1
|
Biocontrol Efficacy of the Vishniacozyma Victoriae in Semi-Commercial Assays for the Control of Postharvest Fungal Diseases of Organic Pears. Curr Microbiol 2022; 79:259. [PMID: 35852635 DOI: 10.1007/s00284-022-02934-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Vishniacozyma victoriae NPCC 1263 was selected for this work because of the active antagonistic effect over several fungi in postharvest organic pears. Yeast biomass production was carried out in a 15 L stirred-tank bioreactor with 12 L of working volume at 20 °C and 300 rpm and 0.64 vvm of aeration. The selected production medium was based on cheese whey powder and salts. The present study aims to evaluate the possibility of using an inexpensive growth substrate for production of added value products (yeast biomass), this innovation also requires evaluate biocontrol efficacy of yeast against fungal diseases of pears in semi-commercial assays. The yeast biomass was collected, cold stored for 60 days (Treatment 1) and 15 days (Treatment 2) and sprayed on the pears in semi-commercial level testing assays. After 180 days of postharvest conservation, significant reduction of fungal infection by Penicillium expansum, Botrytis cinerea and Cladosporium sp. was observed. The Treatment 1 reduced total diseases incidence by 71%, instead Treatment 2 reduced it by 92%. The effect of spray application on the yeast viability with different cold storage was tested. These work provides information on the bench-scale bioreactor yeast production using a new low-cost medium, viability and biocontrol efficacy of Vishniacozyma victoriae in controlling common diseases affecting pears in semi-commercial assays.
Collapse
|
2
|
Insight into a Successful Development of Biocontrol Agents: Production, Formulation, Packaging, and Shelf Life as Key Aspects. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Biocontrol agents (BCAs) have been proposed and studied over recent decades as a suitable alternative to diminish or substitute synthetic fungicides used to control pre- and postharvest diseases. However, the development of BCAs has many constraints and obstacles that would have to be overcome before they could be successfully implemented in the market. For the BCA commercial development, the microorganism should be mass-produced on a large-scale, and, independently of the method used for the production, a particular plan regarding the formulation of BCAs by multidisciplinary approaches (liquid or solid) is required to optimize the yield, efficacy, and shelf life of the developed product. Unfortunately, not all BCAs can survive the conditions imposed during the formulation process. Improved stability can be achieved by either using special conditions during growing or by adding protective substances to the formulation medium. Finally, BCAs should be formulated in such a way as to guarantee long-term stability and ease of application of the product. Therefore, an accurate range of the packaging conditions should be considered to extend the shelf life of the formulated product, preferably up to two years. Herein, we discussed the main aspects regarding the production, formulation, packaging, and shelf life of BCAs.
Collapse
|
3
|
Cantabella D, Dolcet-Sanjuan R, Solsona C, Vilanova L, Torres R, Teixidó N. Optimization of a food industry-waste-based medium for the production of the plant growth promoting microorganism Pseudomonas oryzihabitans PGP01 based on agro-food industries by-products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00675. [PMID: 34603978 PMCID: PMC8473457 DOI: 10.1016/j.btre.2021.e00675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
Several agro-food industry wastes based on potato peels and pulp (FPP), tomato seeds (TS) and cereals (WB) industries were tested for their feasibility in producing P. oryzihabitans PGP01. The production of P. oryzihabitans PGP01 in a medium based on FPP supplemented with 10 g L−1 of tryptone, 10 g L−1 of sugar cane molasses, 5 g L−1 nacl and 2.5 g L−1 of K2HPO4 allowed to reach similar growth than the commercial medium. In 2 L bioreactors, a maximum of 4.4 × 109 CFU mL−1 of P. oryzihabitans PGP01 was obtained after 24 h of growth in the optimized medium, similar than laboratory medium. P. oryzihabitans PGP01 grown on the optimized medium preserved its biological activity, maintaining the same effect on roots of in vitro cultured plantlets than when it was grown in the commercial medium. This study shows how to re-use food-industry wastes for microbial production, reducing the amount of generated wastes.
