1
|
Simko I, Peng H, Sthapit Kandel J, Zhao R. Genome-wide association mapping reveals genomic regions frequently associated with lettuce field resistance to downy mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2009-2024. [PMID: 35419653 DOI: 10.1007/s00122-022-04090-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE GWAS identified 63 QTLs for resistance to downy mildew. Though QTLs were distributed across all chromosomes, the genomic regions frequently associated with resistance were located on chromosomes 4 and 5. Lettuce downy mildew is one of the most economically important diseases of cultivated lettuce worldwide. We have applied the genome-wide association mapping (GWAS) approach to detect QTLs for field resistance to downy mildew in the panel of 496 accessions tested in 21 field experiments. The analysis identified 131 significant marker-trait associations that could be grouped into 63 QTLs. At least 51 QTLs were novel, while remaining 12 QTLs overlapped with previously described QTLs for lettuce field resistance to downy mildew. Unlike race-specific, dominant Dm genes that mostly cluster on three out of nine lettuce chromosomes, QTLs (qDMR loci) for polygenic resistance are randomly distributed across all nine chromosomes. The genomic regions frequently associated with lettuce field resistance to downy mildew are located on chromosomes 4 and 5 and could be used for detailed study of the mechanism of polygenic resistance. The most resistant accessions identified in the current study (cvs. Auburn, Grand Rapids, Romabella, PI 226514, and PI 249536) are being incorporated into our breeding program. Markers closely linked to the resistance QTLs could be potentially used for marker-assisted selection, or in combination with other markers in the genome, for a combined genomic and marker-assisted selection. Up to date this is the most comprehensive study of QTLs for field resistance to downy mildew and the first study that uses GWAS for mapping disease resistance loci in lettuce.
Collapse
Affiliation(s)
- Ivan Simko
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA.
| | - Hui Peng
- The Genome Center and Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jinita Sthapit Kandel
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
- Thad Cochran Southern Horticultural Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Poplarville, MS, 39470, USA
| | - Rebecca Zhao
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| |
Collapse
|
2
|
Dhillon B, Feng C, Villarroel-Zeballos MI, Castroagudin VL, Bhattarai G, Klosterman SJ, Correll JC. Sporangiospore Viability and Oospore Production in the Spinach Downy Mildew Pathogen, Peronospora effusa. PLANT DISEASE 2020; 104:2634-2641. [PMID: 32787734 DOI: 10.1094/pdis-02-20-0334-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Downy mildew of spinach, caused by the obligate pathogen Peronospora effusa, remains the most important constraint in the major spinach production areas in the United States. This disease can potentially be initiated by asexual sporangiospores via "green bridges", sexually derived oospores from seed or soil, or dormant mycelium. However, the relative importance of the various types of primary inoculum is not well known. The ability of P. effusa sporangiospores to withstand abiotic stress, such as desiccation, and remain viable during short- and long-distance dispersal and the ability of oospores to germinate and infect seedlings remain unclear. Thus, the primary objectives of this research were to evaluate the impact of desiccation on sporangiospore survival and infection efficiency and examine occurrence, production, and germination of oospores. Results indicate that desiccation significantly reduces sporangiospore viability as well as infection potential. Leaf wetness duration of 4 h was needed for disease establishment by spinach downy mildew sporangiospores. Oospores were observed in leaves of numerous commercial spinach cultivars grown in California in 2018 and Arizona in 2019. Frequency of occurrence varied between the two states-years. The presence of opposite mating types in spinach production areas in the United States was demonstrated by pairing isolates in controlled crosses and producing oospores on detached leaves as well as intact plants. Information from the study of variables that affect sporangiospore viability and oospore production will help in improving our understanding of the epidemiology of this important pathogen, which has implications for management of spinach downy mildew.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Chunda Feng
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | | | | | - Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701
| | | | - James C Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
3
|
Narouei-Khandan HA, Shakya SK, Garrett KA, Goss EM, Dufault NS, Andrade-Piedra JL, Asseng S, Wallach D, van Bruggen AH. BLIGHTSIM: A New Potato Late Blight Model Simulating the Response of Phytophthora infestans to Diurnal Temperature and Humidity Fluctuations in Relation to Climate Change. Pathogens 2020; 9:pathogens9080659. [PMID: 32824250 PMCID: PMC7459445 DOI: 10.3390/pathogens9080659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Temperature response curves under diurnal oscillating temperatures differ from those under constant conditions for all stages of the Phytophthora infestans infection cycle on potatoes. We developed a mechanistic model (BLIGHTSIM) with an hourly time step to simulate late blight under fluctuating environmental conditions and predict late blight epidemics in potato fields. BLIGHTSIM is a modified susceptible (S), latent (L), infectious (I) and removed (R) compartmental model with hourly temperature and relative humidity as driving variables. The model was calibrated with growth chamber data covering one infection cycle and validated with field data from Ecuador. The model provided a good fit to all data sets evaluated. There was a significant interaction between average temperature and amplitude in their effects on the area under the disease progress curve (AUDPC) as predicted from growth chamber data on a single infection cycle. BLIGHTSIM can be incorporated in a potato growth model to study effects of diurnal temperature range on late blight impact under climate change scenarios.
