1
|
Cervantes-Santos JA, Villar-Luna H, Bojórquez-Orozco AM, Díaz-Navarro JE, Arce-Leal ÁP, Santos-Cervantes ME, Claros MG, Méndez-Lozano J, Rodríguez-Negrete EA, Leyva-López NE. Huanglongbing as a Persistent Threat to Citriculture in Latin America. BIOLOGY 2025; 14:335. [PMID: 40282200 PMCID: PMC12025139 DOI: 10.3390/biology14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025]
Abstract
Citrus commercial species are the most important fruit crops in the world; however, their cultivation is seriously threatened by the fast dispersion of emerging diseases, including Huanglongbing (HLB) citrus greening. HLB disease is vectored by psyllid vectors and associated with phloem-limited α-proteobacteria belonging to the Candidatus Liberibacter genus. Climatic change and trade globalization have led to the rapid spread of HLB from its origin center in Southeast Asia, causing a great economic impact in the main production areas, including East Asia (China), the Mediterranean basin, North America (the United States), and Latin America (Brazil and Mexico). Despite important advances to understand the HLB epidemiology, Candidatus Liberibacter genetics, psyllid vector control, the molecular citrus-Candidatus Liberibacter interaction, and the development of integral disease management strategies, the study areas have been mostly restricted to high-tech-producing countries. Thus, in this review, we provide an overview of the epidemiology, distribution, genetic diversity, management aspects, and omics analysis of HLB in Latin America, where this information to date is limited.
Collapse
Affiliation(s)
- Jael Arely Cervantes-Santos
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Hernán Villar-Luna
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Ana Marlenne Bojórquez-Orozco
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - José Ernesto Díaz-Navarro
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Ángela Paulina Arce-Leal
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - María Elena Santos-Cervantes
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29010 Malaga, Spain;
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBAMA-RARE, 29010 Malaga, Spain
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Edgar Antonio Rodríguez-Negrete
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| | - Norma Elena Leyva-López
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81101, Mexico; (J.A.C.-S.); (H.V.-L.); (A.M.B.-O.); (J.E.D.-N.); (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.); (E.A.R.-N.)
| |
Collapse
|
2
|
Zou XJ, Zhang YH, Zhang C, Yuan XF, Yun MJ, Xie LJ, Liu XQ, Kang WF, Chen W, Liu YX, Wang AY, Lu ZJ, Yu HZ. Diaphorina citri E3 ubiquitin ligase RNF115 inhibits CLas bacterial proliferation by targeting to the host histone H1. INSECT SCIENCE 2025. [PMID: 40079889 DOI: 10.1111/1744-7917.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 03/15/2025]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri, serves as the primary vector for Candidatus Liberibacter asiaticus (CLas), the pathogen responsible for citrus Huanglongbing (HLB). D. citri modulates the expression of its key proteins in response to CLas infection. Previous research has revealed that CLas infection significantly alters the expression levels of E3 ubiquitin ligases in D. citri; however, the specific functions of these E3 ligases remain largely uncharacterized. In this study, a total of 11 E3 ubiquitin ligases were identified from the proteomics database of D. citri, among which E3 ubiquitin ligase RNF115 was significantly upregulated following CLas infection. RING finger protein 115 (RNF115) consists of 156 amino acids and contains a RING finger domain at its N-terminus. Silencing RNF115 via RNA interference (RNAi) and injecting the inhibitor disulfiram, which targets RNF115, significantly increased CLas bacterial content in D. citri. In contrast, injection of recombinant RNF115 protein markedly inhibited CLas bacterial proliferation. Furthermore, interaction between RNF115 and D. citri histone H1 was confirmed using yeast 2-hybrid assay, pull-down experiments and molecular docking analysis. Knockdown of histone H1 via RNAi significantly reduced CLas bacterial content, whereas injection of recombinant histone H1 protein led to an increase in CLas content within D. citri. These findings suggest that CLas infection may induce an upregulation of RNF115 expression in D. citri, leading to subsequent interactions with histone H1 that facilitate the ubiquitination of histone H1, ultimately resulting in reduced expression levels and inhibiting CLas proliferation within D. citri.
Collapse
Affiliation(s)
- Xiao-Jin Zou
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Yi-Hong Zhang
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Can Zhang
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Xiao-Fang Yuan
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Meng-Jun Yun
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Lian-Jie Xie
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Xiao-Qiang Liu
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Wen-Feng Kang
- Xinfeng County Agriculture and Rural Bureau, Ganzhou, Jiangxi Province, China
| | - Wei Chen
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Ying-Xue Liu
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Ai-Yun Wang
- Fruit Bureau of Xinfeng County, Ganzhou, Jiangxi Province, China
| | - Zhan-Jun Lu
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Hai-Zhong Yu
- School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
3
|
Alves MN, Cifuentes-Arenas J, Niñoles R, Raiol-Junior LL, Carvalho E, Quirós-Rodriguez I, Ferro JA, Licciardello C, Alquezar B, Carmona L, Forment J, Bombarely A, Wulff NA, Peña L, Gadea J. Transcriptomic analysis of early stages of ' Candidatus Liberibacter asiaticus' infection in susceptible and resistant species after inoculation by Diaphorina citri feeding on young shoots. FRONTIERS IN PLANT SCIENCE 2025; 16:1502953. [PMID: 40051881 PMCID: PMC11882604 DOI: 10.3389/fpls.2025.1502953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Huanglongbing (HLB) is a devastating disease of citrus plants caused by the non-culturable phloem-inhabiting bacterium Candidatus Liberibacter ssp., being Ca. Liberibacter asiaticus (CLas) the most aggressive species. CLas is vectored by the psyllid Diaphorina citri and introduced into sieve cells, establishing a successful infection in all Citrus species. Partial or complete resistance has been documented in the distant relatives Murraya paniculata and Bergera koenigii, respectively, providing excellent systems to investigate the molecular basis of HLB-resistance. It has been shown previously that the first weeks after bacterial release into the phloem are critical for the establishment of the bacterium. In this study, a thorough transcriptomic analysis of young flushes exposed to CLas-positive and negative psyllids has been performed in Citrus × sinensis, as well as in the aforementioned resistant species, along the first eight weeks after exposure. Our results indicate that the resistant species do not deploy a classical immunity response upon CLas recognition. Instead, transcriptome changes are scarce and only a few genes are differentially expressed when flushes exposed to CLas-positive and negative psyllid are compared. Functional analysis suggests that primary metabolism and other basic cellular functions could be rewired in the resistant species to limit infection. Transcriptomes of young flushes of the three species are very different, supporting the existence of distinct biochemical niches for the bacterium. These findings suggest that both intrinsic metabolic inadequacies to CLas survival, as well as inducible reprogramming of physiological functions upon CLas recognition, could orchestrate together restriction of bacterial multiplication in these resistant hosts.