In this study, three wastes based on potato peels and pulps, tomato seeds and wheat bran were used as basis for the preparation of a cheap medium to produce the bacterium P. oryzihabitans PGP01. In flasks experiments, P. oryzihabitans PGP01 growth at 25 °C in a medium based on frozen potato peels and pulp (FPP) with tryptone as a nitrogen source resulted in the maximum production compared to the commercial TSB medium. In the scale-up to 2 L bioreactors, FPP supplemented with tryptone, molasses, NaCl and K2HPO4 allowed to reach similar biomass production than in the TSB medium. A maximum growth of 4.4 × 109 CFU mL−1 after setting the agitation and the air flux conditions at 400 rpm and 0.75 vvm. Finally, P. oryzihabitans PGP01 growing in this optimized medium conserved its biological activity showing the expected effect in root development previously reported for this microorganism.
Collapse
Affiliation(s)
- Daniel Cantabella
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain.,IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Cristina Solsona
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Laura Vilanova
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA Postharvest Programme; Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| |
Collapse
|
4
|
Casas-Godoy L, Arellano-Plaza M, Kirchmayr M, Barrera-Martínez I, Gschaedler-Mathis A. Preservation of non-Saccharomyces yeasts: Current technologies and challenges. Compr Rev Food Sci Food Saf 2021; 20:3464-3503. [PMID: 34096187 DOI: 10.1111/1541-4337.12760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
There is a recent and growing interest in the study and application of non-Saccharomyces yeasts, mainly in fermented foods. Numerous publications and patents show the importance of these yeasts. However, a fundamental issue in studying and applying them is to ensure an appropriate preservation scheme that allows to the non-Saccharomyces yeasts conserve their characteristics and fermentative capabilities by long periods of time. The main objective of this review is to present and analyze the techniques available to preserve these yeasts (by conventional and non-conventional methods), in small or large quantities for laboratory or industrial applications, respectively. Wine fermentation is one of the few industrial applications of non-Saccharomyces yeasts, but the preservation stage has been a major obstacle to achieve a wider application of these yeasts. This review considers the preservation techniques, and clearly defines parameters such as culturability, viability, vitality and robustness. Several conservation strategies published in research articles as well as patents are analyzed, and the advantages and disadvantages of each technique used are discussed. Another important issue during conservation processes is the stress to which yeasts are subjected at the time of preservation (mainly oxidative stress). There is little published information on the subject for non-Saccharomyces yeast, but it is a fundamental point to consider when designing a preservation strategy.
Collapse
Affiliation(s)
- Leticia Casas-Godoy
- Industrial Biotechnology Unit, National Council for Science and Technology-Center for Research and Assistance in Technology and Design of the State of Jalisco, Zapopan, Mexico
| | - Melchor Arellano-Plaza
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Zapopan, Mexico
| | - Manuel Kirchmayr
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Zapopan, Mexico
| | - Iliana Barrera-Martínez
- Industrial Biotechnology Unit, National Council for Science and Technology-Center for Research and Assistance in Technology and Design of the State of Jalisco, Zapopan, Mexico
| | - Anne Gschaedler-Mathis
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Zapopan, Mexico
| |
Collapse
|
5
|
Tut G, Magan N, Brain P, Xu X. Molecular Assay Development to Monitor the Kinetics of Viable Populations of Two Biocontrol Agents, Bacillus subtilis QST 713 and Gliocladium catenulatum J1446, in the Phyllosphere of Lettuce Leaves. BIOLOGY 2021; 10:biology10030224. [PMID: 33804029 PMCID: PMC8001495 DOI: 10.3390/biology10030224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary There is a need to be able to track the viable populations of biocontrol agents when applied on the foliar surfaces of plants. We have developed a molecular-based method for the quantification of viable cells of two commercial biocontrol agents—a bacterium (Bacillus subtilis) and a fungus (Gliocladium catenulatum). The method has been tested on the leaf surfaces of lettuce plants to examine the changes in viable population over 10–12 days for the first time. Abstract Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium catenulatum, in the phyllosphere of crop plants are available. The objective of this study was to develop a method to quantify viable populations of these two BCAs in the crop phyllosphere. A molecular tool based on propidium monoazide (PMA) (PMAxx™-qPCR) capable of quantifying viable populations of these two BCAs was developed. Samples were treated with PMAxx™ (12.5–100 μM), followed by 15 min incubation, exposure to a 800 W halogen light for 30 min, DNA extraction, and quantification using qPCR. This provided a platform for using the PMAxx™-qPCR technique for both BCAs to differentiate viable from dead cells. The maximum number of dead cells blocked, based on the DNA, was 3.44 log10 for B. subtilis and 5.75 log10 for G. catenulatum. Validation studies showed that this allowed accurate quantification of viable cells. This method provided effective quantification of the temporal changes in viable populations of the BCAs in commercial formulations on lettuce leaves in polytunnel and glasshouse production systems.
