1
|
Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, Eyquard JP, Karychev R, Dolgikh S, Kostritsyna T, Liu S, Liu W, Geng W, Liao K, Asma BM, Akparov Z, Giraud T, Decroocq V. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol Ecol 2016; 25:4712-29. [PMID: 27480465 DOI: 10.1111/mec.13772] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/01/2022]
Abstract
Studying domesticated species and their wild relatives allows understanding of the mechanisms of population divergence and adaptation, and identifying valuable genetic resources. Apricot is an important fruit in the Northern hemisphere, where it is threatened by the Plum pox virus (PPV), causing the sharka disease. The histories of apricot domestication and of its resistance to sharka are however still poorly understood. We used 18 microsatellite markers to genotype a collection of 230 wild trees from Central Asia and 142 cultivated apricots as representatives of the worldwide cultivated apricot germplasm; we also performed experimental PPV inoculation tests. The genetic markers revealed highest levels of diversity in Central Asian and Chinese wild and cultivated apricots, confirming an origin in this region. In cultivated apricots, Chinese accessions were differentiated from more Western accessions, while cultivated apricots were differentiated from wild apricots. An approximate Bayesian approach indicated that apricots likely underwent two independent domestication events, with bottlenecks, from the same wild population. Central Asian native apricots exhibited genetic subdivision and high frequency of resistance to sharka. Altogether, our results contribute to the understanding of the domestication history of cultivated apricot and point to valuable genetic diversity in the extant genetic resources of wild apricots.
Collapse
Affiliation(s)
- Stéphane Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Amandine Cornille
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Tricon
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Sevda Babayeva
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Aurélie Chague
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Jean-Philippe Eyquard
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Raul Karychev
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Svetlana Dolgikh
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Tatiana Kostritsyna
- Botanical Garden of National Academy of Sciences, Akhunbaeva street 1a, 720064, Bishkek, Kyrgyzstan
| | - Shuo Liu
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Weisheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Wenjuan Geng
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Kang Liao
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Bayram M Asma
- Department of Horticulture, Inonu University, Malatya, 44210, Turkey
| | - Zeynal Akparov
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.
| | - Véronique Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France. .,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
2
|
Mariette S, Wong Jun Tai F, Roch G, Barre A, Chague A, Decroocq S, Groppi A, Laizet Y, Lambert P, Tricon D, Nikolski M, Audergon JM, Abbott AG, Decroocq V. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). THE NEW PHYTOLOGIST 2016; 209:773-84. [PMID: 26356603 DOI: 10.1111/nph.13627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/26/2015] [Indexed: 05/06/2023]
Abstract
In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm.
Collapse
Affiliation(s)
- Stéphanie Mariette
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
- UMR 1202 BIOGECO, INRA, F-33610, Cestas, France
- UMR 1202 BIOGECO, Université de Bordeaux, F-33400, Talence, France
| | - Fabienne Wong Jun Tai
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Guillaume Roch
- UR1052 GAFL, Domaine Saint Maurice, INRA, CS60094, F-84143, Montfavet, France
- CEP INNOVATION, INRA, 23 rue Jean Baldassini, F-69364, LYON Cedex 7, France
| | - Aurélien Barre
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Aurélie Chague
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| | - Stéphane Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| | - Alexis Groppi
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Yec'han Laizet
- UMR 1202 BIOGECO, INRA, F-33610, Cestas, France
- UMR 1202 BIOGECO, Université de Bordeaux, F-33400, Talence, France
| | - Patrick Lambert
- UR1052 GAFL, Domaine Saint Maurice, INRA, CS60094, F-84143, Montfavet, France
| | - David Tricon
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| | - Macha Nikolski
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Jean-Marc Audergon
- UR1052 GAFL, Domaine Saint Maurice, INRA, CS60094, F-84143, Montfavet, France
| | - Albert G Abbott
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY, 40546-0073, USA
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| |
Collapse
|
3
|
Mavrodieva V, James D, Williams K, Negi S, Varga A, Mock R, Levy L. Molecular Analysis of a Plum pox virus W Isolate in Plum Germplasm Hand Carried into the USA from the Ukraine Shows a Close Relationship to a Latvian Isolate. PLANT DISEASE 2013; 97:44-52. [PMID: 30722258 DOI: 10.1094/pdis-01-12-0104-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four of 19 Prunus germplasm accessions hand carried from the Ukraine into the United States without authorization were found to be infected with Plum pox virus (PPV). Of the three isolates characterized, isolates UKR 44189 and UKR 44191 were confirmed to be isolates of PPV strain W, and UKR 44188 was confirmed to be an isolate of PPV strain D. UKR 44189 and UKR 44191 are very closely related to the PPV strain W isolate LV-145bt (HQ670748) from Latvia. Nucleotide and amino acid sequence identities between these three isolates were greater than 99%. This indicates that the isolates are very closely related and likely originated from a common source. The high genetic diversity among PPV-W strain isolates allowed the identification of potential recombination events between PPV isolates. It appears also that GF 305 peach and Prunus tomentosa are not hosts for the PPV isolate UKR 44189.