Collapse
Affiliation(s)
- Mônica N. Alves
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | | | - Regina Niñoles
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Laudecir Lemos Raiol-Junior
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
| | - Everton Carvalho
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
- Helix Sementes e Biotecnologia, Patos de Minas, MG, Brazil
| | - Isabel Quirós-Rodriguez
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Jesus A. Ferro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal, SP, Brazil
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, Acireale, Italy
| | - Berta Alquezar
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Javier Forment
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Aureliano Bombarely
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - Nelson A. Wulff
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| | - José Gadea
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV-CSIC), Valencia, Spain
| |
Collapse
|
4
|
Huang G, Chang X, Hu Y, Li F, Wang N, Li R. SDE19, a SEC-dependent effector from 'Candidatus Liberibacter asiaticus' suppresses plant immunity and targets Citrus sinensis Sec12 to interfere with vesicle trafficking. PLoS Pathog 2024; 20:e1012542. [PMID: 39255299 DOI: 10.1371/journal.ppat.1012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Citrus huanglongbing (HLB), which is caused by the phloem-colonizing bacteria Candidatus Liberibacter asiaticus (CLas), poses a significant threat to citrus production worldwide. The pathogenicity mechanism of HLB remains poorly understood. SEC-dependent effectors (SDEs) have been suggested to play critical roles in the interaction between citrus and CLas. Here, we explored the function of CLIBASIA_05320 (SDE19), a core SDE from CLas, and its interaction with its host target. Our data revealed that SDE19 is expressed at higher level during infection of citrus than that during infection of the Asian citrus psyllid. Subcellular localization assays showed that SDE19 is localized in the nucleus and cytoplasm and is capable of moving from cell to cell in Nicotiana benthamiana. To investigate whether SDE19 facilitates pathogen infection, we generated transgenic Arabidopsis thaliana and citrus plants overexpressing SDE19. Transgenic A. thaliana and citrus plants were more susceptible to Pseudomonas syringae pv. tomato (Pst) and Xanthomonas citri subsp. citri (Xcc), respectively. In addition, RNA-seq analysis demonstrated that overexpression of SDE19 resulted in a reprogramming of expression of genes related to biotic stimulus responses. SDE19 interacts with Citrus sinensis Sec12, a guanine nucleotide exchange factor responsible for the assembly of plant COPII (coat protein II)-coated vesicles, which mediate vesicle trafficking from the ER to the Golgi. SDE19 colocalizes with Sec12 in the ER by binding to its N-terminal catalytic region, affecting the stability of Sec12 through the 26S proteasome. This interaction hinders the secretion of apoplastic defense-related proteins such as PR1, P69B, GmGIP1, and RCR3. Furthermore, the secretion of PR1 and callose deposition is decreased in SDE19-transgenic A. thaliana. Taken together, SDE19 is a novel virulent SDE secreted by CLas that interacts with Sec12 to disrupt vesicle trafficking, inhibit defense-related proteins secretion, and promote bacterial infection. This study sheds light on how CLas manipulates the host vesicle trafficking pathway to suppress the secretion of defense-related proteins and interfere with plant immunity.
Collapse
Affiliation(s)
- Guiyan Huang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Xiaopeng Chang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ruimin Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
5
|
Limayem A, Martin EM, Shankar S. Study on the citrus greening disease: Current challenges and novel therapies. Microb Pathog 2024; 192:106688. [PMID: 38750772 DOI: 10.1016/j.micpath.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The unprecedented worldwide spread of the Citrus greening disorder, called Huanglongbing (HLB), has urged researchers for rapid interventions. HLB poses a considerable threat to global citriculture owing to its devastating impact on citrus species. This disease is caused by Candidatus Liberibacter species (CLs), primarily transferred through psyllid insects, such as Trioza erytreae and Diaphorina citri. It results in phloem malfunction, root decline, and altered plant source-sink relationships, leading to a deficient plant with minimal yield before it dies. Thus, many various techniques have been employed to eliminate HLB and control vector populations through the application of insecticides and antimicrobials. The latter have evidenced short-term efficiency. While nucleic acid-based analyses and symptom-based identification of the disease have been used for detection, they suffer from limitations such as false negatives, complex sample preparation, and high costs. To address these challenges, secreted protein-based biomarkers offer a promising solution for accurate, rapid, and cost-effective disease detection. This paper presents an overview of HLB symptoms in citrus plants, including leaf and fruit symptoms, as well as whole tree symptoms. The differentiation between HLB symptoms and those of nutrient deficiencies is discussed, emphasizing the importance of precise identification for effective disease management. The elusive nature of CLs and the challenges in culturing them in axenic cultures have hindered the understanding of their pathogenic mechanisms. However, genome sequencing has provided insights into CLs strains' metabolic traits and potential virulence factors. Efforts to identify potential host target genes for resistance are discussed, and a high-throughput antimicrobial testing method using Citrus hairy roots is introduced as a promising tool for rapid assessment of potential treatments. This review summarizes current challenges and novel therapies for HLB disease. It highlights the urgency of developing accurate and efficient detection methods and identifying the complex relations between CLs and their host plants. Transgenic citrus in conjunction with secreted protein-based biomarkers and innovative testing methodologies could revolutionize HLB management strategies toward achieving a sustainable citrus cultivation. It offers more reliable and practical solutions to combat this devastating disease and safeguard the global citriculture industry.
Collapse
Affiliation(s)
- Alya Limayem
- Department of Biology, College of Arts & Sciences, University of North Florida, Jacksonville, FL, USA
| | - Elizabeth M Martin
- Food Science, Department of Biological and Agricultural Engineering, University of Arkansas, AR, USA
| | - Shiv Shankar
- Research Laboratories in Science, Applied to Food, INRS-Armand-Frappier Health and Biotechnology Centre, Laval, Quebec, Canada; School of Food Science and Environmental Health, Grangegorman, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Li Y, Ma R, Gao C, Li Z, Zheng Y, Fang F, Wang C, Li G, Du X, Xu C, Xu M, Liu R, Deng X, Zheng Z. Integrated bacterial transcriptome and host metabolome analysis reveals insights into " Candidatus Liberibacter asiaticus" population dynamics in the fruit pith of three citrus cultivars with different tolerance. Microbiol Spectr 2024; 12:e0405223. [PMID: 38440971 PMCID: PMC10986616 DOI: 10.1128/spectrum.04052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.
Collapse
Affiliation(s)
- Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ruifeng Ma
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Chenying Gao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guohua Li
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Xiaozhen Du
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Changbao Xu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Meirong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Rui Liu
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
8
|
Zhong Z, Chen Y, Liu J, Wang W, Zhou F, Hu L, Zhang J, Chen T, Xiang J, Li T, Wang Y, Zhang S, Ge S, Zhang J, Xia N. Roots applicable, high sensitivity and specificity assay for the detection of Candidatus Liberibacter asiaticus in citrus roots and fruits. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:27-34. [PMID: 39464864 PMCID: PMC11500590 DOI: 10.5511/plantbiotechnology.23.1129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 10/29/2024]
Abstract
Candidatus Liberibacter asiaticus (CLas), a phloem-limited Gram-negative bacterium, is associated with citrus huanglongbing (HLB), which is one of the most destructive diseases currently threatening citrus production worldwide. No effective treatment for HLB is currently available. Effective prevention and control in the initial stage can block the spread and disease progression of HLB. Herein, we developed a co-detection assay for the 16S rDNA and 16S rRNA of CLas, the sensitivity of the co-detection assay was significantly increased over that of the single CLas DNA detection system. Beyond this, we found that the co-detection assay was a better fit to the root samples with higher population abundance than the previous reported detection system because it has a better specificity. Moreover, we found that the contents of 16S rRNA of CLas in citrus roots and fruits are significantly higher than that in leaves, which suggests that the time of HLB diagnosis is probably earlier by using these special tissues and the replication of CLas may become more active in these tissues, further suggested that the significance of study the mechanism of infection, prevention and control of HLB staring from these tissues.
Collapse
Affiliation(s)
- Zecheng Zhong
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinhua Liu
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Wei Wang
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Feng Zhou
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Liu Hu
- Zhejiang Yang Sheng Tang Institute of Natural Medicine Co., Ltd., Hangzhou 310024, China
| | - Jinlian Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Tingsu Chen
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiyu Xiang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shiyin Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Zheng D, Armstrong CM, Yao W, Wu B, Luo W, Powell C, Hunter W, Luo F, Gabriel D, Duan Y. Towards the completion of Koch's postulates for the citrus huanglongbing bacterium, Candidatus Liberibacter asiaticus. HORTICULTURE RESEARCH 2024; 11:uhae011. [PMID: 39896933 PMCID: PMC11783299 DOI: 10.1093/hr/uhae011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/01/2024] [Indexed: 02/04/2025]
Abstract
Candidatus Liberibacter asiaticus (Las) is one of the causal agents of huanglongbing (HLB), the most devastating disease of citrus worldwide. Due to the intracellular lifestyle and significant genome reduction, culturing Las in vitro has proven to be extremely challenging. In this study, we optimized growth conditions and developed a semi-selective medium based on the results of nutritional and antibiotic screening assays. Using these optimized conditions, we were able to grow Las in the LG liquid medium with ca.100- to 1000-fold increase, which peaked after 4 to 6 weeks and were estimated to contain 106 to 107 cells/ml. The cultured Las bacteria remained in a dynamic state of growth for over 20 months and displayed limited growth in subcultures. The survival and growth of Las was confirmed by fluorescence in situ hybridization with Las-specific probes and expression of its metabolic genes. Growth of Las in the optimized medium relied on the presence of a helper bacterium, Stenotrophomonas maltophilia FLMAT-1 that is multi-drug resistant and dominant in the Las co-culture system. To recapitulate the disease, the co-cultured Las was inoculated back to citrus seedlings via psyllid feeding. Although the Las-positive rate of the fed psyllids and inoculated plants were relatively low, this is the first demonstration of partial fulfillment of Koch's postulates with significant growth of Las in vitro and a successful inoculation of cultured Las back to psyllids and citrus plants that resulted in HLB symptoms. These results provide new insights into Las growth in vitro and a system for improvement towards axenic culture and anti-Las compound screening.
