMI fungicides in the triazole group.
Collapse
Affiliation(s)
- Sara M Villani
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Jon Hulvey
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Jean-Michel Hily
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Kerik D Cox
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
21
|
Frederick ZA, Villani SM, Cox KD. The Effect of Delayed-Dormant Chemical Treatments on Demethylation Inhibitor (DMI) Sensitivity in a DMI-resistant Population of Venturia inaequalis. PLANT DISEASE 2015; 99:1751-1756. [PMID: 30699510 DOI: 10.1094/pdis-12-14-1253-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Demethylation inhibitor (DMI) fungicides are an effective means to manage apple scab caused by Venturia inaequalis. Unfortunately, practical resistance to DMI fungicide chemistries is prevalent in populations in New York and the New England states. Management practices that delay the development of DMI resistance in V. inaequalis populations are highly desired by regional apple producers. Trials were conducted in a New York apple orchard during the 2011 and 2012 growing seasons to determine the impact of delayed-dormant (after bud break, but prior to green tissue) chemical treatments on the DMI sensitivity of a V. inaequalis population with stable resistance to DMI fungicides. Delayed-dormant treatment programs consisted of either an application of a copper fungicide, a manganese sanitation product, a DMI fungicide (myclobutanil), or no fungicide. Sensitivity to the DMI fungicide myclobutanil was evaluated for a minimum of 25 V. inaequalis single lesion conidial isolates from each of four replicated treatment blocks. In both years, mean percent relative growth on myclobutanil amended media for V. inaequalis isolates from the copper treatment program were significantly (P < 0.05) lower than isolates from blocks did not receive a delayed dormant fungicide treatment. The effect of the manganese treatment was inconsistent between years. V. inaequalis isolates collected from the myclobutanil treatment program were not significantly (P > 0.05) different in myclobutanil sensitivity from isolates collected from the blocks that did not receive a delayed dormant fungicide treatment. Overall, the results suggest that delayed dormant treatments of copper may favorably impact the myclobutanil sensitivity for a population of V. inaequalis with resistance to DMI fungicides, and should be considered as a standard management practice in apple production.
Collapse
Affiliation(s)
| | - Sara M Villani
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva NY 14456
| | - Kerik D Cox
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva NY 14456
| |
Collapse
|
22
|
Villani SM, Biggs AR, Cooley DR, Raes JJ, Cox KD. Prevalence of Myclobutanil Resistance and Difenoconazole Insensitivity in Populations of Venturia inaequalis. PLANT DISEASE 2015; 99:1526-1536. [PMID: 30695968 DOI: 10.1094/pdis-01-15-0002-re] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Demethylation inhibitors (DMIs) are a class of single-site fungicides with high levels of protective and curative efficacy against Venturia inaequalis, the causal agent of apple scab. To determine the prevalence of resistance to the DMI fungicide myclobutanil, 3,987 single-lesion conidial V. inaequalis isolates from 141 commercial, research, and baseline orchard populations were examined throughout New England, the mid-Atlantic, and the Midwest from 2004 to 2013. Of these orchard populations, 63% had practical resistance, 13% had reduced sensitivity, and 24% were sensitive to myclobutanil. A sensitivity baseline for the recently introduced DMI fungicide difenoconazole was established to make comparisons with myclobutanil sensitivity in orchard populations. The mean effective concentration of difenoconazole at which mycelial growth was inhibited by 50% (EC50) was determined to be 0.002 μg ml-1 for 44 baseline isolates of V. inaequalis. From 2010 to 2013, 1,012 isolates of V. inaequalis from 37 of the 141 orchard populations above were screened for sensitivity to difenoconazole. In all, 1 orchard population had reduced sensitivity to difenoconazole, while the remaining 36 orchard populations were sensitive to the fungicide. In field experiments, difenoconazole demonstrated high levels of apple scab control on mature apple fruit, despite the fact that the population of V. inaequalis had practical resistance to difenoconazole. Although our results indicate widespread resistance to myclobutanil but not difenoconazole, due to the propensity for cross-sensitivity among DMI fungicides, growers with myclobutanil resistance should be cautious when using difenoconazole for disease management.
Collapse
Affiliation(s)
- Sara M Villani
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Alan R Biggs
- Kearneysville Tree Fruit Research and Education Center, West Virginia University, Kearneysville 25443
| | - Daniel R Cooley
- Department Plant, Soil, and Insect Science, University of Massachusetts, Amherst 01003
| | - Jessica J Raes
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University
| |
Collapse
|
23
|
Villani SM, Cox KD. Heteroplasmy of the cytochrome b gene in Venturia inaequalis and its involvement in quantitative and practical resistance to trifloxystrobin. PHYTOPATHOLOGY 2014; 104:945-953. [PMID: 24624954 DOI: 10.1094/phyto-06-13-0158-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantitative (partial) and qualitative (complete) resistance responses to quinone outside inhibitor (QoI) fungicides have been documented for the apple scab pathogen Venturia inaequalis. Resistance monitoring efforts have traditionally focused on the detection of qualitative resistance based on a single point mutation, G143A, within the cytochrome b (cyt b) gene. In order to better understand the role of heteroplasmy of the cyt b gene in the QoI resistance response for isolates and populations of V. inaequalis, an allele-specific quantitative polymerase chain reaction was developed to quantify the relative abundance of the A143 (resistant) allele in 45 isolates of V. inaequalis with differing in vitro resistance responses to the QoI fungicide trifloxystrobin. Although a high relative abundance of the A143 allele (>62%) was associated with isolates with high resistance responses (50 to 100% relative growth on trifloxystrobin-amended medium), heteroplasmy of the cyt b gene was not the primary factor involved in isolates with moderate resistance responses (29 to 49% relative growth). The relative abundance of the A143 allele in isolates with moderate resistance to trifloxystrobin rarely exceeded 8%, suggesting that other resistance mechanisms are involved in moderate resistance and, therefore, that the Qol resistance response is polygenic. In research orchards where QoI fungicides failed to control apple scab (practical resistance), field trials were conducted to demonstrate the link between practical resistance and the abundance of the A143 allele. Relative abundance of the A143 allele in these orchard populations exceeded 20% in 2011 and 2012. Similarly, of the eight additional commercial orchards screened in 2011, the relative abundance of the A143 allele always exceeded 20% in those with QoI practical resistance. Although heteroplasmy of the cyt b gene did not entirely explain the response of isolates with moderate resistance to QoIs, the relative abundance of A143 in orchard populations of V. inaequalis helps to explain the point of emergence for practical resistance to trifloxystrobin across several orchard populations with differing production histories.
Collapse
|
24
|
Frederick ZA, Villani SM, Cooley DR, Biggs AR, Raes JJ, Cox KD. Prevalence and Stability of Qualitative QoI Resistance in Populations of Venturia inaequalis in the Northeastern United States. PLANT DISEASE 2014; 98:1122-1130. [PMID: 30708794 DOI: 10.1094/pdis-10-13-1042-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quinone-outside-inhibitor (QoI) fungicides are a safe and effective means of managing apple scab caused by Venturia inaequalis. To determine the prevalence of both quantitative (partial) and qualitative (complete) QoI resistance in V. inaequalis in the northeastern United States, we sampled single-lesion conidial isolates (n = 4,481) from 120 commercial and research orchards from 2004 to 2011 with a range of exposure to QoI fungicides from none to several applications a year. In all, 67% of these orchard populations of V. inaequalis were sensitive to QoI fungicides, 28% exhibited QoI practical resistance, and 5% were not sensitive QoI fungicides but had not become practically resistant. Isolates with qualitative QoI resistance, conferred by the G143A cytochrome b gene mutation, were found in 13 of the 34 QoI-resistant orchard populations. To evaluate the stability of the G143A mutation, 27 isolates were selected from different orchard populations to represent the scope of regional populations. These isolates were subcultured continuously in the presence or absence of the QoI fungicide trifloxystrobin. All isolates that initially possessed qualitative resistance maintained the resistant genotype (G143A) for six transfers over 6 months in both the absence and presence of trifloxystrobin. Given the observed QoI resistance in orchard populations of V. inaequalis and the stability of the G143A mutation in individual isolates, apple scab management paradigms must encompass strategies to limit selection of QoI resistance in the sensitive orchard populations remaining in the region.