Collapse
Affiliation(s)
- Vessela Mavrodieva
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS), Plant Protection and Quarantine (PPQ), Center for Plant Health Science and Technology (CPHST) Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| | - Delano James
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada
| | - Karen Williams
- USDA APHIS PPQ CPHST Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| | - Sarika Negi
- USDA APHIS PPQ CPHST Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| | - Aniko Varga
- Sidney Laboratory, CFIA, 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada
| | - Ray Mock
- USDA, Agricultural Research Service, National Germplasm Resources Laboratory, 10300 Baltimore Ave., Beltsville, MD, USA
| | - Laurene Levy
- USDA APHIS PPQ CPHST Beltsville Laboratory, Bldg. 580, BARC-East, Powder Mill Rd., Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Sochor J, Babula P, Adam V, Krska B, Kizek R. Sharka: the past, the present and the future. Viruses 2012; 4:2853-901. [PMID: 23202508 PMCID: PMC3509676 DOI: 10.3390/v4112853] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Members the Potyviridae family belong to a group of plant viruses that are causing devastating plant diseases with a significant impact on agronomy and economics. Plum pox virus (PPV), as a causative agent of sharka disease, is widely discussed. The understanding of the molecular biology of potyviruses including PPV and the function of individual proteins as products of genome expression are quite necessary for the proposal the new antiviral strategies. This review brings to view the members of Potyviridae family with respect to plum pox virus. The genome of potyviruses is discussed with respect to protein products of its expression and their function. Plum pox virus distribution, genome organization, transmission and biochemical changes in infected plants are introduced. In addition, techniques used in PPV detection are accentuated and discussed, especially with respect to new modern techniques of nucleic acids isolation, based on the nanotechnological approach. Finally, perspectives on the future of possibilities for nanotechnology application in PPV determination/identification are outlined.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Boris Krska
- Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic;
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
5
|
Szathmáry E, Nádudvari JN, Szabó L, Tóbiás I, Balázs E, Palkovics L. Characterization of a natural Plum pox virus isolate bearing a truncated coat protein. Arch Virol 2008; 154:141-5. [PMID: 19082685 DOI: 10.1007/s00705-008-0281-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Plum pox virus (PPV) isolates were collected in Hungary from plum varieties. PCR targeting the 3' genomic region resulted in a shorter PCR product in the case of the B1298 isolate bearing a 135-nucleotide deletion in frame in the N-terminal part of the coat protein (CP). The isolate was aphid-transmissible and the virion diameter was reduced compared to PPV-SK68. Detectability of this isolate by Western blot varied according to the antibody used. Integration of the deleted CP gene into an infectious PPV clone had no effect on infectivity and symptomatology. In competition experiments, B1298 had a considerable advantage in virus accumulation.