Collapse
Affiliation(s)
- Gurkan Tut
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK
- Correspondence:
| | - Philip Brain
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
| | - Xiangming Xu
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
| |
Collapse
|
6
|
Carbó A, Teixidó N, Usall J, Torres R. Verifying the biocontrol activity of novel film-forming formulations of Candida sake CPA-1: resilience in relation to environmental factors, rainfall episodes, and control of Botrytis cinerea on different hosts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4969-4976. [PMID: 30980409 DOI: 10.1002/jsfa.9731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The efficacy of Candida sake CPA-1 as a biocontrol agent against several diseases has been studied since it was isolated 20 years ago. However, it was only recently that two suitable and effective film-forming formulations based on potato starch and maltodextrins were developed using the fluidized-bed spray-drying system. The present work aimed to confirm the capability of both novel formulations by testing their resilience on grapes at different temperatures (0, 22, and 30 °C), relative humidities (40% and 85%), and simulated rainfall levels. Another objective was to examine the control of Botrytis cinerea in different hosts. RESULTS The CPA-1 cells from both dried formulations survived better than the liquid formulation on grapes stored at 0 and 22 °C regardless of the relative humidity. After simulated rainfall, potato starch formulation achieved significantly higher populations than maltodextrin formulation, although the highest reduction was -1.6 log N N0 -1 . A positive effect of cell establishment prior to the simulated rainfall was shown, and recovered cells from the potato starch formulation were significantly higher after 72 h of cell establishment. Finally, both formulations reduced the incidence and severity of B. cinerea on pears, apples, and tomatoes. CONCLUSION The potential of these novel film-forming formulations of C. sake CPA-1 was verified. The resilience of formulated C. sake was better than the commercialized liquid formulation, the adherence of the formulations to the grapes improved after an establishment period prior to rain exposure, and the control of B. cinerea was verified in a wider range of hosts. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna Carbó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| |
Collapse
|
7
|
Carbó A, Torres R, Teixidó N, Usall J, Medina A, Magan N. Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agentCandida sakeCPA-1 on grapes. Lett Appl Microbiol 2018; 67:2-8. [DOI: 10.1111/lam.12889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- A. Carbó
- IRTA; XaRTA-Postharvest; Edifici Fruitcentre; Parc Científic i Tecnològic Agroalimentari de Lleida; Lleida Catalonia Spain
| | - R. Torres
- IRTA; XaRTA-Postharvest; Edifici Fruitcentre; Parc Científic i Tecnològic Agroalimentari de Lleida; Lleida Catalonia Spain
| | - N. Teixidó
- IRTA; XaRTA-Postharvest; Edifici Fruitcentre; Parc Científic i Tecnològic Agroalimentari de Lleida; Lleida Catalonia Spain
| | - J. Usall
- IRTA; XaRTA-Postharvest; Edifici Fruitcentre; Parc Científic i Tecnològic Agroalimentari de Lleida; Lleida Catalonia Spain
| | - A. Medina
- Applied Mycology Group; Cranfield Soil and AgriFood Institute; Cranfield University; Cranfield Bedford UK
| | - N. Magan
- Applied Mycology Group; Cranfield Soil and AgriFood Institute; Cranfield University; Cranfield Bedford UK