Collapse
Affiliation(s)
- Hossein A. Narouei-Khandan
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
- Ministry for Primary Industries, P.O. Box 2526, Wellington 6146, New Zealand
- Correspondence:
| | - Shankar K. Shakya
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
| | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
- Food Systems Institute, University of Florida, P.O. Box 110180, Gainesville, FL 32611-0180, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
| | - Nicholas S. Dufault
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
| | - Jorge L. Andrade-Piedra
- International Potato Center (CIP) and CGIAR Research Program on Roots Tubers and Bananas (RTB), P.O. Box 1558, Lima 12, Peru;
| | - Senthold Asseng
- Department of Agricultural and Biological Engineering, University of Florida, 224 Frazier Rogers Hall, P.O. Box 110570, Gainesville, FL 32611-0570, USA;
| | - Daniel Wallach
- Institut National de la Recherche Agronomique (INRA), UMR AGIR, BP 52627, 31326 Castanet Tolosan Cedex, France;
| | - Ariena H.C van Bruggen
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Kandel SL, Mou B, Shishkoff N, Shi A, Subbarao KV, Klosterman SJ. Spinach Downy Mildew: Advances in Our Understanding of the Disease Cycle and Prospects for Disease Management. PLANT DISEASE 2019; 103:791-803. [PMID: 30939071 DOI: 10.1094/pdis-10-18-1720-fe] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Downy mildew on spinach is caused by Peronospora effusa, an oomycete pathogen that poses a challenge to spinach production worldwide, especially in organic production. Following infection, P. effusa produces abundant amounts of asexual sporangia. Sporangia become windborne and initiate new infections locally or distantly, leading to widespread epidemics. Oospores produced from the union of opposite mating types have been observed within infected leaves and seeds and may remain viable for many years. Sexual reproduction increases the genetic diversity of P. effusa through sexual recombination, and thus, the movement of oospores on seed has likely fueled the rapid explosion of new pathotypes in different regions of the world over the past 20 years. This review summarizes recent advances in spinach downy mildew research, especially in light of the findings of oospores in contemporary commercial spinach seed lots as well as their germination. Knowledge of the role of the oospores and other aspects of the disease cycle can directly translate into new and effective disease management strategies.