Collapse
Affiliation(s)
- Desen Zheng
- USDA-ARS-USHRL, Fort Pierce, FL 34945, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Cheryl M Armstrong
- USDA-ARS-USHRL, Fort Pierce, FL 34945, USA
- USDA-ARS-ERRC, Wyndmoor, PA 19038, USA
| | - Wei Yao
- IRREC, University of Florida / IFAS, For Pierce, FL 34945, USA
| | - Bo Wu
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29634, USA
| | - Weiqi Luo
- USDA-ARS-USHRL, Fort Pierce, FL 34945, USA
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27695, USA
| | - Charles Powell
- IRREC, University of Florida / IFAS, For Pierce, FL 34945, USA
| | | | - Feng Luo
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29634, USA
| | - Dean Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
10
|
Wenninger EJ, Rashed A. Biology, Ecology, and Management of the Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and Zebra Chip Disease in Potato. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:139-157. [PMID: 37616600 DOI: 10.1146/annurev-ento-020123-014734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), transmits the pathogen "Candidatus liberibacter solanacearum" (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.
Collapse
Affiliation(s)
- Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research & Extension Center, University of Idaho, Kimberly, Idaho, USA;
| | - Arash Rashed
- Department of Entomology, Southern Piedmont Agricultural Research & Extension Center, Virginia Tech, Blackstone, Virginia, USA;
| |
Collapse
|
11
|
Zhang Q, Xia T, Wang AY, Liu Y, Li NY, Yi L, Lu ZJ, Yu HZ. Alternative splicing of chitin deacetylase 2 regulates chitin and fatty acid metabolism in Asian citrus psyllid, Diaphorina citri. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22050. [PMID: 37622383 DOI: 10.1002/arch.22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Chitin plays an important role in the development and molting of insects. The key genes involved in chitin metabolism were considered promising targets for pest control. In this study, two splice variants of chitin deacetylase 2 (CDA2) from Diaphorina citri were identified, including DcCDA2a and DcCDA2b. Bioinformatics analysis revealed that DcCDA2a and DcCDA2b encoded 550 and 544 amino acid residues with a signal peptide, respectively. Spatio-temporal expression patterns analysis showed that DcCDA2a and DcCDA2b were highly expressed in D. citri wing and nymph stages. Moreover, DcCDA2a and DcCDA2b expression levels were induced by 20-hydroxyecdysone (20E). Silencing DcCDA2a by RNA interference (RNAi) significantly disrupted the D. citri molting and increased D. citri mortality and malformation rate, whereas inhibition of DcCDA2b resulted in a semimolting phenotype. Furthermore, silencing DcCDA2a and DcCDA2b significantly suppressed D. citri chitin and fatty acid metabolism. Our results indicated that DcCDA2 might play crucial roles in regulating D. citri chitin and fatty acid metabolism, and it could be used as a potential target for controlling D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ai-Yun Wang
- Department of Citrus Pest Control, Fruit Bureau of Xinfeng County, Ganzhou, China
| | - Yan Liu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ning-Yan Li
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Long Yi
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Zhan-Jun Lu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Hai-Zhong Yu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| |
Collapse
|
12
|
Carter EW, Peraza OG, Wang N. The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus. Nat Commun 2023; 14:7838. [PMID: 38030598 PMCID: PMC10687234 DOI: 10.1038/s41467-023-43648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.
Collapse
Affiliation(s)
- Erica W Carter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Orlene Guerra Peraza
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, US.
| |
Collapse
|
13
|
Kennedy JP, Wood K, Pitino M, Mandadi K, Igwe DO, Shatters RG, Widmer TL, Niedz R, Heck M. A Perspective on Current Therapeutic Molecule Screening Methods Against ' Candidatus Liberibacter asiaticus', the Presumed Causative Agent of Citrus Huanglongbing. PHYTOPATHOLOGY 2023; 113:1171-1179. [PMID: 36750555 DOI: 10.1094/phyto-12-22-0455-per] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.
Collapse
Affiliation(s)
- John Paul Kennedy
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | | | | | - Kranthi Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
- Texas A&M AgriLife Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX 77843
| | - David O Igwe
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Robert G Shatters
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Timothy L Widmer
- U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Randall Niedz
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| |
Collapse
|
14
|
Batarseh TN, Batarseh SN, Morales-Cruz A, Gaut BS. Comparative genomics of the Liberibacter genus reveals widespread diversity in genomic content and positive selection history. Front Microbiol 2023; 14:1206094. [PMID: 37434713 PMCID: PMC10330825 DOI: 10.3389/fmicb.2023.1206094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
'Candidatus Liberibacter' is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set of Liberibacter genome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the 'Ca. Liberibacter solanacearum' species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in the Liberibacter genus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the 'Ca. L. capsica' species based on high values of dN.
Collapse
Affiliation(s)
| | - Sarah N. Batarseh
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Abraham Morales-Cruz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Luo X, Zhang Y, Liu X, Zou Y, Song H, Wang S, Chen J. Screening Method and Antibacterial Activity of 1,3,4-Oxadiazole Sulfone Compounds against Citrus Huanglongbing. Int J Mol Sci 2023; 24:10515. [PMID: 37445692 DOI: 10.3390/ijms241310515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Citrus Huanglongbing (HLB) is one of the most destructive diseases in the citrus industry. At present, Candidatus Liberibacter asiaticus (CLas) cannot be cultured in vitro, and there is a lack of rapid methods to test antibacterial activity, which greatly hinders the discovery of new antibacterial agents against HLB. To establish a rapid screening method for antibacterial agents against HLB with simple operation, a short cycle, and a large number of tests, the CLas contents in leaves from different citrus branches, different leaves from the same citrus branch, and two halves of the same citrus leaf were detected. Compared with the leaves on different branches and different leaves on the same branch, the difference in CLas content of the left and right halves of the same leaf was small; the difference was basically between 0.7 and 1.3. A rapid and efficient method for primary screening agents against HLB termed the "half-leaf method" was established through our long-term optimization and improvement. To verify the stability and reliability of the activity data measured using this method, 6-chloropurine riboside, which is highly soluble in water, was used as the test agent, and its antibacterial activity against HLB was tested 45 times. The results of the antibacterial activity test showed little difference in the mean values of each data group, indicating that this method could be used as a rapid method for screening agents against HLB. We used this method to test the antibacterial activity of compounds synthesized by our research group against HLB and found that some of the compounds showed good activity.