Collapse
Affiliation(s)
- Zachary A Frederick
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Sara M Villani
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Daniel R Cooley
- Department Plant, Soil, and Insect Science, University of Massachusetts, Amherst 01003
| | - Alan R Biggs
- Kearneysville Tree Fruit Research and Education Center, West Virginia University, Kearneysville 25443
| | - Jessica J Raes
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University
| | - Kerik D Cox
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University
| |
Collapse
|
25
|
Vega B, Dewdney MM. Distribution of QoI Resistance in Populations of Tangerine-Infecting Alternaria alternata in Florida. PLANT DISEASE 2014; 98:67-76. [PMID: 30708574 DOI: 10.1094/pdis-04-13-0449-re] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemical control, based on copper and quinone outside inhibitor (QoI) fungicides, has been essential for the management of brown spot of citrus, caused by Alternaria alternata. However, QoI control failures were detected recently in Florida. From 2008 to 2012, 817 monoconidial isolates of A. alternata from 46 citrus orchards were examined for sensitivity to azoxystrobin (AZ) and pyraclostrobin (PYR). Of the isolates, 57.6% were resistant to both fungicides, with effective concentration to inhibit 50% growth (EC50) values greater than 5 μg/ml for AZ and 1 μg/ml for PYR. The mean EC50 values for sensitive isolates were 0.139 and 0.020 μg/ml for AZ and PYR, respectively. The EC50 values of both fungicides were highly correlated (P < 0.0001), indicating cross resistance. The proportion of resistant isolates differed significantly (P < 0.0001) among cultivars and with QoI application frequency (P < 0.0001). However, resistance was not significantly related (P = 0.364) to disease severity in the field (low, moderate, and high) or isolate virulence (P = 0.397). The molecular basis for QoI resistance was determined for a subset of 235 isolates using polymerase chain reaction restriction fragment length polymorphism of the cytochrome b gene. All resistant isolates showed the point mutation G143A. Based on the presence of one or two introns, isolates were classified as profile I and profile II, respectively. The resistance frequency was significantly higher (P < 0.0001) in isolate profile II, suggesting a higher selection pressure for resistant population profile II.
Collapse
Affiliation(s)
- Byron Vega
- Citrus Research and Education Center, University of Florida, Lake Alfred
| | - Megan M Dewdney
- Citrus Research and Education Center, University of Florida, Lake Alfred
| |
Collapse
|
26
|
Mallik I, Arabiat S, Pasche JS, Bolton MD, Patel JS, Gudmestad NC. Molecular characterization and detection of mutations associated with resistance to succinate dehydrogenase-inhibiting fungicides in Alternaria solani. PHYTOPATHOLOGY 2014; 104:40-49. [PMID: 23901829 DOI: 10.1094/phyto-02-13-0041-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Early blight, caused by Alternaria solani, is an economically important foliar disease of potato in several production areas of the United States. Few potato cultivars possess resistance to early blight; therefore, the application of fungicides is the primary means of achieving disease control. Previous work in our laboratory reported resistance to the succinate dehydrogenase-inhibiting (SDHI) fungicide boscalid in this plant pathogen with a concomitant loss of disease control. Two phenotypes were detected, one in which A. solani isolates were moderately resistant to boscalid, the other in which isolates were highly resistant to the fungicide. Resistance in other fungal plant pathogens to SDHI fungicides is known to occur due to amino acid exchanges in the soluble subunit succinate dehydrogenase B (SdhB), C (SdhC), and D (SdhD) proteins. In this study, the AsSdhB, AsSdhC, and AsSdhD genes were analyzed and compared in sensitive (50% effective concentration [EC50] < 5 μg ml(-1)), moderately resistant (EC50 = 5.1 to 20 μg ml(-1)), highly resistant (EC50 = 20.1 to 100 μg ml(-1)), and very highly resistant (EC50 > 100 μg ml(-1)) A. solani isolates. In total, five mutations were detected, two in each of the AsSdhB and AsSdhD genes and one in the AsSdhC gene. The sequencing of AsSdhB elucidated point mutations cytosine (C) to thymine (T) at nucleotide 990 and adenine (A) to guanine (G) at nucleotide 991, leading to an exchange from histidine to tyrosine (H278Y) or arginine (H278R), respectively, at codon 278. The H278R exchange was detected in 4 of 10 A. solani isolates moderately resistant to boscalid, exhibiting EC50 values of 6 to 8 μg ml(-1). Further genetic analysis also confirmed this mutation in isolates with high and very high EC50 values for boscalid of 28 to 500 μg ml(-1). Subsequent sequencing of AsSdhC and AsSdhD genes confirmed the presence of additional mutations from A to G at nucleotide position 490 in AsSdhC and at nucleotide position 398 in the AsSdhD, conferring H134R and H133R exchanges in AsSdhC and AsSdhD, respectively. The H134R exchange in AsSdhC was observed in A. solani isolates with sensitive, moderate, highly resistant, and very highly resistant boscalid phenotypes, and the AsSdhD H133R exchange was observed in isolates with both moderate and very high EC50 value boscalid phenotypes. Detection and differentiation of point mutations in AsSdhB resulting in H278R and H278Y exchanges in the AsSdhB subunit were facilitated by the development of a mismatch amplification mutation assay. Detection of these two mutations in boscalid-resistant isolates, in addition to mutations in AsSdhC and AsSdhD resulting in an H134R and H133R exchange, respectively, was achieved by the development of a multiplex polymerase chain reaction to detect and differentiate the sensitive and resistant isolates based on the single-nucleotide polymorphisms present in all three genes. A single A. solani isolate with resistance to boscalid did not contain any of the above-mentioned exchanges but did contain a substitution of aspartate to glutamic acid at amino acid position 123 (D123E) in the AsSdhD subunit. Among A. solani isolates possessing resistance to boscalid, point mutations in AsSdhB were more frequently detected than mutations in genes coding for any other subunit.
Collapse
|
27
|
Thakur K, Chawla V, Bhatti S, Swarnkar MK, Kaur J, Shankar R, Jha G. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. PLoS One 2013; 8:e53937. [PMID: 23349770 PMCID: PMC3547962 DOI: 10.1371/journal.pone.0053937] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022] Open
Abstract
Venturia inaequalis is the causal agent of apple scab, one of the most devastating diseases of apple. Due to several distinct features, it has emerged as a model fungal pathogen to study various aspects of hemibiotrophic plant pathogen interactions. The present study reports de novo assembling, annotation and characterization of the transcriptome of V. inaequalis. Venturia transcripts expressed during its growth on laboratory medium and that expressed during its biotrophic stage of infection on apple were sequenced using Illumina RNAseq technology. A total of 94,350,055 reads (50 bp read length) specific to Venturia were obtained after filtering. The reads were assembled into 62,061 contigs representing 24,571 unique genes. GO analysis suggested prevalence of genes associated with biological process categories like metabolism, transport and response to stimulus. Genes associated with molecular function like binding, catalytic activities and transferase activities were found in majority. EC and KEGG pathway analyses suggested prevalence of genes encoding kinases, proteases, glycoside hydrolases, cutinases, cytochrome P450 and transcription factors. The study has identified several putative pathogenicity determinants and candidate effectors in V. inaequalis. A large number of transcripts encoding membrane transporters were identified and comparative analysis revealed that the number of transporters encoded by Venturia is significantly more as compared to that encoded by several other important plant fungal pathogens. Phylogenomics analysis indicated that V. inaequalis is closely related to Pyrenophora tritici-repentis (the causal organism of tan spot of wheat). In conclusion, the findings from this study provide a better understanding of the biology of the apple scab pathogen and have identified candidate genes/functions required for its pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction.
Collapse
Affiliation(s)
- Karnika Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandna Chawla
- Studio of Computational Biology & Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Shammi Bhatti
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | - Gopaljee Jha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| |
Collapse
|
28
|
Vega B, Liberti D, Harmon PF, Dewdney MM. A Rapid Resazurin-Based Microtiter Assay to Evaluate QoI Sensitivity for Alternaria alternata Isolates and Their Molecular Characterization. PLANT DISEASE 2012; 96:1262-1270. [PMID: 30727145 DOI: 10.1094/pdis-12-11-1037-re] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemical management of Alternaria brown spot of citrus is based upon the timely application of site-specific fungicides, many of which are vulnerable to the development of fungicide resistance. A rapid microtiter bioassay based on the colorimetric changes of resazurin (RZ) dye was developed to evaluate the sensitivity of Alternaria alternata to quinone outside inhibitor (QoI) fungicides. Four liquid media (complete medium, minimal medium, potato dextrose broth, and yeast peptone dextrose broth), five conidia concentrations (from 101 to 105 conidia/ ml), and five RZ concentrations (10, 20, 30, 40, and 50 μM) were evaluated. Complete medium at 105 conidia/ml and 40 μM RZ were identified as optimal for measuring RZ reduction. The effective concentration of two QoI fungicides (azoxystrobin and pyraclostrobin) needed to reduce RZ by 50% (EC50) was calculated and compared with those obtained from conidia germination tests on fungicide-amended media. Concordant EC50 values were observed (R2 = 0.923; P < 0.0001) from both methods. Resistant phenotypes were further characterized by the partial sequencing of the cytochrome b gene. Genetic variability associated with the presence or absence of two introns was observed among isolates. The identified resistant isolates had the amino acid substitution G143A, typical of QoI resistance in other fungi.