Collapse
Affiliation(s)
- Shyam L Kandel
- 1 USDA-ARS Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Beiquan Mou
- 1 USDA-ARS Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Nina Shishkoff
- 2 USDA-ARS Foreign Disease Weed Science Research Unit, Frederick, MD 21702
| | - Ainong Shi
- 3 Department of Horticulture, University of Arkansas, Fayetteville, AR; and
| | - Krishna V Subbarao
- 4 Department of Plant Pathology, University of California-Davis, Salinas, CA
| | | |
Collapse
|
5
|
Li X, He Y, Xie C, Zu Y, Zhan F, Mei X, Xia Y, Li Y. Effects of UV-B radiation on the infectivity of Magnaporthe oryzae and rice disease-resistant physiology in Yuanyang terraces. Photochem Photobiol Sci 2018; 17:8-17. [PMID: 29110008 DOI: 10.1039/c7pp00139h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The traditional rice variety "Baijiaolaojing" was planted in Yuanyang terraces (1600 m altitude) under field conditions. The effects of enhanced UV-B radiation (0 kJ m-2, 2.5 kJ m-2, 5.0 kJ m-2 and 7.5 kJ m-2) on the rice-Magnaporthe oryzae system were studied with respect to the Magnaporthe oryzae infection, the disease-resistance physiology of the rice and the rice blast disease condition. The results showed that under enhanced UV-B radiation, the infectivity of Magnaporthe oryzae was decreased, which could significantly inhibit its growth and sporulation. The activities of rice leaf disease-resistance-related enzymes (phenylalanine ammonia-lyase, lipoxygenase, chitinase and β-1,3-glucanase) were significantly increased under enhanced UV-B radiation. Following inoculation with Magnaporthe oryzae, levels of disease-resistance-related substances in the rice leaves were significantly increased. Among the results, it was found that leaves after UV-B radiation had a more significant resistance response. The level of UV-B irradiation showed a parabolic relationship with the rice blast index (r2 = 0.85, P < 0.01; in the control group, r2 = 0.88, P < 0.01). The disease index decreased with increase in irradiation. The DI was at a minimum with enhanced UV-B irradiance of 4 kJ m-2; thereafter, it increased with increasing irradiation. The enhanced UV-B radiation had a direct impact on the growth of rice and Magnaporthe oryzae, and it indirectly changed the rice-Magnaporthe oryzae system. UV-B radiation could reduce the harmful impact of rice blast.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
García-Cela ME, Marín S, Reyes M, Sanchis V, Ramos AJ. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2249-2256. [PMID: 26178018 DOI: 10.1002/jsfa.7343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. RESULTS Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. CONCLUSION Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia.
Collapse
Affiliation(s)
- Maria Esther García-Cela
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Monica Reyes
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Vicent Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| |
Collapse
|
8
|
Fall ML, Van der Heyden H, Carisse O. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy. PLoS One 2016; 11:e0144573. [PMID: 26953691 PMCID: PMC4783011 DOI: 10.1371/journal.pone.0144573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/22/2015] [Indexed: 11/26/2022] Open
Abstract
Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.
Collapse
Affiliation(s)
- Mamadou Lamine Fall
- Biology Department, University of Sherbrooke, 2500 De l’Université Blvd., Sherbrooke, QC, Canada, J1K 2R1
- Compagnie de Recherche Phytodata inc., 111 Rang Saint-Patrice, Sherrington, QC, Canada, J0L 2N0
| | - Hervé Van der Heyden
- Compagnie de Recherche Phytodata inc., 111 Rang Saint-Patrice, Sherrington, QC, Canada, J0L 2N0
| | - Odile Carisse
- Horticulture Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Blvd., St-Jean-sur-Richelieu, QC, Canada, J3B 3E6
| |
Collapse
|
9
|
Fall ML, Van der Heyden H, Beaulieu C, Carisse O. Bremia lactucae Infection Efficiency in Lettuce is Modulated by Temperature and Leaf Wetness Duration Under Quebec Field Conditions. PLANT DISEASE 2015; 99:1010-1019. [PMID: 30690977 DOI: 10.1094/pdis-05-14-0548-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
More than 80% of Canadian lettuce production is located in the province of Quebec. Yet most of our knowledge on the epidemiology of lettuce downy mildew (Bremia lactucae) is derived from controlled-condition experiments or field experiments conducted in subtropical climates and, thus, cannot readily be applied to Quebec lettuce production. The influence of temperature and leaf wetness duration on the infection efficiency (IE) of B. lactucae was studied for 4 years (2003, 2004, 2012, and 2013) under field and growth-chamber conditions. IE was defined as the ratio of the number of lesions/leaf to the airborne conidia concentration (ACC). B. lactucae ACC was measured with rotating-arm samplers three times/week. In addition, 72 lettuce trap plants/sampling day were exposed to the potential airborne B. lactucae inoculum and disease intensity was assessed after 7 days of incubation in greenhouse. Under growth-chamber conditions, an ACC of 1 conidium/m3 was sufficient to cause 1 lesion/leaf, and IE ranged from 0.25 to 1.00. Under field conditions, an ACC of 10 to 14 conidia/m3 was required to cause 1 lesion/leaf, and IE ranged from 0.02 to 0.10, except in 2004, when IE ranged from 0.03 to 1.00. IE increased with increasing leaf wetness duration but decreased with increasing temperature. Also, considering an observed average temperature range from 10 to 20°C in the area of Quebec, 2 h of leaf wetness was sufficient for infection by B. lactucae. Therefore, under Quebec lettuce production conditions, a leaf wetness period of 2 h and an ACC of 10 to 14 conidia/m3 can be used as risk indicators to facilitate disease management decisions. Also, under typical Quebec weather conditions, measuring both morning and evening leaf wetness events could be used to improve the reliability of leaf wetness duration as a downy mildew risk indicator. Further research is needed to validate these risk indicators for integration into management strategies.