Collapse
Affiliation(s)
- Xin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Hosseinzadeh S, Heck M. Variations on a theme: factors regulating interaction between Diaphorina citri and "Candidatus Liberibacter asiaticus" vector and pathogen of citrus huanglongbing. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101025. [PMID: 36990150 DOI: 10.1016/j.cois.2023.101025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Diaphorina citri, the Asian citrus psyllid, is a vector of Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB), the world's most serious disease of citrus. Owing to the relevancy and urgency of HLB research, the study of transmission biology in the HLB pathosystem has been a significant area of research. The focus of this article is to summarize and synthesize recent advancements in transmission biology between D. citri and CLas to create an updated view of the research landscape and to identify avenues for future research. Variability appears to play an important role in the transmission of CLas by D. citri. We advocate that it is important to understand the genetic basis for and environmental factors contributing to CLas transmission and how that variation may be exploited to develop and improve HLB control tactics.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Heck
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Higgins SA, Mann M, Heck M. Strain Tracking of ' Candidatus Liberibacter asiaticus', the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids. PHYTOPATHOLOGY 2022; 112:2273-2287. [PMID: 35678589 DOI: 10.1094/phyto-02-22-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri, is an invasive insect and a vector of 'Candidatus Liberibacter asiaticus' (CLas), a bacterium whose growth in Citrus species results in huanglongbing (HLB), also known as citrus greening disease. Methods to enrich and sequence CLas from D. citri often rely on biased genome amplification and nevertheless contain significant quantities of host DNA. To overcome these hurdles, we developed a simple pretreatment DNase and filtration (PDF) protocol to remove host DNA and directly sequence CLas and the complete, primarily uncultivable microbiome from D. citri adults. The PDF protocol yielded CLas abundances upward of 60% and facilitated direct measurement of CLas and endosymbiont replication rates in psyllids. The PDF protocol confirmed our lab strains derived from a progenitor Florida CLas strain and accumulated 156 genetic variants, underscoring the utility of this method for bacterial strain tracking. CLas genetic polymorphisms arising in lab-reared psyllid populations included prophage-encoding regions with key functions in CLas pathogenesis, putative antibiotic resistance loci, and a single secreted effector. These variants suggest that laboratory propagation of CLas could result in different phenotypic trajectories among laboratories and could confound CLas physiology or therapeutic design and evaluation if these differences remain undocumented. Finally, we obtained genetic signatures affiliated with Citrus nuclear and organellar genomes, entomopathogenic fungal mitochondria, and commensal bacteria from laboratory-reared and field-collected D. citri adults. Hence, the PDF protocol can directly inform agricultural management strategies related to bacterial strain tracking, insect microbiome surveillance, and antibiotic resistance screening.
Collapse
Affiliation(s)
- Steven A Higgins
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, NY 14853
| | - Marina Mann
- Plant Pathology and Plant Microbe Biology Department, Cornell University, Ithaca, NY 14853
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, NY 14853
- Plant Pathology and Plant Microbe Biology Department, Cornell University, Ithaca, NY 14853
| |
Collapse
|
18
|
Abstract
Although the phloem is a highly specialized tissue, certain pathogens, including phytoplasmas, spiroplasmas, and viruses, have evolved to access and live in this sequestered and protected environment, causing substantial economic harm. In particular, Candidatus Liberibacter spp. are devastating citrus in many parts of the world. Given that most phloem pathogens are vectored, they are not exposed to applied chemicals and are therefore difficult to control. Furthermore, pathogens use the phloem network to escape mounted defenses. Our review summarizes the current knowledge of phloem anatomy, physiology, and biochemistry relevant to phloem/pathogen interactions. We focus on aspects of anatomy specific to pathogen movement, including sieve plate structure and phloem-specific proteins. Phloem sampling techniques are discussed. Finally, pathogens that cause particular harm to the phloem of crop species are considered in detail.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Plant Gene Expression Center, USDA-ARS, Albany, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
19
|
Silva Gonçalves O, Bonandi Barreiros R, Martins Tupy S, Ferreira Santana M. A reverse-ecology framework to uncover the potential metabolic interplay among 'Candidatus Liberibacter' species, Citrus hosts and psyllid vector. Gene X 2022; 837:146679. [PMID: 35752379 DOI: 10.1016/j.gene.2022.146679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
'Candidatus Liberibacter' species have developed a dependency on essential nutrients and metabolites from the host cell, as a result of substantial genome reduction. Still, it is difficult to state which nutrients they acquire and whether or not they are metabolically reliant. We used a reverse-ecology model to investigate the potential metabolic interactions of 'Ca Liberibacter' species, Citrus, and the psyllid Diaphorina citri in the huanglongbing disease pyramid. Our findings show that hosts (citrus and psyllid) tend to support the nutritional needs of 'Ca. Liberibacter' species, implying that the pathogen's metabolism has become tightly linked to hosts, which may reflect in the parasite lifestyle of this important genus.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Ralph Bonandi Barreiros
- Departmento de Fitotecnia, Laboratório de Biotecnologia de Plantas Horticulas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Brazil
| | - Sumaya Martins Tupy
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Basu S, Huynh L, Zhang S, Rabara R, Nguyen H, Velásquez Guzmán J, Hao G, Miles G, Shi Q, Stover E, Gupta G. Two Liberibacter Proteins Combine to Suppress Critical Innate Immune Defenses in Citrus. FRONTIERS IN PLANT SCIENCE 2022; 13:869178. [PMID: 35586217 PMCID: PMC9108871 DOI: 10.3389/fpls.2022.869178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
We adopted a systems-based approach to determine the role of two Candidatus Liberibacter asiaticus (CLas) proteins, LasP 235 and Effector 3, in Huanglongbing (HLB) pathogenesis. While a published work suggests the involvement of these CLas proteins HLB pathogenesis, the exact structure-based mechanism of their action has not been elucidated. We conducted the following experiments to determine the structure-based mechanisms of action. First, we immunoprecipitated the interacting citrus protein partners of LasP 235 and Effector 3 from the healthy and CLas-infected Hamlin extracts and identified them by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Second, we performed a split green fluorescent protein (GFP) assay in tobacco to validate that the interactions observed in vitro are also retained in planta. The notable in planta citrus targets of LasP 235 and Effector 3 include citrus innate immune proteins. Third, in vitro and in planta studies were performed to show that LasP 235 and Effector 3 interact with and inhibit the functions of multiple citrus proteins belonging to the innate immune pathways. These inhibitory interactions led to a high level of reactive oxygen species, blocking of bactericidal lipid transfer protein (LTP), and induction of premature programed cell death (PCD), all of which are beneficial to CLas lifecycle and HLB pathogenesis. Finally, we performed molecular dynamics simulations to visualize the interactions of LasP 235 and Effector 3, respectively, with LTP and Kunitz protease inhibitor. This led to the design of an LTP mimic, which sequestered and blocked LasP 235 and rescued the bactericidal activity of LTP thereby proving that LasP 235 , indeed, participates in HLB pathogenesis.
Collapse
Affiliation(s)
- Supratim Basu
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Loan Huynh
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Shujian Zhang
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Roel Rabara
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Hau Nguyen
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | | | - Guixia Hao
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Godfrey Miles
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Qingchun Shi
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Ed Stover
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Goutam Gupta
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| |
Collapse
|
21
|
Cai L, Jain M, Munoz-Bodnar A, Huguet-Tapia JC, Gabriel DW. A synthetic 'essentialome' for axenic culturing of 'Candidatus Liberibacter asiaticus'. BMC Res Notes 2022; 15:125. [PMID: 35365194 PMCID: PMC8973516 DOI: 10.1186/s13104-022-05986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE 'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus 'greening' disease. All attempts to achieve axenic growth and complete Koch's postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic 'Ca. Liberibacter' spp. deficient in multiple key biosynthetic, metabolic and structural pathways that are highly unlikely to be rescued in vitro by media supplementation alone. By contrast, Liberibacter crescens (Lcr) is axenically cultured and its genome is both syntenic and highly similar to CLas. Our objective is to achieve replicative axenic growth of CLas via addition of missing culturability-related Lcr genes. RESULTS Bioinformatic analyses identified 405 unique ORFs in Lcr but missing (or truncated) in all 24 sequenced CLas strains. Site-directed mutagenesis confirmed and extended published EZ-Tn5 mutagenesis data, allowing elimination of 310 of these 405 genes as nonessential, leaving 95 experimentally validated Lcr genes as essential for CLas growth in axenic culture. Experimental conditions for conjugation of large GFP-expressing plasmids from Escherichia coli to Lcr were successfully established for the first time, providing a practical method for transfer of large groups of 'essential' Lcr genes to CLas.