Collapse
Affiliation(s)
- Byron Vega
- Citrus Research and Education Center, University of Florida, Lake Alfred
| | - Daniele Liberti
- Department of Plant Pathology, University of Florida, Gainesville
| | - Philip F Harmon
- Department of Plant Pathology, University of Florida, Gainesville
| | - Megan M Dewdney
- Citrus Research and Education Center, University of Florida, Lake Alfred
| |
Collapse
|
29
|
Pfeufer EE, Ngugi HK. Orchard factors associated with resistance and cross resistance to sterol demethylation inhibitor fungicides in populations of Venturia inaequalis from Pennsylvania. PHYTOPATHOLOGY 2012; 102:272-282. [PMID: 22007614 DOI: 10.1094/phyto-04-11-0117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Orchard management practices, such as destroying of overwintered inoculum and limiting the number of fungicide applications, are often recommended as tactics for slowing the development of resistance to sterol demethylation-inhibitor (DMI) fungicides in populations of Venturia inaequalis. However, there is little quantitative evidence relating the use of such practices to levels of resistance in orchards. The aim of this study was to evaluate the sensitivity of V. inaequalis isolates from Pennsylvania to DMI fungicides, and to identify orchard management factors related to the incidence of resistant isolates. In total, 644 single-spore V. inaequalis cultures obtained from 20 apple orchards in 2008 or 2009 were tested for sensitivity to myclobutanil, fenbuconazole, or difenoconazole. Growers provided management history of the sampled plots. Widespread shifts toward resistance to the three fungicides were noted, with mean effective concentration for 50% inhibition (EC(50)) values of 2.136, 0.786, and 0.187 μg/ml for myclobutanil, fenbuconazole, and difenoconazole, respectively. Cross resistance to the three fungicides was documented in high correlation (Spearman's r > 0.6) between mean EC(50) values for 14 orchards. Based on a 0.5-μg/ml threshold, 66 and 26% of isolates were resistant to myclobutanil and fenbuconazole, respectively, and 22% were cross resistant to the two fungicides. A significant between-year shift toward increased resistance was noted in two of three orchards surveyed in both years. Failure to use dormant copper sprays, older trees, larger orchards, orchards with ≤10 cultivars, and application of >4 DMI sprays were positively correlated (0.0001 < P < 0.05) with the incidence of resistant isolates. Isolates from orchards with >4 DMI sprays were four times as likely to be resistant to fenbuconazole (odds ratio = 4.57; P = 0.015). Isolates from orchards without dormant copper sprays were twice as likely to be cross-shifted toward resistance to all three fungicides (odds ratio = 1.76; P = 0.048). Results identify management practices that can reduce the risk of V. inaequalis developing resistance to DMI fungicides.
Collapse
Affiliation(s)
- Emily E Pfeufer
- Department of Plant Pathology, Pennsylvania State University, Fruit Research & Extension Center, Biglerville, PA 17307, USA
| | | |
Collapse
|
30
|
Lesniak KE, Proffer TJ, Beckerman JL, Sundin GW. Occurrence of QoI Resistance and Detection of the G143A Mutation in Michigan Populations of Venturia inaequalis. PLANT DISEASE 2011; 95:927-934. [PMID: 30732103 DOI: 10.1094/pdis-12-10-0898] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Control strategies for Venturia inaequalis rely heavily on chemical fungicides. Single-site fungicides such as the quinone-outside inhibitors (QoI) have been used in Michigan apple orchards for more than 11 years. In 2008, we sampled eight commercial orchards in the Fruit Ridge growing region of Michigan in which apple scab control failures were observed on 'McIntosh' apple following applications of kresoxim-methyl or trifloxystrobin. QoI resistance was assessed in 210 total isolates (a total of 17 orchards) using a spore germination assay and in 319 isolates using a polymerase chain reaction (PCR) assay to detect the G143A mutation located within the V. inaequalis cytochrome b gene (CYTB). The G143A mutation is known to confer high-level QoI resistance in plant-pathogenic fungi. QoI resistance was confirmed in 50 and 64% of the isolates tested with the spore germination and PCR assays, respectively, and there was a 97% concordance observed between the assays. In 2009, we sampled and examined an additional 1,201 V. inaequalis isolates from 64 orchards in Michigan and 86 isolates from four baseline sites in Ohio. All of these isolates were assayed for the G143A mutation and it was detected within 67 and 0% of the Michigan and Ohio isolates, respectively. Our results indicate the widespread occurrence of QoI resistance in Michigan commercial orchard populations of V. inaequalis. Loss of QoI fungicides further limits the arsenal of fungicides available to commercial apple growers for successful scab management.
Collapse
Affiliation(s)
- Kimberley E Lesniak
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - Tyre J Proffer
- Department of Plant Pathology, Michigan State University, East Lansing and Department of Biological Sciences, Kent State University, Salem, OH 44460
| | - Janna L Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - George W Sundin
- Department of Plant Pathology, Michigan State University, East Lansing
| |
Collapse
|
31
|
Chapman KS, Sundin GW, Beckerman JL. Identification of Resistance to Multiple Fungicides in Field Populations of Venturia inaequalis. PLANT DISEASE 2011; 95:921-926. [PMID: 30732108 DOI: 10.1094/pdis-12-10-0899] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Venturia inaequalis, the causal agent of apple scab, is controlled primarily by fungicides. Long-term, extensive fungicide use has led to the development of resistance to multiple fungicides. To assess fungicide resistance, isolates of V. inaequalis were collected from Indiana and Michigan orchards. Single-spore derived isolates were evaluated by mycelium growth assays with previously determined discriminatory doses on media containing dodine, kresoxim-methyl, myclobutanil, or thiophanate-methyl. Of 195 isolates tested, 5.2, 0.7, 57.0, and 92.6% of isolates were found to be resistant to dodine, kresoxim-methyl, myclobutanil, and thiophanate-methyl, respectively. This is the first report of kresoxim-methyl field resistance in these states. Isolates resistant or shifted to a single fungicide were often found to have multiple fungicide resistance. Of all isolates tested, 38% were identified as resistant or shifted to two fungicides, and 12% were resistant or shifted to all four fungicides tested. No fitness penalty was found for isolates resistant to multiple fungicides based on a statistical analysis of mycelial growth and conidial production.
Collapse
Affiliation(s)
- Kimberly S Chapman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - George W Sundin
- Department of Plant Pathology, 103 CIPS, Michigan State University, East Lansing 48824
| | - Janna L Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
32
|
Fiaccadori R, Cicognani E, Alberoni G, Collina M, Brunelli A. Sensitivity to strobilurin fungicides of Italian Venturia inaequalis populations with different origin and scab control. PEST MANAGEMENT SCIENCE 2011; 67:535-540. [PMID: 21254326 DOI: 10.1002/ps.2090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/19/2010] [Accepted: 11/16/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Venturia inaequalis (Cooke) Winter with reduced sensitivity to strobilurins has been reported in several countries, including Italy. This study aimed to characterise the sensitivity to strobilurins of three different types of V. inaequalis population: (a) wild types; (b) from commercial orchards satisfactorily managed with strobilurins; (c) from an experimental orchard with control failures by trifloxystrobin and kresoxim-methyl. In vitro sensitivity tests included antigerminative activity on population conidia and mycelial growth inhibition on monoconidial isolates. Cleaved amplified polymorphic sequence (CAPS) analysis was used for the detection of G143A substitution. RESULTS Wild-type populations showed EC(50) values lower than 0.031 mg L(-1), while those of orchards with good performance by strobilurins presented EC(50) values never higher than 0.063 mg L(-1). Samples with scab control failures showed a strongly reduced population sensitivity. Similar differences were confirmed in monoconidial isolates. The G143A substitution was always detected in low-sensitivity populations, only sometimes in well-controlled populations and generally not in wild types. CONCLUSIONS In vitro sensitivity assays were able to discriminate the three population types with different scab management, while the qualitative PCR analysis (CAPS) was only partially reliable. High sensitivity differences among V. inaequalis populations with good and poor field control by strobilurins were observed.