Collapse
Affiliation(s)
- M L Fall
- Biology Department, University of Sherbrooke, Sherbrooke, QC, Canada J1K 2R1 and Horticulture Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, QC, Canada J3B 3E6
| | - H Van der Heyden
- Compagnie de Recherche Phytodata Inc., Sherrington, QC, Canada J0L 2N0
| | - C Beaulieu
- Biology Department, University of Sherbrooke
| | - O Carisse
- Horticulture Research and Development Centre, Agriculture and Agri-Food Canada
| |
Collapse
|
10
|
Cohen Y, Rubin AE. Daytime Solar Heating Controls Downy Mildew Peronospora belbahrii in Sweet Basil. PLoS One 2015; 10:e0126103. [PMID: 25992649 PMCID: PMC4439122 DOI: 10.1371/journal.pone.0126103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/30/2015] [Indexed: 11/23/2022] Open
Abstract
The biotrophic oomycete Peronospora belbahrii causes a devastating downy mildew disease in sweet basil. Due to the lack of resistant cultivars current control measures rely heavily on fungicides. However, resistance to fungicides and strict regulation on their deployment greatly restrict their use. Here we report on a ‘green’ method to control this disease. Growth chamber studies showed that P. belbahrii could hardly withstand exposure to high temperatures; exposure of spores, infected leaves, or infected plants to 35-45°C for 6-9 hours suppressed its survival. Therefore, daytime solar heating was employed in the field to control the downy mildew disease it causes in basil. Covering growth houses of sweet basil already infected with downy mildew with transparent infra-red-impermeable, transparent polyethylene sheets raised the daily maximal temperature during sunny hours by 11-22°C reaching 40-58°C (greenhouse effect). Such coverage, applied for a few hours during 1-3 consecutive days, had a detrimental effect on the survival of P. belbahrii: killing the pathogen and/or suppressing disease progress while enhancing growth of the host basil plants.
Collapse
Affiliation(s)
- Yigal Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- * E-mail:
| | - Avia E. Rubin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
11
|
Braga GUL, Rangel DEN, Fernandes ÉKK, Flint SD, Roberts DW. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 2015; 61:405-25. [PMID: 25824285 DOI: 10.1007/s00294-015-0483-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.
Collapse
Affiliation(s)
- Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,
| | | | | | | | | |
Collapse
|
12
|
de Menezes HD, Massola NS, Flint SD, Silva GJ, Bachmann L, Rangel DEN, Braga GUL. Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant pathogenic fungus Colletotrichum acutatum. Photochem Photobiol 2015; 91:397-402. [PMID: 25535947 DOI: 10.1111/php.12410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022]
Abstract
Light conditions can influence fungal development. Some spectral wavebands can induce conidial production, whereas others can kill the conidia, reducing the population size and limiting dispersal. The plant pathogenic fungus Colletotrichum acutatum causes anthracnose in several crops. During the asexual stage on the host plant, Colletototrichum produces acervuli with abundant mucilage-embedded conidia. These conidia are responsible for fungal dispersal and host infection. This study examined the effect of visible light during C. acutatum growth on the production of conidia and mucilage and also on the UV tolerance of these conidia. Conidial tolerance to an environmentally realistic UV irradiance was determined both in conidia surrounded by mucilage on sporulating colonies and in conidial suspension. Exposures to visible light during fungal growth increased production of conidia and mucilage as well as conidial tolerance to UV. Colonies exposed to light produced 1.7 times more conidia than colonies grown in continuous darkness. The UV tolerances of conidia produced under light were at least two times higher than conidia produced in the dark. Conidia embedded in the mucilage on sporulating colonies were more tolerant of UV than conidia in suspension that were washed free of mucilage. Conidial tolerance to UV radiation varied among five selected isolates.