Collapse
Affiliation(s)
- Lulu Cai
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | | | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
22
|
Chen Q, Li Z, Liu S, Chi Y, Jia D, Wei T. Infection and distribution of Candidatus Liberibacter asiaticus in citrus plants and psyllid vectors at the cellular level. Microb Biotechnol 2022; 15:1221-1234. [PMID: 34469634 PMCID: PMC8966020 DOI: 10.1111/1751-7915.13914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas-vector interaction.
Collapse
Affiliation(s)
- Qian Chen
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Zhiqiang Li
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Shulin Liu
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Yunhua Chi
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Dongsheng Jia
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Taiyun Wei
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| |
Collapse
|
23
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
24
|
Jain M, Cai L, Black I, Azadi P, Carlson RW, Jones KM, Gabriel DW. ' Candidatus Liberibacter asiaticus'-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:257-273. [PMID: 34931906 DOI: 10.1094/mpmi-09-21-0230-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mukesh Jain
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Lulu Cai
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Dean W Gabriel
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
25
|
Merfa MV, Fischer ER, de Souza E Silva M, Francisco CS, Della Coletta-Filho H, de Souza AA. Probing the Application of OmpA-Derived Peptides to Disrupt the Acquisition of ' Candidatus Liberibacter asiaticus' by Diaphorina citri. PHYTOPATHOLOGY 2022; 112:163-172. [PMID: 34818904 DOI: 10.1094/phyto-06-21-0252-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria 'Candidatus Liberibacter asiaticus' (CLas) and 'Candidatus Liberibacter americanus' (CLam) are associated with HLB in Brazil but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid [ACP]) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel, more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison with CLas, suggesting a possible role in host interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides, aiming to evaluate acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5, and Pep6 in artificial diet significantly reduced the acquisition of CLas, whereas increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas, and sweet orange plants stably absorbed and maintained this peptide for as long as 3 months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.
Collapse
Affiliation(s)
- Marcus Vinícius Merfa
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Eduarda Regina Fischer
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza E Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | | | | | - Alessandra Alves de Souza
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| |
Collapse
|
26
|
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ' Candidatus Liberibacter asiaticus' in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. PHYTOPATHOLOGY 2022; 112:131-144. [PMID: 34340531 DOI: 10.1094/phyto-06-21-0228-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phloem-restricted, insect-transmitted bacterium 'Candidatus Liberibacter asiaticus' (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.
Collapse
Affiliation(s)
- Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
27
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
28
|
Tan Y, Wang C, Schneider T, Li H, de Souza RF, Tang X, Swisher Grimm KD, Hsieh TF, Wang X, Li X, Zhang D. Comparative Phylogenomic Analysis Reveals Evolutionary Genomic Changes and Novel Toxin Families in Endophytic Liberibacter Pathogens. Microbiol Spectr 2021; 9:e0050921. [PMID: 34523996 PMCID: PMC8557891 DOI: 10.1128/spectrum.00509-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
Liberibacter pathogens are the causative agents of several severe crop diseases worldwide, including citrus Huanglongbing and potato zebra chip. These bacteria are endophytic and nonculturable, which makes experimental approaches challenging and highlights the need for bioinformatic analysis in advancing our understanding about Liberibacter pathogenesis. Here, we performed an in-depth comparative phylogenomic analysis of the Liberibacter pathogens and their free-living, nonpathogenic, ancestral species, aiming to identify major genomic changes and determinants associated with their evolutionary transitions in living habitats and pathogenicity. Using gene neighborhood analysis and phylogenetic classification, we systematically uncovered, annotated, and classified all prophage loci into four types, including one previously unrecognized group. We showed that these prophages originated through independent gene transfers at different evolutionary stages of Liberibacter and only the SC-type prophage was associated with the emergence of the pathogens. Using ortholog clustering, we vigorously identified two additional sets of genomic genes, which were either lost or gained in the ancestor of the pathogens. Consistent with the habitat change, the lost genes were enriched for biosynthesis of cellular building blocks. Importantly, among the gained genes, we uncovered several previously unrecognized toxins, including new toxins homologous to the EspG/VirA effectors, a YdjM phospholipase toxin, and a secreted endonuclease/exonuclease/phosphatase (EEP) protein. Our results substantially extend the knowledge of the evolutionary events and potential determinants leading to the emergence of endophytic, pathogenic Liberibacter species, which will facilitate the design of functional experiments and the development of new methods for detection and blockage of these pathogens. IMPORTANCELiberibacter pathogens are associated with several severe crop diseases, including citrus Huanglongbing, the most destructive disease to the citrus industry. Currently, no effective cure or treatments are available, and no resistant citrus variety has been found. The fact that these obligate endophytic pathogens are not culturable has made it extremely challenging to experimentally uncover the genes/proteins important to Liberibacter pathogenesis. Further, earlier bioinformatics studies failed to identify key genomic determinants, such as toxins and effector proteins, that underlie the pathogenicity of the bacteria. In this study, an in-depth comparative genomic analysis of Liberibacter pathogens along with their ancestral nonpathogenic species identified the prophage loci and several novel toxins that are evolutionarily associated with the emergence of the pathogens. These results shed new light on the disease mechanism of Liberibacter pathogens and will facilitate the development of new detection and blockage methods targeting the toxins.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Cindy Wang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Theresa Schneider
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kylie D. Swisher Grimm
- United States Department of Agriculture—Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Prosser, Washington, USA
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
- Bioinformatics and Computational Biology Program, College of Arts & Sciences, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Ferreira JRM, Sierra-Garcia IN, Guieu S, Silva AMS, da Silva RN, Cunha Â. Photodynamic control of citrus crop diseases. World J Microbiol Biotechnol 2021; 37:199. [PMID: 34664127 DOI: 10.1007/s11274-021-03171-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
Citrus are economically important fruit crops to which infectious diseases like citrus canker caused by Xanthomonas citri subs. citri, citrus variegated chlorosis caused by Xylella fastidiosa, "huanglongbing" associated with the presence of Candidatus liberibacter species, anthracnose caused by Colletotrichum gloeosporioides and citrus black spot caused by Phyllosticta citricarpa, impose significant losses. Control measures involve chemical treatment of orchards but often, eradication of infected plants is unavoidable. To circumvent the environmental impacts of pesticides and the socio-economic impacts of eradication, innovative antimicrobial approaches like photodynamic inactivation are being tested. There is evidence of the susceptibility of Xanthomonas citri subs. citri and C. gloeosporioides to photodynamic damage. However, the realistic assessment of perspectives for widespread application of photodynamic inactivation in the control of citrus diseases, necessarily implies that other microorganisms are also considered. This review intends to provide a critical summary of the current state of research on photodynamic inactivation of citrus pathogens and to identify some of the current limitations to the widespread use of photodynamic treatments in citrus crops.
Collapse
Affiliation(s)
- Joana R M Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel N Sierra-Garcia
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CICECO Aveiro-Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Raquel Nunes da Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,IBiMED, Department of Medical Sciences, University of Aveiro, Campus do Crasto, 3810-193, Aveiro, Portugal
| | - Ângela Cunha
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
30
|
Black IM, Heiss C, Jain M, Muszyński A, Carlson RW, Gabriel DW, Azadi P. Structure of Lipopolysaccharide from Liberibacter crescens Is Low Molecular Weight and Offers Insight into Candidatus Liberibacter Biology. Int J Mol Sci 2021; 22:11240. [PMID: 34681907 PMCID: PMC8537588 DOI: 10.3390/ijms222011240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Huanglongbing (HLB) disease, also known as citrus greening disease, was first reported in the US in 2005. Since then, the disease has decimated the citrus industry in Florida, resulting in billions of dollars in crop losses and the destruction of thousands of acres of citrus groves. The causative agent of citrus greening disease is the phloem limited pathogen Candidatus Liberibacter asiaticus. As it has not been cultured, very little is known about the structural biology of the organism. Liberibacter are part of the Rhizobiaceae family, which includes nitrogen-fixing symbionts of legumes as well as the Agrobacterium plant pathogens. To better understand the Liberibacter genus, a closely related culturable bacterium (Liberibacter crescens or Lcr) has attracted attention as a model organism for structural and functional genomics of Liberibacters. Given that the structure of lipopolysaccharides (LPS) from Gram-negative bacteria plays a crucial role in mediating host-pathogen interactions, we sought to characterize the LPS from Lcr. We found that the major lipid A component of the LPS consisted of a pentaacylated molecule with a β-6-GlcN disaccharide backbone lacking phosphate. The polysaccharide portion of the LPS was unusual compared to previously described members of the Rhizobiaceae family in that it contained ribofuranosyl residues. The LPS structure presented here allows us to extrapolate known LPS structure/function relationships to members of the Liberibacter genus which cannot yet be cultured. It also offers insights into the biology of the organism and how they manage to effectively attack citrus trees.