Collapse
Affiliation(s)
- Riccardo Fiaccadori
- Department of Agri-food Protection and Improvement, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
33
|
Hily JM, Singer SD, Villani SM, Cox KD. Characterization of the cytochrome b (cyt b) gene from Monilinia species causing brown rot of stone and pome fruit and its significance in the development of QoI resistance. PEST MANAGEMENT SCIENCE 2011; 67:385-396. [PMID: 21394871 DOI: 10.1002/ps.2074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Quinone outside inhibitor (QoI) resistance as a consequence of point mutations in the cytochrome b (cyt b) gene has been reported in numerous plant pathogenic fungi. To examine the potential for QoI resistance development in those Monilinia species causing brown rot of stone and pome fruits [Monilinia fructicola (G Winter) Honey, M. laxa (Aderhold & Ruhland) Honey and M. fructigena (Aderhold & Ruhland) Honey], an examination was made of the sequence and exon/intron structure of their cyt b genes for the presence of any point mutations and/or introns commonly associated with resistance to QoIs in fungal plant pathogens. RESULTS None of the point mutations typically linked to QoI resistance was present in any of the Monilinia isolates examined. Furthermore, the cyt b genes from M. fructicola and M. laxa, but not M. fructigena, possessed a group-I-like intron directly after codon 143. Based on the results obtained, a simple PCR assay using a single primer pair was developed, allowing discrimination between the three Monilinia species without the need for culturing. CONCLUSIONS Results suggest that resistance to QoI fungicides based on the G143A mutation is not likely to occur in M. fructicola or M. laxa. Conversely, M. fructigena may be at higher risk for developing QoI resistance owing to the absence of a G143-associated intron.
Collapse
Affiliation(s)
- Jean-Michel Hily
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
34
|
Bowen JK, Mesarich CH, Bus VGM, Beresford RM, Plummer KM, Templeton MD. Venturia inaequalis: the causal agent of apple scab. MOLECULAR PLANT PATHOLOGY 2011; 12:105-22. [PMID: 21199562 PMCID: PMC6640350 DOI: 10.1111/j.1364-3703.2010.00656.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED The fungus Venturia inaequalis infects members of the Maloideae, and causes the disease apple scab, the most important disease of apple worldwide. The early elucidation of the gene-for-gene relationship between V. inaequalis and its host Malus has intrigued plant pathologists ever since, with the identification of 17 resistance (R)-avirulence (Avr) gene pairings. The Avr gene products are presumably a subset of the total effector arsenal of V. inaequalis (predominantly proteins secreted in planta assumed to facilitate infection). The supposition that effectors from V. inaequalis act as suppressors of plant defence is supported by the ability of the pathogen to penetrate the cuticle and differentiate into large pseudoparenchymatous structures, termed stromata, in the subcuticular space, without the initiation of an effective plant defence response. If effectors can be identified that are essential for pathogenicity, the corresponding R genes will be durable and would add significant value to breeding programmes. An R gene cluster in Malus has been cloned, but no V. inaequalis effectors have been characterized at the molecular level. However, the identification of effectors is likely to be facilitated by the resolution of the whole genome sequence of V. inaequalis. TAXONOMY Teleomorph: Venturia inaequalis Cooke (Wint.); Kingdom Fungi; Phylum Ascomycota; Subphylum Euascomycota; Class Dothideomycetes; Family Venturiaceae; genus Venturia; species inaequalis. Anamorph: Fusicladium pomi (Fr.) Lind or Spilocaea pomi (Fr.). LIFE CYCLE: V. inaequalis is a hemibiotroph and overwinters as pseudothecia (sexual fruiting bodies) following a phase of saprobic growth in fallen leaf tissues. The primary inoculum consists of ascospores, which germinate and penetrate the cuticle. Stromata are formed above the epidermal cells but do not penetrate them. Cell wall-degrading enzymes are only produced late in the infection cycle, raising the as yet unanswered question as to how V. inaequalis gains nutrients from the host. Conidia (secondary inoculum) arise from the upper surface of the stromata, and are produced throughout the growing season, initiating multiple rounds of infection. VENTURIA INAEQUALIS AS A MODEL PATHOGEN OF A WOODY HOST: V. inaequalis can be cultured and is amenable to crossing in vitro, enabling map-based cloning strategies. It can be transformed readily, and functional analyses can be conducted by gene silencing. Expressed sequence tag collections are available to aid in gene identification. These will be complemented by the whole genome sequence, which, in turn, will contribute to the comparative analysis of different races of V. inaequalis and plant pathogens within the Dothideomycetes.
Collapse
Affiliation(s)
- Joanna K Bowen
- The New Zealand Institute for Plant & Food Research Limited, Mt. Albert Research Centre, Private Bag 92 169, Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
35
|
Kanetis L, Förster H, Adaskaveg JE. Determination of natural resistance frequencies in Penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates. PHYTOPATHOLOGY 2010; 100:738-746. [PMID: 20626277 DOI: 10.1094/phyto-100-8-0738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
ABSTRACT Fungicide resistance was identified in natural populations of Penicillium digitatum, the causal agent of green mold of citrus, to two of three new postharvest fungicides before their commercial use. Using a new air-sampling method where large populations of the pathogen in citrus packinghouses were exposed to agar plates with a continuous, wide-range fungicide concentration gradient, isolates with reduced sensitivity to fludioxonil or pyrimethanil were obtained. Resistance frequencies to fludioxonil and pyrimethanil were calculated as 9.5 x 10(-7) to 1.5 x 10(-5) and 7.3 x 10(-6) to 6.2 x 10(-5), respectively. No isolates resistant to azoxystrobin were detected. Isolates with reduced sensitivity to fludioxonil or pyrimethanil were also obtained in laboratory selection studies, where high concentrations of conidial mixtures of isolates sensitive to the three fungicides were plated onto agar amended with each fungicide at 10 microg/ml. Isolates obtained from fludioxonil selection plates in laboratory and packinghouse experiments were placed into two categories based on mycelial growth: moderately resistant isolates had 50% effective concentration (EC(50)) values of 0.1 to 0.82 microg/ml and highly resistant isolates had EC(50) values > 1.5 microg/ml. Isolates resistant to pyrimethanil all had EC(50) values >8 microg/ml. Representative isolates of the two categories with reduced sensitivity to fludioxonil varied widely in their virulence and sporulation capacity as measured by the incidence of decay and degree of sporulation on inoculated fruit, respectively, whereas pyrimethanil-resistant isolates were mostly similar to the wild-type isolate. Fungicide sensitivity characteristics for isolates from fludioxonil and pyrimethanil selection plates remained stable after passages on nonamended agar, and disease could not be controlled after treatment with the respective fungicides. Types of fungicide resistance were visualized on thiabendazole- (TBZ) and imazalil-amended selection plates that were exposed in packinghouses where resistance to these fungicides was known to occur. The qualitative, single-site resistance to the benzimidazole TBZ was visualized by two distinct subpopulations in regard to fungicide sensitivity, whereas the quantitative, multi-site resistance to the demethylation inhibitor imazalil was apparent as a continuous density gradient of colonies along the fungicide concentration gradient. Types of resistance could not be assigned to fludioxonil or pyrimethanil because a limited number of resistant colonies was obtained on each plate. Thus, with this new method, we were able to estimate fungicide resistance frequencies as well as characterize and visualize types of resistance within populations of a fungal species. This information will be used to design resistance management strategies for previous and newly registered postharvest fungicides of citrus.