| |
Collapse
|
8
|
Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 2018; 59:1498-1513. [DOI: 10.1080/10408398.2017.1417235] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ajinath Shridhar Dukare
- ICAR - Central Institute of Post-Harvest Engineering & Technology, Ludhiana/Abohar, Punjab, India
| | - Sangeeta Paul
- ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - V. Eyarkai Nambi
- ICAR - Central Institute of Post-Harvest Engineering & Technology, Ludhiana/Abohar, Punjab, India
| | - Ram Kishore Gupta
- ICAR - Central Institute of Post-Harvest Engineering & Technology, Ludhiana/Abohar, Punjab, India
| | - Rajbir Singh
- ICAR - Agricultural Technology Application Research Institutes, Ludhiana, Punjab, India
| | - Kalyani Sharma
- ICAR - Central Institute of Post-Harvest Engineering & Technology, Ludhiana/Abohar, Punjab, India
| | - Rajesh Kumar Vishwakarma
- ICAR - Central Institute of Post-Harvest Engineering & Technology, Ludhiana/Abohar, Punjab, India
| |
Collapse
|
9
|
Fluidised-bed spray-drying formulations of Candida sake CPA-1 by adding biodegradable coatings to enhance their survival under stress conditions. Appl Microbiol Biotechnol 2017; 101:7865-7876. [DOI: 10.1007/s00253-017-8529-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 01/11/2023]
|
10
|
Carbó A, Torres R, Usall J, Fons E, Teixidó N. Dry formulations of the biocontrol agent Candida sake CPA-1 using fluidised bed drying to control the main postharvest diseases on fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3691-3698. [PMID: 28111760 DOI: 10.1002/jsfa.8229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The biocontrol agent Candida sake CPA-1 is effective against several diseases. Consequently, the optimisation of a dry formulation of C. sake to improve its shelf life and manipulability is essential for increasing its potential with respect to future commercial applications. The present study aimed to optimise the conditions for making a dry formulation of C. sake using a fluidised bed drying system and then to determine the shelf life of the optimised formulation and its efficacy against Penicillium expansum on apples. RESULTS The optimal conditions for the drying process were found to be 40 °C for 45 min and the use of potato starch as the carrier significantly enhanced the viability. However, none of the protective compounds tested increased the viability of the dried cells. A temperature of 25 °C for 10 min in phosphate buffer was considered as the optimum condition to recover the dried formulations. The dried formulations should be stored at 4 °C and air-packaged; moreover, shelf life assays indicated good results after 12 months of storage. The formulated products maintained their biocontrol efficacy. CONCLUSION A fluidised bed drying system is a suitable process for dehydrating C. sake cells; moreover, the C. sake formulation is easy to pack, store and transport, and is a cost-effective process. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna Carbó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| | - Estanislau Fons
- Food Technology Department, Lleida University, XaRTA-Postharvest, Agrotecnio Center, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Catalonia, Spain
| |
Collapse
|
11
|
Sui Y, Wisniewski M, Droby S, Liu J. Responses of yeast biocontrol agents to environmental stress. Appl Environ Microbiol 2015; 81:2968-75. [PMID: 25710368 PMCID: PMC4393439 DOI: 10.1128/aem.04203-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance.