Collapse
Affiliation(s)
- Henrique D de Menezes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
García-Cela E, Marin S, Sanchis V, Crespo-Sempere A, Ramos AJ. Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biol 2014; 119:67-78. [PMID: 25601150 DOI: 10.1016/j.funbio.2014.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 11/26/2022]
Abstract
The effects of two exposure times per day (6 and 16 h) of UV-A or UV-B radiation, combined with dark and dark plus light incubation periods during 7-21 d on fungal growth and mycotoxins production of Aspergillus species were studied. Aspergillus carbonarius and Aspergillus parasiticus were inoculated on grape and pistachio media under diurnal and nocturnal temperatures choosing light photoperiod according to harvest conditions of these crops in Spain. Ultraviolet irradiation had a significant effect on A. carbonarius and A. parasiticus colony size (diameter, biomass dry weight, and colony density) and mycotoxin accumulation, although intraspecies differences were observed. Inhibition of A. carbonarius fungal growth decreased when exposure time was reduced from 16 h to 6 h, but this was not always true for ochratoxin A (OTA) production. OTA reduction was higher under UV-A than UV-B radiation and the reduction increased along time conversely to the aflatoxins (AFs). Aflatoxin B1 (AFB1) was the main toxin produced by A. parasiticus except in the UV-B light irradiated colonies which showed a higher percentage of AFG than AFB. Morphological changes were observed in colonies grown under UV-B light.
Collapse
Affiliation(s)
- Esther García-Cela
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida 25198, Spain.
| | - Sonia Marin
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida 25198, Spain
| | - Vicente Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida 25198, Spain
| | - Ana Crespo-Sempere
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida 25198, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida 25198, Spain
| |
Collapse
|
14
|
Wargent JJ, Jordan BR. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. THE NEW PHYTOLOGIST 2013; 197:1058-1076. [PMID: 23363481 DOI: 10.1111/nph.12132] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/04/2012] [Indexed: 05/06/2023]
Abstract
Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes.
Collapse
Affiliation(s)
- Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, 7647, Christchurch, New Zealand
| |
Collapse
|
15
|
Paul ND, Moore JP, McPherson M, Lambourne C, Croft P, Heaton JC, Wargent JJ. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. PHYSIOLOGIA PLANTARUM 2012; 145:565-81. [PMID: 22150399 DOI: 10.1111/j.1399-3054.2011.01553.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.
Collapse
Affiliation(s)
- Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Kennelly MM, Gadoury DM, Wilcox WF, Magarey PA, Seem RC. Primary Infection, Lesion Productivity, and Survival of Sporangia in the Grapevine Downy Mildew Pathogen Plasmopara viticola. PHYTOPATHOLOGY 2007; 97:512-522. [PMID: 18943292 DOI: 10.1094/phyto-97-4-0512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Several aspects of grapevine downy mildew epidemiology that are fundamental to model predictions were investigated. Simple rainfall-, temperature-, and phenology-based thresholds (rain > 2.5 mm; temperature > 11 degrees C; and phenology > Eichorn and Lorenz [E&L] growth stage 12) were evaluated to forecast primary (oosporic) infection by Plasmopara viticola. The threshold was consistent across 15 years of historical data on the highly susceptible cv. Chancellor at one site, and successfully predicted the initial outbreak of downy mildew for 2 of 3 years at three additional sites. Field inoculations demonstrated that shoot tissue was susceptible to infection as early as E&L stage 5, suggesting that initial germination of oospores, rather than acquisition of host susceptibility, was probably the limiting factor in the initiation of disease outbreaks. We also found that oospores may continue to germinate and cause infections throughout the growing season, in contrast to the widely-held assumption that the supply of oospores is depleted shortly after bloom. Lesion productivity (sporangia/lesion) did not decline with age of a lesion in the absence of suitable weather to induce sporulation. However, the productivity of all lesions declined rapidly through repeated cycles of sporulation. Extremely high temperatures (i.e., one day reaching 42.8 degrees C) had an eradicative effect under vineyard conditions, and permanently reduced sporulation from existing (but not incubating) lesions to trace levels, despite a later return to weather conducive to sporulation. In fair weather, most sporangia died sometime during the daylight period immediately following their production. However, over 50% of sporangia still released zoospores after 12 to 24 h of exposure to overcast conditions.