Collapse
Affiliation(s)
- Ian M. Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (I.M.B.); (C.H.); (A.M.); (R.W.C.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (I.M.B.); (C.H.); (A.M.); (R.W.C.)
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (M.J.); (D.W.G.)
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (I.M.B.); (C.H.); (A.M.); (R.W.C.)
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (I.M.B.); (C.H.); (A.M.); (R.W.C.)
| | - Dean W. Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (M.J.); (D.W.G.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (I.M.B.); (C.H.); (A.M.); (R.W.C.)
| |
Collapse
|
31
|
Vasconcelos FNC, Li J, Pang Z, Vincent C, Wang N. The Total Population Size of ' Candidatus Liberibacter asiaticus' Inside the Phloem of Citrus Trees and the Corresponding Metabolic Burden Related to Huanglongbing Disease Development. PHYTOPATHOLOGY 2021; 111:1122-1128. [PMID: 33090080 DOI: 10.1094/phyto-09-20-0388-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to citrus cells in local tissues have not been addressed previously. The total CLas population size for 2.5-year-old 'Valencia' sweet orange on 'Kuharske' citrange rootstock trees was quantified using quantitative PCR to be approximately 1.74 × 109 cells/tree, whereas 7- and 20-year-old sweet orange trees were estimated to be 4.3 × 1010 cells/tree, and 6.0 × 1010 cells/tree, respectively. The majority of CLas cells were distributed in leaf tissues (55.58%), followed by those in branch (36.78%), feeder root (4.75%), trunk (2.39%), and structural root (0.51%) tissues. The ratios of citrus cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples were within approximately 39 to 79, 44 to 124, 153 to 1,355, 191 to 1,054, and 561 to 3,760, respectively, representing the metabolic burden of CLas in different organs. It was estimated that the ratios of phloem cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples are approximately 0.39 to 0.79, 0.44 to 1.24, 1.53 to 13.55, 1.91 to 10.54, and 5.61 to 37.60, respectively. Approximately 0.01% of the total citrus phloem volume was estimated to be occupied by CLas, explaining the difficulty to observe CLas in most tissues under transmission electron microscopy. The CLas titer inside the leaf was estimated to be approximately 1.64 × 106 cells/leaf or 9.2 × 104 cells cm-2 in leaves, approximately 104 times less than that of typical apoplastic bacterial pathogens. This study provides quantitative estimates of phloem colonization by bacterial pathogens and furthers the understanding of the biology and virulence mechanisms of CLas.
Collapse
Affiliation(s)
- Fernanda N C Vasconcelos
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Jinuyn Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | - Christopher Vincent
- Citrus Research and Education Center (CREC), Department of Horticultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
32
|
Alquézar B, Carmona L, Bennici S, Peña L. Engineering of citrus to obtain huanglongbing resistance. Curr Opin Biotechnol 2021; 70:196-203. [PMID: 34198205 DOI: 10.1016/j.copbio.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022]
Abstract
Huanglongbing (HLB) disease is threatening the sustainability of citriculture in affected regions because of its rapid spread and the severity of the symptoms it induces. Herein, we summarise the main research findings that can be exploited to develop HLB-resistant cultivars. A major bottleneck has been the lack of a system for the ex vivo cultivation of HLB-associated bacteria (CLs) in true plant hosts, which precludes the evaluation of target genes/metabolites in reliable plant/pathogen/vector environments. With regard to HLB vectors, several biotechnologies which have been proven in laboratory settings to be effective for insect control are presented. Finally, new genotypes that are resistant to CLs or their insect vectors are described, and the most relevant strategies for fighting HLB are highlighted.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain.
| |
Collapse
|
33
|
Khan SJ, Osborn AM, Eswara PJ. Effect of Sunlight on the Efficacy of Commercial Antibiotics Used in Agriculture. Front Microbiol 2021; 12:645175. [PMID: 34140934 PMCID: PMC8203823 DOI: 10.3389/fmicb.2021.645175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic stewardship is of paramount importance to limit the emergence of antibiotic-resistant bacteria in not only hospital settings, but also in animal husbandry, aquaculture, and agricultural sectors. Currently, large quantities of antibiotics are applied to treat agricultural diseases like citrus greening disease (CGD). The two commonly used antibiotics approved for this purpose are streptomycin and oxytetracycline. Although investigations are ongoing to understand how efficient this process is to control the spread of CGD, to our knowledge, there have been no studies that evaluate the effect of environmental factors such as sunlight on the efficacy of the above-mentioned antibiotics. We conducted a simple disc-diffusion assay to study the efficacy of streptomycin and oxytetracycline after exposure to sunlight for 7- or 14-day periods using Escherichia coli and Bacillus subtilis as the representative strains of Gram-negative and Gram-positive organisms, respectively. Freshly prepared discs and discs stored in the dark for 7 or 14 days served as our controls. We show that the antibiotic potential of oxytetracycline exposed to sunlight dramatically decreases over the course of 14 days against both E. coli and B. subtilis. However, the effectiveness of streptomycin was only moderately impacted by sunlight. It is important to note that antibiotics that last longer in the environment may play a deleterious role in the rise and spread of antibiotic-resistant bacteria. Further studies are needed to substantively analyze the safety and efficacy of antibiotics used for broader environmental applications.
Collapse
Affiliation(s)
| | | | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
34
|
Pandey SS, Nogales da Costa Vasconcelos F, Wang N. Spatiotemporal Dynamics of ' Candidatus Liberibacter asiaticus' Colonization Inside Citrus Plant and Huanglongbing Disease Development. PHYTOPATHOLOGY 2021; 111:921-928. [PMID: 33174821 DOI: 10.1094/phyto-09-20-0407-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas), the causal agent of citrus huanglongbing (HLB), colonizes inside the phloem and is naturally transmitted by the Asian citrus psyllid (ACP). Here, we investigated spatiotemporal CLas colonization in different tissues after ACP transmission. Of the nine plants successfully infected via ACP transmission, CLas was detected in the roots of all trees at 75 days postremoval of ACPs (DPR) but in the mature leaf of only one tree; this finding is consistent with the model that CLas moves passively from source to sink tissues. At 75 and 365 DPR, CLas was detected in 11.1 and 43.1% of mature leaves not fed on by ACPs during transmission, respectively, unveiling active movement to the source tissue. The difference in colonization timing of sink and source tissues indicates that CLas is capable of both passive and active movement, with passive movement being dominant. At 225 DPR, leaves fed on by ACPs during the young stage showed the highest ratio of HLB symptomatic leaves and the highest CLas titer, followed by leaves that emerged after ACP removal and mature leaves not fed on by ACPs. Importantly, our data showed that ACPs were unable to transmit CLas via feeding on mature leaves. It is estimated that it takes 3 years at most for CLas to infect the whole tree. Overall, spatiotemporal detection of CLas in different tissues after ACP transmission helps visualize the infection process of CLas in planta and subsequent HLB symptom development and provides evidence showing that young leaves should be the focus of HLB management.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
35
|
Zhang Z, Han Q, Mao X, Liu J, Wang W, Li D, Zhou F, Ke Y, Xu L, Hu L. Discovery of novel SecA inhibitors against "Candidatus Liberibacter asiaticus" through virtual screening and biological evaluation. Chem Biol Drug Des 2021; 98:395-404. [PMID: 33963664 DOI: 10.1111/cbdd.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/07/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
"Candidatus Liberibacter asiaticus" (Ca. L. asiaticus) is the causal agent of Huanglongbing disease of citrus and current study focuses on the discovery of novel small-molecule inhibitors against SecA protein of Ca. L. asiaticus. In this study, homologous modeling was used to construct the three-dimensional structure of SecA. Then, molecular docking-based virtual screening and two rounds of in vitro bacteriostatic experiments were utilized to identify novel small-molecule inhibitors of SecA. Encouragingly, 93 compounds were obtained and two of them (P684-2850, P684-3808) showed strong antimicrobial activities against Liberibacter crescens BT-1 in bacteriostatic experiments. Finally, molecular dynamics simulations were employed to explore the binding modes of the receptor-ligand complexes. Results in MD simulations showed that compound P684-3808 was relatively stable during simulation, while compound P684-2850 left the binding pocket. Compound P684-3808 might be suitable as a lead compound for further development of antimicrobial compounds against SecA of Ca. L. asiaticus.