Collapse
Affiliation(s)
- Yuan Sui
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Michael Wisniewski
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, West Virginia, USA
| | - Samir Droby
- Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Jia Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
12
|
Calvo-Garrido C, Viñas I, Usall J, Rodríguez-Romera M, Ramos MC, Teixidó N. Survival of the biological control agent Candida sake CPA-1 on grapes under the influence of abiotic factors. J Appl Microbiol 2014; 117:800-11. [PMID: 24917056 DOI: 10.1111/jam.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 12/01/2022]
Abstract
AIMS As reliability of preharvest applications of biological control agents (BCAs) to control fruit pathogens is highly dependent on the survival of the selected organism, this study aimed to describe the population dynamics of the yeast-BCA Candida sake (Saito & Ota) CPA-1 on grape berries under the effect of abiotic factors such as temperature, relative humidity, sunlight and rainfall. METHODS AND RESULTS Candida sake (5 × 10(7) CFU ml(-1)), combined with different concentrations of the food additive Fungicover(®), was applied on grape berry clusters. Treated clusters were then exposed to abiotic factors in field or laboratory conditions, recovering populations to describe C. sake population dynamics. The addition of Fungicover significantly increased C. sake multiplication under optimal growth conditions and improved survival under fluctuating abiotic factors. After field applications, significant differences in populations on grape bunches exposed or covered by fine foliage were detected. Simulated rainfall washed off C. sake populations by 0·6-0·9 log units after 20 mm of rain volume. Allowing populations to establish for 24 h or more, prior to a rain event, persistence on grape berries significantly increased and the effect of rain intensity was not observable. CONCLUSIONS Candida sake demonstrated high survival ability under unfavourable environmental conditions and persistence under intense rain. The study evidenced the importance of the first period just after application for C. sake survival on grape tissues and also the protective effect of the additive Fungicover. SIGNIFICANCE AND IMPACT OF THE STUDY This research provides new information on the survival of C. sake under field conditions and its practical implications for recommending timing of spray with this antagonist. Our results could be useful for other yeast antagonists applied before harvest. This work, for the first time, defines population dynamics of a yeast BCA using simulated rainfall.
Collapse
Affiliation(s)
- C Calvo-Garrido
- Food Technology Department, XaRTA-Postharvest, Agrotecnio Center, University of Lleida, Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Calvo-Garrido C, Viñas I, Elmer PAG, Usall J, Teixidó N. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. PEST MANAGEMENT SCIENCE 2014; 70:595-602. [PMID: 23744713 DOI: 10.1002/ps.3587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Necrotic tissues within grape (Vitis vinifera) bunches represent an important source of Botrytis cinerea inoculum for Botrytis bunch rot (BBR) at harvest in vineyards. This research quantified the incidence of B. cinerea on necrotic floral and fruit tissues and the efficacy of biologically based treatments for suppression of B. cinerea secondary inoculum within developing bunches. RESULTS At veraison (2009 and 2010), samples of aborted flowers, aborted fruits and calyptras were collected, and the incidence and sporulation of B. cinerea were determined. Aborted fruits presented significantly higher incidence in untreated samples. Early-season applications of Candida sake plus Fungicover®, Fungicover alone or Ulocladium oudemansii significantly reduced B. cinerea incidence on aborted flowers and calyptras by 46-85%. Chitosan treatment significantly reduced B. cinerea incidence on calyptras. None of the treatments reduced B. cinerea incidence on aborted fruits. Treatments significantly reduced sporulation severity by 48% or more. CONCLUSIONS Treatments were effective at reducing B. cinerea secondary inoculum on necrotic tissues, in spite of the variable control on aborted fruits. This is the first report to quantify B. cinerea on several tissues of bunch trash and to describe the effective suppression of saprophytic B. cinerea inoculum by biologically based treatments.
Collapse
Affiliation(s)
- Carlos Calvo-Garrido
- Food Technology Department, Lleida University, XaRTA-Postharvest, Agrotecnio Center, Lleida, Catalonia, Spain
| | | | | | | | | |
Collapse
|
14
|
Santos Díaz AM, Grijalba E, Victoria Zuluaga M, Gómez M, Villamizar L. Compatibilidad in vitro de un bioplaguicida a base de Lecanicillium lecanii (Hypocreales: Clavicipitaceae) con agroquímicos empleados en los cultivos de algodón y berenjena. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2013. [DOI: 10.15446/rev.colomb.biote.v15n2.38025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Liu J, Sui Y, Wisniewski M, Droby S, Liu Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 2013; 167:153-60. [DOI: 10.1016/j.ijfoodmicro.2013.09.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 01/30/2023]