Collapse
Affiliation(s)
- L Kanetis
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
36
|
Amiri A, Brannen PM, Schnabel G. Reduced Sensitivity in Monilinia fructicola Field Isolates from South Carolina and Georgia to Respiration Inhibitor Fungicides. PLANT DISEASE 2010; 94:737-743. [PMID: 30754318 DOI: 10.1094/pdis-94-6-0737] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quinone outside inhibitor (QoI) and succinate dehydrogenase inhibitor (SdhI) fungicides are respiration inhibitors (RIs) used for preharvest control of brown rot of stone fruit. Both chemical classes are site-specific and, thus, prone to resistance development. Between 2006 and 2008, 157 isolates of Monilinia fructicola collected from multiple peach and nectarine orchards with or without RI spray history in South Carolina and Georgia were characterized based upon conidial germination and mycelial growth inhibition for their sensitivity to QoI fungicides azoxystrobin and pyraclostrobin, SdhI fungicide boscalid, and a mixture of pyraclostrobin + boscalid. There was no significant difference (P = 0.05) between EC50 values for inhibition of conidial germination versus mycelial growth. The mean EC50 values based upon mycelial growth tests for 25 isolates from an orchard without RI-spray history were 0.15, 0.06, 2.23, and 0.09 μg/ml for azoxystrobin, pyraclostrobin, boscalid, and pyraclostrobin + boscalid, respectively. The respective mean EC50 values for 76 isolates from RI-sprayed orchards in South Carolina were 0.9, 0.1, 10.7, and 0.13 μg/ml and for 56 isolates from RI-sprayed orchards in Georgia were 1.2, 0.1, 8.91, and 0.17 μg/ml. Overall, mean EC50 values of populations from RI-sprayed orchards increased three-, two-, five-, and twofold between 2006 and 2008 for azoxystrobin, pyraclostrobin, boscalid, and pyraclostrobin + boscalid, respectively. A subset of 10 M. fructicola isolates representing low and high EC50 values for azoxystrobin, boscalid, and boscalid + pyraclostrobin was selected for a detached fruit assay to determine disease incidence and severity following protective treatments of formulated RI fungicides at label rates. Brown rot incidence was greater than 50% when fruit were inoculated with isolates having EC50 values of 2, 4, and 0.6 μg/ml for azoxystrobin, boscalid, and pyraclostrobin + boscalid, respectively. Pyraclostrobin failed to control any of the isolates tested in detached fruit assays. Based on minimum inhibitory concentration and brown rot incidence data, we recommend using 3 and 0.75 μg/ml as discriminatory doses to distinguish between sensitive isolates and those with reduced sensitivity to azoxystrobin and pyraclostrobin + boscalid, respectively. Results from our in vitro and in vivo assays indicate a shift toward reduced sensitivity in M. fructicola from the southeastern United States. No cross-resistance was observed between the QoI and the SdhI fungicides, which implies that rotation or tank mixtures of these two chemical classes can be used as a resistance management strategy.
Collapse
Affiliation(s)
- A Amiri
- Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634
| | - P M Brannen
- Department of Plant Pathology, University of Georgia, Athens 30602
| | - G Schnabel
- Department of Entomology, Soils, and Plant Sciences, Clemson University
| |
Collapse
|
37
|
Rogers PM, Stevenson WR. Aggressiveness and Fungicide Sensitivity of Alternaria dauci from Cultivated Carrot. PLANT DISEASE 2010; 94:405-412. [PMID: 30754525 DOI: 10.1094/pdis-94-4-0405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of Alternaria dauci causing Alternaria leaf blight (ALB) were collected from commercial carrot (Daucus carota var. sativus) fields in northeastern North America during 2004. Twenty-two isolates representing a range of genetic diversity were analyzed for their aggressiveness on three commercial carrot varieties (Bolero, Enterprise, and Heritage) varying in disease susceptibility as well as their in vitro response to three fungicides (azoxystrobin, chlorothalonil, and boscalid) commonly used for ALB control. Severity of leaf and petiole blight and leaf chlorosis varied among isolates and carrot varieties in each of three experiments. Visible differences in disease severity, which ranged from 10.9 to 45.1% of the leaf area affected, were apparent 16 days after inoculation. Intensity of chlorosis correlated strongly with blight severity among all isolates. Significant differences were noted among carrot varieties in response to ALB. These varieties may prove useful as differentials capable of distinguishing isolates because variety by isolate interactions were detected. Inhibition of conidial germination ranged from 0.01 to 0.37 μg/ml for azoxystrobin, 0.009 to 0.08 μg/ml for chlorothalonil, and 0.09 to 0.59 μg/ml for boscalid. On average, isolates were more sensitive to chlorothalonil than to azoxystrobin and boscalid. No significant correlation was noted between fungicide sensitivity and aggressiveness. These data provide evidence for phenotypic diversity among A. dauci isolates collected from areas of commercial carrot production.
Collapse
Affiliation(s)
| | - W R Stevenson
- Professor and Extension Plant Pathologist, Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| |
Collapse
|
38
|
Pethybridge SJ, Gent DH, Esker PD, Turechek WW, Hay FS, Nutter FW. Site-Specific Risk Factors for Ray Blight in Tasmanian Pyrethrum Fields. PLANT DISEASE 2009; 93:229-237. [PMID: 30764189 DOI: 10.1094/pdis-93-3-0229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ray blight of pyrethrum (Tanacetum cinerariifolium), caused by Phoma ligulicola var. inoxydablis, can cause defoliation and reductions of crop growth and pyrethrin yield. Logistic regression was used to model relationships among edaphic factors and interpolated weather variables associated with severe disease outbreaks (i.e., defoliation severity ≥40%). A model for September defoliation severity included a variable for the product of number of days with rain of at least 0.1 mm and a moving average of maximum temperatures in the last 14 days, which correctly classified (accuracy) the disease severity class for 64.8% of data sets. The percentage of data sets where disease severity was correctly classified as at least 40% defoliation severity (sensitivity) or below 40% defoliation severity (specificity) were 55.8 and 71%, respectively. A model for October defoliation severity included the number of days with at least 1 mm of rain in the past 14 days, stem height in September, and the product of the number of days with at least 10 mm of rain in the last 30 days and September defoliation severity. Accuracy, sensitivity, and specificity were 72.6, 73.6, and 71.4%, respectively. Youden's index identified predictive thresholds of 0.25 and 0.57 for the September and October models, respectively. When economic considerations of the costs of false positive and false negative decisions and disease prevalence were integrated into receiver operating characteristic (ROC) curves for the October model, the optimal predictive threshold to minimize average management costs was 0 for values of disease prevalence greater than 0.2 due to the high cost of false negative predictions. ROC curve analysis indicated that management of the disease should be routine when disease prevalence is greater than 0.2. The models developed in this research are the first steps toward identifying and weighting site and weather disease risk variables to develop a decision-support aid for the management of ray blight of pyrethrum.
Collapse
Affiliation(s)
- Sarah J Pethybridge
- Botanical Resources Australia - Agricultural Services Pty. Ltd., Ulverstone, Tasmania, 7315, Australia
| | - David H Gent
- United States Department of Agriculture - Agricultural Research Services (USDA-ARS), Forage Seed and Cereal Research Unit and Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Paul D Esker
- University of Wisconsin, Department of Plant Pathology, Madison, WI 53706
| | - William W Turechek
- USDA-ARS, U.S. Horticultural Research Laboratory, Subtropical Plant Pathology Unit, Fort Pierce, FL 34945
| | - Frank S Hay
- Tasmanian Institute of Agricultural Research, University of Tasmania, Burnie, Tasmania, 7320, Australia
| | - Forrest W Nutter
- Department of Plant Pathology, Iowa State University, Ames, IA 50011
| |
Collapse
|
39
|
Fontaine S, Remuson F, Fraissinet-Tachet L, Micoud A, Marmeisse R, Melayah D. Monitoring of Venturia inaequalis harbouring the QoI resistance G143A mutation in French orchards as revealed by PCR assays. PEST MANAGEMENT SCIENCE 2009; 65:74-81. [PMID: 18823065 DOI: 10.1002/ps.1649] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Genetic resistance to QoI fungicides may account for recent failures to control Venturia inaequalis (Cooke) Winter in French orchards. Two PCR-based assays were developed to detect the G143A point mutation in the fungal mitochondrial cytochrome b gene. The mutation is known to confer a high level of resistance to QoI fungicides. Occurrence of the G143A mutation in French field isolates collected from 2004 to 2007 was monitored. RESULTS The QoI-resistant cytochrome b allele was specifically detected either following the cleavage of the amplified marker by a restriction endonuclease (CAPS assay) or its amplification using an allele-specific PCR primer. Using either method, the G143A mutation was found in 42% of the 291 field samples originating from French orchards in which apple scab proved difficult to be controlled. Monitoring of the G143A mutation in orchards located in 15 French administrative regions indicated that the mutation was detected at least once in nine of the regions, and its presence ranged from 33% to 64% of the orchards analysed in 2004 and in 2007 respectively. CONCLUSION The PCR-based methods developed in this study efficiently reveal the presence of the G143A mutation in French V. inaequalis field populations.