Collapse
|
17
|
Roberts MR, Paul ND. Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. THE NEW PHYTOLOGIST 2006; 170:677-99. [PMID: 16684231 DOI: 10.1111/j.1469-8137.2006.01707.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants frequently suffer attack from herbivores and microbial pathogens, and have evolved a complex array of defence mechanisms to resist defoliation and disease. These include both preformed defences, ranging from structural features to stores of toxic secondary metabolites, and inducible defences, which are activated only after an attack is detected. It is well known that plant defences against pests and pathogens are commonly affected by environmental conditions, but the mechanisms by which responses to the biotic and abiotic environments interact are only poorly understood. In this review, we consider the impact of light on plant defence, in terms of both plant life histories and rapid scale molecular responses to biotic attack. We bring together evidence that illustrates that light not only modulates defence responses via its influence on biochemistry and plant development but, in some cases, is essential for the development of resistance. We suggest that the interaction between the light environment and plant defence is multifaceted, and extends across different temporal and biological scales.
Collapse
Affiliation(s)
- Michael R Roberts
- Department of Biological Sciences, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | |
Collapse
|
18
|
Wu BM, Subbarao KV, van Bruggen AHC. Analyses of the Relationships Between Lettuce Downy Mildew and Weather Variables Using Geographic Information System Techniques. PLANT DISEASE 2005; 89:90-96. [PMID: 30795289 DOI: 10.1094/pd-89-0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previous studies in coastal California suggested that morning leaf wetness duration and temperature immediately after the prolonged leaf wetness period affect infection of lettuce by the downy mildew pathogen, Bremia lactucae. In this study, spatial analysis tools in a geographic information system were used to interpolate disease assessment data and then relate them to weather variables measured in 1995 and 1997 at weather stations in the Salinas Valley. Among the variables monitored at these weather stations, midday temperature (10:00 A.M. to 2:00 P.M.) was related most strongly to the interpolated downy mildew incidence in a circular area (radius = 5 km) around each station (r = 0.52, P < 0.0001); the higher the midday temperature, the lower the disease incidence. High humidity and prolonged morning leaf wetness duration also were associated with high downy mildew incidence. Cluster analysis resulted in distinct regions with different midday temperatures, which overlapped well (92.2% of the total area) with regions distinguished in previous cluster analyses of downy mildew incidence. Clusters of morning relative humidity showed similar patterns, although they overlapped less well with clusters of disease incidence. These results confirmed that midday temperature is an important determining factor for lettuce downy mildew, and its effects should be incorporated into a disease warning system for coastal California. Cluster analyses based on the effects of temperature have great potential for use in regional downy mildew risk assessment.