Collapse
Affiliation(s)
- Zhengfang Zhang
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Quan Han
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Xiongxing Mao
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Jinhua Liu
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Wei Wang
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Dong Li
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Feng Zhou
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Yang Ke
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Liu Hu
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| |
Collapse
|
36
|
Huang CY, Araujo K, Sánchez JN, Kund G, Trumble J, Roper C, Godfrey KE, Jin H. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proc Natl Acad Sci U S A 2021; 118:e2019628118. [PMID: 33526689 PMCID: PMC8017978 DOI: 10.1073/pnas.2019628118] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Citrus Huanglongbing (HLB), caused by a vector-transmitted phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease worldwide. Currently, there are no effective strategies to prevent infection or to cure HLB-positive trees. Here, using comparative analysis between HLB-sensitive citrus cultivars and HLB-tolerant citrus hybrids and relatives, we identified a novel class of stable antimicrobial peptides (SAMPs). The SAMP from Microcitrusaustraliasica can rapidly kill Liberibacter crescens (Lcr), a culturable Liberibacter strain, and inhibit infections of CLas and CL. solanacearum in plants. In controlled greenhouse trials, SAMP not only effectively reduced CLas titer and disease symptoms in HLB-positive trees but also induced innate immunity to prevent and inhibit infections. Importantly, unlike antibiotics, SAMP is heat stable, making it better suited for field applications. Spray-applied SAMP was taken up by citrus leaves, stayed stable inside the plants for at least a week, and moved systemically through the vascular system where CLas is located. We further demonstrate that SAMP is most effective on α-proteobacteria and causes rapid cytosol leakage and cell lysis. The α-helix-2 domain of SAMP is sufficient to kill Lcr Future field trials will help determine the efficacy of SAMP in controlling HLB and the ideal mode of application.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Karla Araujo
- Contained Research Facility, University of California, Davis, CA 95616
| | - Jonatan Niño Sánchez
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Gregory Kund
- Department of Entomology, University of California, Riverside, CA 92521
| | - John Trumble
- Department of Entomology, University of California, Riverside, CA 92521
| | - Caroline Roper
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | | | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521;
| |
Collapse
|
37
|
Bragard C, Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Kertesz V, Streissl F, MacLeod A. Pest categorisation of Diaphorina citri. EFSA J 2021; 19:e06357. [PMID: 33437319 PMCID: PMC7786542 DOI: 10.2903/j.efsa.2021.6357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EFSA Panel on Plant Health performed a pest categorisation of Diaphorina citri (Hemiptera: Liviidae) (Asian citrus psyllid) for the EU. D. citri is a key pest of citrus in several countries as it is a vector of serious bacterial pathogens, the putative causal agents of Huanglongbing (HLB) also known as citrus greening. Eggs are laid on tips of growing shoots on and between unfurling leaves. Females may lay more than 800 eggs during their lives. Nymphs pass through five instars. The life cycle requires from 14 to 49 days, depending upon the season. There is no diapause, but populations are low in winter. It overwinters as an adult which may live for several months. The species completes 9-10 generations/year; however, under protected conditions, up to 16 generations have been recorded. Commission Implementing Regulation (EU) 2019/2072 (Annex IIA) regulates D. citri, as a quarantine pest not known to occur in the EU territory. Fruits and plants for planting provide potential pathways for entry into the EU. Climatic conditions and the availability of host plants provide conditions to support establishment in the EU. The introduction of D. citri would have an economic impact in the EU through direct but mainly indirect effects due to potential transmission of HLB. Phytosanitary measures are available to reduce the likelihood of entry. D. citri satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. D. citri does not meet the criteria of occurring in the EU, nor plants for planting being the principal means of spread, for it to be regarded as a potential Union regulated non-quarantine pest.
Collapse
|
38
|
Franco JY, Thapa SP, Pang Z, Gurung FB, Liebrand TWH, Stevens DM, Ancona V, Wang N, Coaker G. Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Mol Cell Proteomics 2020; 19:1936-1952. [PMID: 32883801 PMCID: PMC7710146 DOI: 10.1074/mcp.ra120.002075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.
Collapse
Affiliation(s)
- Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California, USA.
| |
Collapse
|
39
|
Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, Gurung M, Rossi D, Laughlin C, Gorman Z, Achor D, Levy A, Kolomiets MV, Sétamou M, Badillo-Vargas IE, Avila CA, Irey MS, Mandadi KK. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat Commun 2020; 11:5802. [PMID: 33199718 PMCID: PMC7669877 DOI: 10.1038/s41467-020-19631-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.
Collapse
Affiliation(s)
- Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | | | - Shankar Pant
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Agricultural Research Service, US Department of Agriculture, Stillwater, OK, USA
| | - Prakash Niraula
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Meena Gurung
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Denise Rossi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Corinne Laughlin
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Ismael E Badillo-Vargas
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
40
|
Shrestha B, Lee Y. Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review. Genes Genomics 2020; 42:1131-1144. [DOI: 10.1007/s13258-020-00991-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
|
41
|
Naranjo E, Merfa MV, Santra S, Ozcan A, Johnson E, Cobine PA, De La Fuente L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl Environ Microbiol 2020; 86:e00788-20. [PMID: 32561578 PMCID: PMC7414956 DOI: 10.1128/aem.00788-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023] Open
Abstract
Phloem-limited bacterial "Candidatus Liberibacter" species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by "Candidatus Liberibacter" species and other plant vascular pathogens.IMPORTANCE "Candidatus Liberibacter" species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, "Candidatus Liberibacter" species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against "Candidatus Liberibacter" species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling "Candidatus Liberibacter" species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Evan Johnson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
42
|
Pontes JGDM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP. Virulence Factors in the Phytopathogen-Host Interactions: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7555-7570. [PMID: 32559375 DOI: 10.1021/acs.jafc.0c02389] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.