Collapse
Affiliation(s)
- Séverine Fontaine
- DRAF-SRPV Rhône Alpes, Cité Administrative de la Part Dieu, Lyon, France
| | | | | | | | | | | |
Collapse
|
40
|
Myresiotis CK, Bardas GA, Karaoglanidis GS. Baseline Sensitivity of Botrytis cinerea to Pyraclostrobin and Boscalid and Control of Anilinopyrimidine- and Benzimidazole-Resistant Strains by These Fungicides. PLANT DISEASE 2008; 92:1427-1431. [PMID: 30769575 DOI: 10.1094/pdis-92-10-1427] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fifty-five isolates of Botrytis cinerea collected from vegetable crops were used to determine the pathogen's baseline sensitivity to two new fungicides: boscalid, which inhibits the enzyme succinate dehydrogenase in the electron transport chain, and pyraclostrobin, which blocks electron transport between cytochrome b and cytochrome c1. Measurement of sensitivity to boscalid was based on both inhibition of mycelial growth and spore germination, while measurement of sensitivity to pyraclostrobin was based only on inhibition of spore germination. For both fungicides, the sensitivity distribution was a unimodal curve, with a mean EC50 value (effective concentration that reduces mycelial growth or spore germination by 50%) of 0.033 μg ml-1 for pyraclostrobin and 2.09 and 2.14 μg ml-1 for boscalid based on the inhibition of mycelial growth and spore germination, respectively. No cross-sensitivity relationship was observed between the two fungicides (r = 0.09). In addition, no cross-resistance relationship was observed between these two fungicides with other botryticides: cyprodinil, pyrimethanil, fenhexamid, fludioxonil, and iprodione. Moreover, the control efficacy of the two fungicides was tested against two anilinopyrimidine-resistant and two benzimidazole-resistant isolates, and two of wild-type sensitivity. Both pyraclostrobin and boscalid provided satisfactory control of all six isolates that was independent of the isolate sensitivity to benzimidazoles and anilinopyrimidines. In contrast, carbendazim failed to control sufficiently the benzimidazole-resistant isolates, while cyprodinil failed to provide satisfactory control of the anilinopyrimidine-resistant isolates.
Collapse
Affiliation(s)
- C K Myresiotis
- Aristotelian University of Thessaloniki, Faculty of Agriculture, Plant Pathology Laboratory, POB 269, 54124, Thessaloniki, Greece
| | - G A Bardas
- Aristotelian University of Thessaloniki, Faculty of Agriculture, Plant Pathology Laboratory, POB 269, 54124, Thessaloniki, Greece
| | - G S Karaoglanidis
- Aristotelian University of Thessaloniki, Faculty of Agriculture, Plant Pathology Laboratory, POB 269, 54124, Thessaloniki, Greece
| |
Collapse
|
41
|
Pethybridge SJ, Hay FS, Groom T, Wilson CR. Improving Fungicide-Based Management of Ray Blight Disease in Tasmanian Pyrethrum Fields. PLANT DISEASE 2008; 92:887-895. [PMID: 30769726 DOI: 10.1094/pdis-92-6-0887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ray blight disease, caused by Phoma ligulicola var. inoxydablis, is a serious threat to the Tasmanian pyrethrum industry. The management of this disease relies upon the strategic application of fungicides in early spring. A range of fungicides were assessed for their efficacy in controlling ray blight disease in Tasmanian pyrethrum fields, and the primary objective of this study was to increase fungicide options available to growers in different resistance groups. Fungicides were assessed under in vitro conditions, within five replicated-plot field trials over three seasons (2004 to 2006) and in single-plot trials over eight fields in 2005. In each of the field trials, regular assessments of disease intensity (defoliation severity and the incidence of stems with ray blight), stem height, and the number of flowers produced on each stem were made using stems as the primary sampling unit. Canopy reflectance at 830 nm and the Difference Vegetative Index, measured using a handheld multispectral radiometer, also were used to compare fungicide effects on green leaf area. The effect of fungicides on the dry weight of flowers, pyrethrin content within the flowers, flower maturity, and pyrethrin yield were determined. Under in vitro conditions, boscalid reduced both conidial germination and mycelial growth at concentrations of at least 0.16 μg/ml. In field trials 1 and 2 (in 2004), the premixed formulation of pyraclostrobin + boscalid (Pristine) increased pyrethrin yield by an average of 79% compared with nontreated plots over the two locations. Furthermore, in single-plot trials, pyraclostrobin + boscalid increased pyrethrin yield by 134 and 60% compared with the industry-recommended protocol (single application of azoxystrobin at 150 g a.i./ha [Amistar WG] and two additional applications of a tank mixture of difenoconazole at 125 g a.i./ha [Score] and chlorothalonil at 1,008 liters a.i./ha [Bravo 720] at 14- to 21-day intervals) and nontreated plots, respectively. In field trials 3 (in 2005) and 4 and 5 (in 2006), similar yield benefits also were produced by applying pyraclostrobin (Cabrio SC) or boscalid (Filan) alone or in combination with chlorothalonil (Bravo 720) at 1.4 liters of product per hectare, regardless of the rates of pyraclostrobin (250 and 125 g a.i./ha) and boscalid (500 and 250 g a.i./ha) used. These data were used to recommend the incorporation of boscalid to improve the fungicide-based management of ray blight disease. This decreases the number of applications of both strobilurin and triazole fungicides which have been used extensively for the management of ray blight and other diseases in Tasmanian pyrethrum fields and are prone to fungicide resistance development.
Collapse
Affiliation(s)
- Sarah J Pethybridge
- Tasmanian Institute of Agricultural Research (TIAR), University of Tasmania, P.O. Box 3523, Burnie, Tasmania, 7320, Australia
| | - Frank S Hay
- Tasmanian Institute of Agricultural Research (TIAR), University of Tasmania, P.O. Box 3523, Burnie, Tasmania, 7320, Australia
| | - Tim Groom
- Botanical Resources Australia Pty. Ltd., 44-46 Industrial Drive, Ulverstone, Tasmania, 7315, Australia
| | - Calum R Wilson
- TIAR, New Town Research Laboratories, 13 St. Johns Ave., New Town, Tasmania, 7008, Australia
| |
Collapse
|
42
|
Amiri A, Scherm H, Brannen PM, Schnabel G. Laboratory Evaluation of Three Rapid, Agar-Based Assays to Assess Fungicide Sensitivity in Monilinia fructicola. PLANT DISEASE 2008; 92:415-420. [PMID: 30769692 DOI: 10.1094/pdis-92-3-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three rapid, agar-based assays were compared with a traditional petri dish method for assessing the sensitivity of Monilinia fructicola to propiconazole (0.3 and 2.0 μg/ml), thiophanate-methyl (1.0 and 50 μg/ml), and azoxystrobin (1.0 and 35 μg/ml) in the laboratory. The three assays were based on mycelial growth inhibition on agar disks sliced from lipbalm tubes filled with fungicide-amended potato dextrose agar (PDA), on PDA-coated cotton swabs, or in PDA-filled microcentrifuge tubes. Mycelial growth inhibition of eight previously characterized isolates (two resistant to propiconazole, two highly resistant to thiophanate-methyl, two with low levels of resistance to thiophanate-methyl, and two sensitive to all three fungicides) was determined visually 24, 48, and 72 h after inoculation. The 48-h time point was the earliest suitable time to collect data for all methods because insufficient growth was recorded in the petri dish and tube assays after 24 h. With the exception of the swab assay, all methods classified the isolates previously determined to be fungicide sensitive correctly (i.e., no fungal growth was observed for these isolates). For propiconazole-resistant isolates, the lipbalm assay resulted in levels of growth inhibition very similar to the petri dish method, whereas the swab assay and the tube assay overestimated and underestimated, respectively, the level of resistance. Both the lipbalm and the swab assays classified isolates correctly as being thiophanate-methyl resistant, and both were able to discriminate the isolates previously classified as having low versus high levels of resistance when treated with this fungicide at 50 μg/ml, as was the petri dish method. None of the eight isolates which previously were determined to be azoxystrobin sensitive grew on azoxystrobin-amended media, regardless of the assay type. Overall, the average percentage of correct isolate classifications (relative to their previously determined resistance status) on propiconazole- and thiophanate-methyl-amended media after 48 h ranged from 87.5 to 100, 85.3 to 100, 63.2 to 94.5, and 50.5 to 81.0% for the petri dish, lipbalm, swab, and tube assays, respectively. The lipbalm assay provided the most accurate assessments (85.3 to 100%) after only 24 h of incubation, supporting its use as a rapid and simple tool to monitor resistance levels in M. fructicola field populations.