Collapse
Affiliation(s)
- Erzsébet Szathmáry
- Department of Plant Pathology, Faculty of Horticultural Science, Corvinus University of Budapest, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
6
|
Varga A, James D. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods 2006; 138:184-90. [PMID: 17011051 DOI: 10.1016/j.jviromet.2006.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 08/18/2006] [Accepted: 08/31/2006] [Indexed: 11/19/2022]
Abstract
A one step, accelerated reverse transcription loop-mediated isothermal amplification (RT-LAMP) procedure was developed for the detection of Plum pox virus (PPV). The six primers required for accelerated RT-LAMP were designed using a conserved region in the C-terminus of the coat protein coding region of PPV. RT-LAMP was used to detect isolates of five strains of PPV including the strains D, M, EA, C, and W. The virus was detected reliably in both infected herbaceous and woody hosts. RT-LAMP was compared to real-time RT-PCR with SYBR Green I and melting curve analysis, using serial dilutions of total RNA extracts. Similar sensitivities were observed, except that real-time RT-PCR was more consistent at lower template concentrations. The purity of the FIP and BIP primers affected the efficiency of the reaction, and incubation time and template concentration affected the ladder-like pattern observed after agarose gel electrophoresis. Although PPV could be detected after 30min of incubation at 63 degrees C, a longer incubation time was required for lower concentrations of the target. RT-LAMP is a very sensitive, low cost diagnostic tool that should be of value in more accurate determination of the distribution of PPV. This should assist in preventing further spread of this devastating virus.
Collapse
Affiliation(s)
- Aniko Varga
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, British Columbia V8L 1H3, Canada
| | | |
Collapse
|
7
|
James D, Glasa M. Causal agent of sharka disease: new and emerging events associated with Plum pox virus characterization. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00981.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Cambra M, Capote N, Myrta A, Llácer G. Plum pox virus and the estimated costs associated with sharka disease. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.01027.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Glasa M, Candresse T. Partial sequence analysis of an atypical Turkish isolate provides further information on the evolutionary history of Plum pox virus (PPV). Virus Res 2005; 108:199-206. [PMID: 15681071 DOI: 10.1016/j.virusres.2004.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
A variety of techniques, such as typing with subgroup-specific monoclonal antibodies, restriction length polymorphism (RFLP) analysis or subgroup-specific RT-PCR are available for the discrimination of Plum pox virus (PPV) isolates. However, the existence of PPV isolates showing abnormal typing properties has been observed in the past [Candresse, T., Cambra, M., Dallot, S., Lanneau, M., Asensio, M., Gorris, M.T., Revers, F., Macquaire, G., Olmos, A., Boscia, D., Quiot J.B., Dunez, J., 1998. Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of Plum pox potyvirus. Phytopathology 88, 198-204.]. In an effort to understand the molecular mechanisms underlying such anomalous serological and molecular typing characteristics, partial 3' (1449 nt) and 5' (3706 nt) sequences have been determined for an atypical Turkish PPV isolate (Abricotier Turquie or Ab-Tk). The results obtained indicate that its unusual typing behaviour is caused by point mutations affecting key restriction sites and epitopes and confirm that this isolate represents a divergent member of the PPV-M subgroup. In addition, analysis of the partial Ab-Tk genomic sequences demonstrated that the 5' region of the genome of this isolate has a mosaic structure resulting from recombination event(s), shedding new light on the evolutionary history of Plum pox virus.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- DNA Fingerprinting
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Viral/chemistry
- DNA, Viral/isolation & purification
- Epitopes/genetics
- Epitopes/immunology
- Evolution, Molecular
- Molecular Sequence Data
- Phylogeny
- Plum Pox Virus/genetics
- Plum Pox Virus/immunology
- Plum Pox Virus/isolation & purification
- Point Mutation
- Polymorphism, Restriction Fragment Length
- Prunus/virology
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Homology
- Serotyping
- Turkey
Collapse
Affiliation(s)
- Miroslav Glasa
- Institute of Virology, Department of Plant Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia.
| | | |
Collapse
|