Collapse
Affiliation(s)
| | - Laura Soler Fernandes
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
| | | | - Ljubica Tasic
- Laboratório de Quı́mica Biológica (LQB), IQ-UNICAMP, Campinas, SP, Brazil
| | - Taicia Pacheco Fill
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6154, 13083970 Campinas, SP, Brazil
| |
Collapse
|
43
|
Pérez‐López E, Hossain MM, Tu J, Waldner M, Todd CD, Kusalik AJ, Wei Y, Bonham‐Smith PC. Transcriptome Analysis Identifies Plasmodiophora brassicae Secondary Infection Effector Candidates. J Eukaryot Microbiol 2020; 67:337-351. [PMID: 31925980 PMCID: PMC7317818 DOI: 10.1111/jeu.12784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/15/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Plasmodiophora brassicae (Wor.) is an obligate intracellular plant pathogen affecting Brassicas worldwide. Identification of effector proteins is key to understanding the interaction between P. brassicae and its susceptible host plants. To date, there is very little information available on putative effector proteins secreted by P. brassicae during a secondary infection of susceptible host plants, resulting in root gall production. A bioinformatics pipeline approach to RNA-Seq data from Arabidopsis thaliana (L.) Heynh. root tissues at 17, 20, and 24 d postinoculation (dpi) identified 32 small secreted P. brassicae proteins (SSPbPs) that were highly expressed over this secondary infection time frame. Functional signal peptides were confirmed for 31 of the SSPbPs, supporting the accuracy of the pipeline designed to identify secreted proteins. Expression profiles at 0, 2, 5, 7, 14, 21, and 28 dpi verified the involvement of some of the SSPbPs in secondary infection. For seven of the SSPbPs, a functional domain was identified using Blast2GO and 3D structure analysis and domain functionality was confirmed for SSPbP22, a kinase localized to the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Edel Pérez‐López
- Department of BiologyUniversity of SaskatchewanSaskatoonSKS7N 5E2Canada
| | | | - Jiangying Tu
- Agriculture and Agri‐food CanadaSaskatoon Research CentreSaskatoonSKS7N 0X2Canada
| | - Matthew Waldner
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKS7N 5C9Canada
| | | | - Anthony J. Kusalik
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKS7N 5C9Canada
| | - Yangdou Wei
- Department of BiologyUniversity of SaskatchewanSaskatoonSKS7N 5E2Canada
| | | |
Collapse
|
44
|
Blacutt A, Ginnan N, Dang T, Bodaghi S, Vidalakis G, Ruegger P, Peacock B, Viravathana P, Vieira FC, Drozd C, Jablonska B, Borneman J, McCollum G, Cordoza J, Meloch J, Berry V, Salazar LL, Maloney KN, Rolshausen PE, Roper MC. An In Vitro Pipeline for Screening and Selection of Citrus-Associated Microbiota with Potential Anti-" Candidatus Liberibacter asiaticus" Properties. Appl Environ Microbiol 2020; 86:e02883-19. [PMID: 32086307 PMCID: PMC7117939 DOI: 10.1128/aem.02883-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.
Collapse
Affiliation(s)
- Alex Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Nichole Ginnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Tyler Dang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Paul Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Beth Peacock
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Polrit Viravathana
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Flavia Campos Vieira
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Christopher Drozd
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Barbara Jablonska
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Greg McCollum
- U.S. Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida, USA
| | | | | | - Victoria Berry
- Point Loma Nazarene University, San Diego, California, USA
| | | | | | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, USA
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
45
|
Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 2020; 10:E52. [PMID: 32013104 PMCID: PMC7074241 DOI: 10.3390/metabo10020052] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Plants defend themselves from most microbial attacks via mechanisms including cell wall fortification, production of antimicrobial compounds, and generation of reactive oxygen species. Successful pathogens overcome these host defenses, as well as obtain nutrients from the host. Perturbations of plant metabolism play a central role in determining the outcome of attempted infections. Metabolomic analyses, for example between healthy, newly infected and diseased or resistant plants, have the potential to reveal perturbations to signaling or output pathways with key roles in determining the outcome of a plant-microbe interaction. However, application of this -omic and its tools in plant pathology studies is lagging relative to genomic and transcriptomic methods. Thus, it is imperative to bring the power of metabolomics to bear on the study of plant resistance/susceptibility. This review discusses metabolomics studies that link changes in primary or specialized metabolism to the defense responses of plants against bacterial, fungal, nematode, and viral pathogens. Also examined are cases where metabolomics unveils virulence mechanisms used by pathogens. Finally, how integrating metabolomics with other -omics can advance plant pathology research is discussed.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| | - Irene N. Gentzel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Ana P. Alonso
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| |
Collapse
|
46
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
47
|
Growth Dynamics and Survival of Liberibacter crescens BT-1, an Important Model Organism for the Citrus Huanglongbing Pathogen " Candidatus Liberibacter asiaticus". Appl Environ Microbiol 2019; 85:AEM.01656-19. [PMID: 31420343 PMCID: PMC6803310 DOI: 10.1128/aem.01656-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
Liberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens. Liberibacter crescens is the only cultured member of its genus, which includes the devastating plant pathogen “Candidatus Liberibacter asiaticus,” associated with citrus greening/Huanglongbing (HLB). L. crescens has a larger genome and greater metabolic flexibility than “Ca. Liberibacter asiaticus” and the other uncultured plant-pathogenic Liberibacter species, and it is currently the best model organism available for these pathogens. L. crescens grows slowly and dies rapidly under current culture protocols and this extreme fastidiousness makes it challenging to study. We have determined that a major cause of rapid death of L. crescens in batch culture is its alkalinization of the medium (to pH 8.5 by the end of logarithmic phase). The majority of this alkalinization is due to consumption of alpha-ketoglutaric acid as its primary carbon source, with a smaller proportion of the pH rise due to NH3 production. Controlling the pH rise with higher buffering capacity and lower starting pH improved recoverability of cells from 10-day cultures by >1,000-fold. We have also performed a detailed analysis of L. crescens growth with total cell numbers calibrated to the optical density and the percentage of live and recoverable bacteria determined over 10-day time courses. We modified L. crescens culture conditions to greatly enhance survival and increase maximum culture density. The similarities between L. crescens and the pathogenic liberibacters make this work relevant to efforts to culture the latter organisms. Our results also suggest that growth-dependent pH alteration that overcomes medium buffering should always be considered when growing fastidious bacteria. IMPORTANCELiberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens.
Collapse
|
48
|
Jain M, Cai L, Fleites LA, Munoz-Bodnar A, Davis MJ, Gabriel DW. Liberibacter crescens Is a Cultured Surrogate for Functional Genomics of Uncultured Pathogenic ' Candidatus Liberibacter' spp. and Is Naturally Competent for Transformation. PHYTOPATHOLOGY 2019; 109:1811-1819. [PMID: 31090497 DOI: 10.1094/phyto-04-19-0129-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter' spp. are uncultured insect endosymbionts and phloem-limited bacterial plant pathogens associated with diseases ranging from severe to nearly asymptomatic. 'Ca. L. asiaticus', causal agent of Huanglongbing or citrus "greening," and 'Ca. L. solanacearum', causal agent of potato zebra chip disease, respectively threaten citrus and potato production worldwide. Research on both pathogens has been stymied by the inability to culture these agents and to reinoculate into any host. Only a single isolate of a single species of Liberibacter, Liberibacter crescens, has been axenically cultured. L. crescens strain BT-1 is genetically tractable to standard molecular manipulation techniques and has been developed as a surrogate model for functional studies of genes, regulatory elements, promoters, and secreted effectors derived from the uncultured pathogenic Liberibacters. Detailed, step-by-step, and highly reproducible protocols for axenic culture, transformation, and targeted gene knockouts of L. crescens are described. In the course of developing these protocols, we found that L. crescens is also naturally competent for direct uptake and homology-guided chromosomal integration of both linear and circular plasmid DNA. The efficiency of natural transformation was about an order of magnitude higher using circular plasmid DNA compared with linearized fragments. Natural transformation using a replicative plasmid was obtained at a rate of approximately 900 transformants per microgram of plasmid, whereas electroporation using the same plasmid resulted in 6 × 104 transformants. Homology-guided marker interruptions using either natural uptake or electroporation of nonreplicative plasmids yielded 10 to 12 transformation events per microgram of DNA, whereas similar interruptions using linear fragments via natural uptake yielded up to 34 transformation events per microgram of DNA.
Collapse
Affiliation(s)
- M Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - L Cai
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - L A Fleites
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - A Munoz-Bodnar
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - M J Davis
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - D W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
49
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
50
|
A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators. Proc Natl Acad Sci U S A 2019; 116:18009-18014. [PMID: 31427509 DOI: 10.1073/pnas.1905149116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citri Ca L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.
Collapse
|