Collapse
Affiliation(s)
- B M Wu
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA 93905
| | - K V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA 93905
| | - A H C van Bruggen
- Biological Farming Systems, Wageningen University and Research Centre, The Netherlands
| |
Collapse
|
19
|
Wu BM, van Bruggen AHC, Subbarao KV, Scherm H. Incorporation of temperature and solar radiation thresholds to modify a lettuce downy mildew warning system. PHYTOPATHOLOGY 2002; 92:631-636. [PMID: 18944260 DOI: 10.1094/phyto.2002.92.6.631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The effect of temperature on infection of lettuce by Bremia lactucae was investigated in controlled environment studies and in the field. In controlled conditions, lettuce seedlings inoculated with B. lactucae were incubated at 15, 20, 25, or 30 degrees C during a 4-h wet period immediately after inoculation or at the same temperatures during an 8-h dry period after the 4-h postinoculation wet period at 15 degrees C. High temperatures during wet and dry periods reduced subsequent disease incidence. Historical data from field studies in 1991 and 1992, in which days with or without infection had been identified, were analyzed by comparing average air temperatures during 0600 to 1000 and 1000 to 1400 Pacific standard time (PST) between the two groups of days. Days without infection had significantly higher temperatures (mean 21.4 degrees C) than days with infection (20.3 degrees C) during 1000 to 1400 PST (P < 0.01) but not during 0600 to 1000 PST. Therefore, temperature thresholds of 20 and 22 degrees C for the 3-h wet period after sunrise and the subsequent 4-h postpenetration period, respectively, were added to a previously developed disease warning system that predicts infection when morning leaf wetness lasts >/=4 h from 0600 PST. No infection was assumed to occur if average temperature during these periods exceeded the thresholds. Based on nonlinear regression and receiver operating characteristic curve analysis, the leaf wetness threshold of the previous warning system was also modified to >/=3-h leaf wetness (>/=0900 PST). Furthermore, by comparing solar radiation on days with infection and without infection, we determined that high solar radiation during 0500 to 0600 PST in conjunction with leaf wetness ending between 0900 and 1000 PST was associated with downy mildew infection. Therefore, instead of starting at 0600 PST, the calculation of the 3-h morning leaf wetness period was modified to start after sunrise, defined as the hour when measured solar radiation exceeded 8 W m(-2) (or 41 mumol m(-2) s(-1) for photon flux density). The modified warning system was compared with the previously developed system using historical weather and downy mildew data collected in coastal California. The modified system was more conservative when disease potential was high and recommended fewer fungicide applications when conditions were not conducive to downy mildew development.
Collapse
|
20
|
Wu BM, Subbarao KV, van Bruggen AHC, Koike ST. Comparison of Three Fungicide Spray Advisories for Lettuce Downy Mildew. PLANT DISEASE 2001; 85:895-900. [PMID: 30823059 DOI: 10.1094/pdis.2001.85.8.895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lettuce growers in coastal California have relied mainly on protective fungicide sprays to control downy mildew. Thus, timing of sprays before infection is critical for optimal results. A leaf-wetness-driven, infection-based advisory system, previously developed, did not always perform satisfactorily. In this study, the advisory system was modified by incorporating a pathogen survival component (system 1) or both survival and sporulation components (system 2). These systems were then evaluated in commercial lettuce fields in coastal California during 1996-1998. Three or four treatments were carried out in each field: (i) no spray; (ii) sprays as scheduled by the growers; (iii) sprays following modified system 1; and (iv) sprays following the original advisory system (1996) or modified system 2 (1998). Downy mildew incidence was evaluated every 2 to 9 days. In fields with drip irrigation, the number of fungicide applications was reduced by one or two regardless of the advisory system used compared to the grower's calendar-based schedule, although one unnecessary spray was recommended in 1996 at Soledad and 1997 at Salinas. Under all three systems, disease levels were low (incidence <25% and about 1 lesion per plant) for fields with drip irrigation, but not for fields with sprinklers (incidence up to 100% and 5 to 10 lesions per plant). For the first time, we established that survival and sporulation components are not needed for a lettuce downy mildew forecasting system. Instead, a threshold with a shorter period of morning leaf wetness and high temperatures were found to have potential for improving forecasting efficiency.
Collapse
Affiliation(s)
- B M Wu
- Dept. of Plant Pathology, University of California, Davis, U.S. Agricultural Research Station, 1636 E. Alisal St., Salinas, 93905
| | - K V Subbarao
- Dept. of Plant Pathology, University of California, Davis, U.S. Agricultural Research Station, 1636 E. Alisal St., Salinas, 93905
| | - A H C van Bruggen
- Biological Farming Systems, Wageningen University and Research Centre, Marijkeweg 22, 6709 PG Wageningen, The Netherlands
| | - S T Koike
- University of California Cooperative Extension, Salinas, 93901
| |
Collapse
|