Collapse
Affiliation(s)
- A Amiri
- Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634
| | - H Scherm
- Department of Plant Pathology, University of Georgia, Athens 30602
| | - P M Brannen
- Department of Plant Pathology, University of Georgia, Athens 30602
| | - G Schnabel
- Department of Entomology, Soils, and Plant Sciences, Clemson University
| |
Collapse
|
43
|
Kanetis L, Förster H, Adaskaveg JE. Baseline Sensitivities for New Postharvest Fungicides Against Penicillium spp. on Citrus and Multiple Resistance Evaluations in P. digitatum. PLANT DISEASE 2008; 92:301-310. [PMID: 30769382 DOI: 10.1094/pdis-92-2-0301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the first time in over 25 years, three new fungicides (azoxystrobin, fludioxonil, and pyrimethanil), all belonging to different chemical classes, are being registered for postharvest use against Penicillium decays of citrus fruit in the United States. Baseline sensitivities of Penicillium digitatum and P. italicum were developed using isolates collected before the commercial use of these new fungicides. In a comparison of methods, EC50 values obtained using the spiral gradient dilution method were very similar to those obtained using traditional agar dilutions of fungicides. For azoxystrobin, the addition of salicylhydroxamic acid (SHAM) did not significantly affect EC50 values for mycelial growth of both species. In additional studies on conidial germination of P. digitatum, SHAM significantly reduced EC50 values for azoxystrobin. For pyrimethanil, the mean EC50 value for mycelial growth obtained using a minimum growth medium for anilinopyrimidine fungicides was significantly lower but comparable to values obtained when using potato dextrose agar . For mycelial growth of P. digitatum, mean EC50 values were 0.014, 0.025, and 0.313 μg/ml, whereas for conidial germination, they were 0.074, 0.163, and 1.195 μg/ml for azoxystrobin, fludioxonil, and pyrimethanil, respectively. For P. italicum, mean EC50 values for mycelial growth for fludioxonil and pyrimethanil were 0.005 and 0.040 μg/ml, respectively. For azoxystrobin, the mean EC50 value for mycelial growth for 33 isolates was 0.029 μg/ml. Four isolates had EC50 values ≥0.772 μg/ml and were considered part of a resistant subpopulation. Multiple resistance between the older and new postharvest fungicide classes on citrus was not detected in P. digitatum, and all isolates that were sensitive or resistant to imazalil or thiabendazole were sensitive to the new compounds. This information is important for monitoring populations of P. digitatum, where resistance against the older fungicides has commonly developed.
Collapse
Affiliation(s)
- Loukas Kanetis
- Department of Plant Pathology, University of California, Riverside 92521
| | - Helga Förster
- Department of Plant Pathology, University of California, Davis 95616
| | - James E Adaskaveg
- Department of Plant Pathology, University of California, Riverside 92521
| |
Collapse
|
44
|
Jobin T, Carisse O. Incidence of Myclobutanil- and Kresoxim-Methyl-Insensitive Isolates of Venturia inaequalis in Quebec Orchards. PLANT DISEASE 2007; 91:1351-1358. [PMID: 30780525 DOI: 10.1094/pdis-91-10-1351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sensitivity of baseline and exposed populations of Venturia inaequalis to myclobutanil and to kresoxim-methyl were evaluated in vitro. For myclobutanil, the population was constructed with 238 monoconidial isolates of V. inaequalis collected from 48 orchards. For kresoxim-methyl, the population was constructed with 251 monoconidial isolates collected from 49 orchards. Baseline populations were constructed with 34 and 29 monoconidial isolates collected from apple trees that had never been treated for myclobutanil and kresoxim-methyl, respectively. Sensitivity to fungicides was evaluated based on 50% effective dose (ED50) values. The V. inaequalis population that was not exposed to myclobutanil had a baseline sensitivity (mean ED50) of 0.064 μg/ml and showed a lognormal distribution. The V. inaequalis population constructed with isolates from commercial orchards had a mean ED50 of 2.600 μg/ml, which was significantly higher than the baseline sensitivity. The distribution of ED50 values did not follow a lognormal distribution. In response to declining levels of scab control with myclobutanil and other sterol demethylation inhibitor fungicides (DMIs), three orchards were more deeply investigated. The mean ED50 values were 1.618 (n = 23), 3.079 (n = 29), and 1.500 μg/ml (n = 20) in orchards one, two, and three, respectively. Resistant isolates, according to criteria set by other studies, accounted for 39, 76, and 85% of the isolates tested. The V. inaequalis population that had never been exposed to kresoxim-methyl had a baseline sensitivity (mean ED50) of 0.092 μg/ml and showed a lognormal distribution. The V. inaequalis population constructed with isolates from commercial orchards had a mean ED50 of 6.093 μg/ml, which was significantly higher than the baseline sensitivity. The distribution of ED50 values followed a lognormal distribution. However, when a subsample of isolates was retested for their sensitivity to kresoxim-methyl with the addition of salicylhydroxamic acid (an inhibitor of alternative oxidase) at 100 μg/ml to the growth medium, more than 98% inhibition was observed for all isolates. The results from in vitro tests showed a high level of resistance to myclobutanil and a low level of resistance to kresoxim-methyl, suggesting that the use of myclobutanil and DMIs should be discontinued or significantly reduced before practical resistance is reached.
Collapse
Affiliation(s)
- T Jobin
- Agriculture and Agri-Food Canada, 430 Gouin Boulevard, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - O Carisse
- Agriculture and Agri-Food Canada, 430 Gouin Boulevard, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| |
Collapse
|
45
|
Turechek WW, Peres NA, Werner NA. Pre- and Post-Infection Activity of Pyraclostrobin for Control of Anthracnose Fruit Rot of Strawberry Caused by Colletotrichum acutatum. PLANT DISEASE 2006; 90:862-868. [PMID: 30781022 DOI: 10.1094/pd-90-0862] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of pre- and post-infection-period applications of pyraclostrobin (Cabrio EG) on the development of anthracnose fruit rot was characterized in a controlled-climate study and validated in field studies in New York and Florida. Plants of the day-neutral cv. Tristar were inoculated with C. acutatum and placed into mist chambers at 14, 22, or 30°C. The plants were removed from the chambers after 3, 6, 12, or 24 h of misting and placed on greenhouse benches to allow disease development. The fungicide pyraclostrobin was applied to the berries at a concentration equivalent to 168 g a.i./ha at 3, 8, 24, and 48 h prior to inoculation and exposure to their wetting period, or 3, 8, 24, and 48 h following inoculation and exposure to their wetting period. All pyraclostrobin treatments suppressed disease compared with the corresponding untreated control treatments. The highest incidence of disease occurred on plants exposed to the longest wetness durations (12 and 24 h) or highest temperature treatments (22 and 30°C). Post-infection applications of pyraclostrobin provided significant control when applications were made within 3 and often up to 8 h after wetting, but generally were less effective than protective sprays. We further tested the ability of pyraclostrobin to control anthracnose when applied as a protectant or as an after-infection application in inoculated field plots exposed to a short (8 h) or long (24 h) wetting period in Florida and in New York. In three of the four experimental plots, disease control equivalent to or better than the protective spray was achieved when pyraclostrobin was applied up to 24 h after infection for long and short wetting periods. In the remaining plot, conditions for disease development were exceptionally favorable. The protective treatment provided approximately 75% control, whereas the best post-infection treatment provided only 50% control. Our study indicates that for short wetting events, such as those associated with seasonal thunderstorms, growers can wait until after such an infection event before applying pyraclos-trobin and achieve control equivalent to a protective application.
Collapse
Affiliation(s)
- William W Turechek
- United States Department of Agriculture-Agricultural Research Service, Fruit Laboratory, Beltsville, MD 20705
| | - Natália A Peres
- University of Florida, Gulf Coast Research and Education Center, Wimauma 33598
| | - Nicole A Werner
- Research Support Aide, Department of Plant Pathology, NYSAES, Cornell University, Geneva, NY 14456
| |
Collapse
|
46
|
Karadimos DA, Karaoglanidis GS. Comparative Efficacy, Selection of Effective Partners, and Application Time of Strobilurin Fungicides for Control of Cercospora Leaf Spot of Sugar Beet. PLANT DISEASE 2006; 90:820-825. [PMID: 30781246 DOI: 10.1094/pd-90-0820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we attempt to optimize the use of strobilurin fungicides by testing the efficacy of azoxystrobin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin under field conditions, by testing for the most efficient partners in fungicide mixtures, and by testing control efficacy of strobilurin fungicides applied at several application times to determine the better options for disease management. Results showed that trifloxystrobin was the most efficient strobilurin fungicide, followed by pyraclostrobin. Azoxystrobin provided a modest to poor control efficacy, whereas kresoxim-methyl provided only poor disease control efficacy. Mixtures of azoxystrobin and trifloxystrobin with either chlorothalonil or maneb and difenoconazole or flutriafol were tested for their efficacy in controlling the disease. The results showed that the azoxystrobin-containing mixtures provided significantly better control compared with that obtained by single applications of each mixture component. The mixtures of trifloxystrobin with maneb or with difenoconazole or flutriafol provided control efficacy similar to that obtained by single applications of trifloxystrobin, whereas the mixture of trifloxystrobin and chlorothalonil provided significantly lower control efficacy compared with the other trifloxystrobin-containing mixtures tested. For both strobilurin fungicides tested, the calculated ratio between the observed and the expected control efficacy ranged around the value of 1, suggesting additive interactions between the mixtures' components. To determine the most appropriate time for strobilurin fungicides application, trifloxystrobin was applied as the first two, the middle two, or the final two consecutive treatments of six fungicide applications. The remaining fungicide treatments in the spray schedules were carried out by applying the systemic fungicide difenoconazole. Results showed that a higher control efficacy was obtained when trifloxystrobin was applied in either of the earlier applications.
Collapse
Affiliation(s)
- D A Karadimos
- Hellenic Sugar Industry S.A., Plant Protection Department, Sugar Factory of Larissa, 41110, Larissa, Greece
| | - G S Karaoglanidis
- Hellenic Sugar Industry S.A., Plant Protection Department, Sugar Factory of Platy, 59032, Platy Imathias, Greece
| |
Collapse
|
47
|
Karaoglanidis GS, Bardas G. Control of Benzimidazole- and DMI-Resistant Strains of Cercospora beticola with Strobilurin Fungicides. PLANT DISEASE 2006; 90:419-424. [PMID: 30786587 DOI: 10.1094/pd-90-0419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The control efficacy of two new strobilurin fungicides, trifloxystrobin and pyraclostrobin, against Cercospora beticola isolates resistant and sensitive to sterol demethylation-inhibiting (DMI) fungicides and benzimidazole fungicides and the effects on evolution of resistance were tested in the current study. Control efficacy of strobilurin fungicides was measured using three C. beticola isolates, one DMI-resistant (DMIR), one benzimidazole-resistant (BENR), and one of wild-type sensitivity (WCB). Both pyraclostrobin and trifloxystrobin provided satisfactory control of all the three isolates used in the study, when applied at 5 μg ml-1 and very high levels of control when applied at 10 μg ml-1. Control was independent of the isolate sensitivity to benomyl and difenoconazole. In contrast, benomyl applied at 10 μg ml-1 failed to control sufficiently the benzimidazole-resistant isolate, whereas difenoconazole applied at either 5 or 10 μg ml-1 failed to provide satisfactory control of the DMI-resistant isolate of the pathogen. The effects of strobilurin fungicide applications on the evolution of resistance to benzimidazole and DMI fungicides were tested under field conditions in a 2-year experiment (2003 to 2004). Applications of either trifloxystrobin or pyraclostrobin provided high levels of disease control during both years of the study, whereas applications of either benomyl or difenoconazole provided a moderate control efficacy. Measurements of resistance frequencies to benomyl and to difenoconazole showed that successive applications of benomyl tended to select for high frequencies of benzimidazole-resistant phenotypes, whereas successive applications of difenoconazole tended to select for high frequencies of DMI-resistant phenotypes. In contrast, applications of either trifloxystrobin or pyraclostrobin prevented an increase of benzimidazole- or DMI-resistant phenotypes compared with the plots treated with benomyl or difenoconazole, respectively, and decreased frequency of resistance compared with untreated control plots.
Collapse
Affiliation(s)
- G S Karaoglanidis
- Hellenic Sugar Industry S.A., Plant Protection Department, Sugar Factory of Platy, 59032, Platy Imathias, Greece
| | - G Bardas
- Aristotelian University of Thessaloniki, Faculty of Agriculture, Plant Pathology Laboratory, POB 269, 54006, Thessaloniki, Greece
| |
Collapse
|
48
|
Köller W, Wilcox WF, Parker DM. Sensitivity of Venturia inaequalis Populations to Anilinopyrimidine Fungicides and Their Contribution to Scab Management in New York. PLANT DISEASE 2005; 89:357-365. [PMID: 30795450 DOI: 10.1094/pd-89-0357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sensitivities of Venturia inaequalis isolates to the anilinopyrimidine fungicides (APs) pyrimethanil and cyprodinil were determined for nine populations by measuring the growth of colonies formed from germinating conidia derived from single scab lesions. At the discriminatory pyrimethanil dose of 0.2 μg ml-1, the mean relative growth range measured for eight V. inaequalis populations (n = 39 to 74) never treated with AP fungicides varied from 18.1 to 48.2, translating into an approximately sixfold difference in mean baseline sensitivities. For the composite of all 469 isolates tested, sensitivities to pyrimethanil and to the sterol demethylation inhibitor (DMI) myclobutanil were significantly correlated. When isolates were organized into subpopulations based on their sensitivities to an individual fungicide, sensitivities to both fungicides declined in parallel through the highly and moderately sensitive spectra of subpopulations, but they diverged for isolates in subpopulations least sensitive to either fungicide. The result suggested that at least one of the multiple genes conferring DMI resistance also lowered the sensitivity to AP fungicides. The relative contribution of AP fungicides to scab management was evaluated at an experimental orchard representative of the Great Lakes region of the United States. Frequencies of DMI-resistant isolates of V. inaequalis had progressed to the stage of practical resistance at the site, and the sensitivity to pyrimethanil was similar to several commercial orchard populations never treated with APs. For management programs at the experimental site involving the AP fungicides cyprodinil and pyrimethanil and conducted from 1996 to 2000, the level of fruit and terminal leaf scab control was inferior to that of nonspecific protectants such as mancozeb or captan. For the control of scab on cluster leaves, the efficacy of AP fungicides equaled the performance of nonspecific protectants. This modest contribution of AP fungicides to scab management might have been caused by a lack of the extended cool temperature conditions that were conducive to AP performance in northern Europe in previous studies, and/or by the reduced sensitivity to AP fungicides in this DMI-resistant V. inaequalis population.
Collapse
Affiliation(s)
- Wolfram Köller
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456
| | - W F Wilcox
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456
| | - D M Parker
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456
| |
Collapse
|
49
|
Pasche JS, Piche LM, Gudmestad NC. Effect of the F129L Mutation in Alternaria solani on Fungicides Affecting Mitochondrial Respiration. PLANT DISEASE 2005; 89:269-278. [PMID: 30795349 DOI: 10.1094/pd-89-0269] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of Alternaria solani previously collected from throughout the Midwestern United States and characterized as being azoxystrobin sensitive or reduced sensitive were tested for sensitivity to the Quinone outside inhibitor (QoI) fungicides famoxadone and fenamidone and the carboxamide fungicide boscalid. All three fungicides affect mitochondrial respiration: famoxadone and fenamidone at complex III, and boscalid at complex II. A. solani isolates possessing reducedsensitivity to azoxystrobin also were less sensitive in vitro to famoxadone and fenamidone compared with azoxystrobin-sensitive isolates, but the shift in sensitivity was of lower magnitude, approximately 2- to 3-fold versus approximately 12-fold for azoxystrobin. The in vitro EC50 values, the concentration that effectively reduces germination by 50% relative to the untreated control, for sensitive A. solani isolates were significantly lower for famoxadone and azoxystrobin than for fenamidone and boscalid; whereas, for reduced-sensitive isolates, famoxadone EC50 values were significantly lower than all other fungicides. Isolates of A. solani with reducedsensitivity to azoxystrobin were twofold more sensitive in vitro to boscalid than were azoxystrobin-sensitive wild-type isolates, displaying negative cross-sensitivity. All isolates determined to have reduced-sensitivity to azoxystrobin also were determined to possess the amino acid substitution of phenylalanine with leucine at position 129 (F129L mutation) using real-time polymerase chain reaction. In vivo studies were performed to determine the effects of in vitro sensitivity shifts on early blight disease control provided by each fungicide over a range of concentrations. Reduced-sensitivity to azoxystrobin did not significantly affect disease control provided by famoxadone, regardless of the wide range of in vitro famoxadone EC50 values. Efficacy of fenamidone was affected by some azoxystrobin reduced-sensitive A. solani isolates, but not others. Boscalid controlled azoxystrobin-sensitive and reduced-sensitive isolates with equal effectiveness. These results suggest that the F129L mutation present in A. solani does not convey cross-sensitivity in vivo among all QoI or related fungicides, and that two- to threefold shifts in in vitro sensitivity among A. solani isolates does not appreciably affect disease control.
Collapse
Affiliation(s)
- J S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| | - L M Piche
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| | - N C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| |
Collapse
|