|
16
|
Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Abadias M, Teixidó N. Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J Appl Microbiol 2012; 112:954-65. [PMID: 22332943 DOI: 10.1111/j.1365-2672.2012.05258.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To prepare commercially acceptable formulations of Bacillus subtilis CPA-8 by spray-drying with long storage life and retained efficacy to control peach and nectarine brown rot caused by Monilinia spp. METHODS AND RESULTS CPA-8 24-h- and 72-h-old cultures were spray dried using 10% skimmed milk, 10% skimmed milk plus 10% MgSO(4) , 10% MgSO(4) and 20% MgSO(4) as carriers/protectants. All carriers/protectants gave good percentages of powder recovery (28-38%) and moisture content (7-13%). CPA-8 survival varied considerably among spray-dried 24-h- and 72-h-old cultures. Seventy-two hours culture spray dried formulations showed the highest survival (28-32%) with final concentration products of 1·6-3·3 × 10(9) CFU g(-1) , while viability of 24-h-old formulations was lower than 1%. Spray-dried 72-h-old formulations were selected to subsequent evaluation. Rehydration of cells with water provided a good recovery of CPA-8 dried cells, similar to other complex rehydration media tested. Spray-dried formulations stored at 4 ± 1 and 20 ± 1°C showed good shelf life during 6 months, and viability was maintained or slightly decreased by 0·2-0·3-log. CPA-8 formulations after 4- and 6 months storage were effective in controlling brown rot caused by Monilinia spp. on nectarines and peaches resulting in a 90-100% reduction in disease incidence. CONCLUSIONS Stable and effective formulations of biocontrol agent B. subtilis CPA-8 could be obtained by spray-drying. SIGNIFICANCE AND IMPACT OF THE STUDY New shelf-stable and effective formulations of a biocontrol agent have been obtained by spray-drying to control brown rot on peach.
Collapse
|
17
|
Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E. Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. TREES (BERLIN, GERMANY : WEST) 2011; 26:215-226. [PMID: 25983396 PMCID: PMC4425264 DOI: 10.1007/s00468-011-0626-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 05/14/2023]
Abstract
The tree constitutes an ecosystem in which microorganisms play an essential role in its functionality. Interactions that microorganisms establish with plants may be beneficial or detrimental and are of extreme importance in the exploitation of trees in agriculture as crop production systems. Fruit trees, especially pomefruit trees including apple, pear and several ornamentals are of great economic importance but its production is affected by several diseases. Fungal and bacterial fruit tree diseases are mainly controlled with chemical fungicides and bactericides, but health and environmental concerns about the use of chemical pesticides have result in strong regulatory actions and have stimulated the development of beneficial microorganisms as microbial pesticides. Up to now, several microorganisms have been registered in different countries and in the EU as biocontrol agents (BCA) covering mainly fire blight, soil-borne fungal diseases and postharvest fruit fungal rot. The key aspects in the success of this technology for disease control are related to biosafety and environmental impact of biocontrol agents, the traceability and fate in the environment and food chain, the improvement by physiological, genetic engineering or the use of mixtures or formulations as well as the industrial production and development of delivery systems for treatment application to trees.
Collapse
Affiliation(s)
- A. Bonaterra
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - E. Badosa
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - J. Cabrefiga
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - J. Francés
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - E. Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| |
Collapse
|
18
|
Nopcharoenkul W, Pinphanichakarn P, Pinyakong O. The development of a liquid formulation of Pseudoxanthomonas sp. RN402 and its application in the treatment of pyrene-contaminated soil. J Appl Microbiol 2011; 111:36-47. [PMID: 21518158 DOI: 10.1111/j.1365-2672.2011.05037.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To develop a liquid formulation of Pseudoxanthomonas sp. RN402 for prolonged storage and maintaining high survival rates and pyrene biodegradability. METHODS AND RESULTS Liquid formulations of RN402, designated as L-RN402, were prepared by suspending bacterial cells (10⁹ CFU ml⁻¹) in various buffers. Analysis found that phosphate buffer containing glycerol maintained high survival rate (94%) as well as pyrene biodegradability of bacteria after a 30-day storage. This L-RN402 could be stored at 30°C for at least 6 months. Bioaugmentation treatment with stored L-RN402 resulted in the complete degradation of pyrene (300 mg kg⁻¹) in soil microcosms within 4 weeks. RN402 could be detected by denaturing gradient gel electrophoresis throughout the period; moreover, real-time PCR indicated the presence of high number of nidA-containing bacteria. CONCLUSIONS A liquid formulation of RN402, an effective pyrene degrader, was developed by suspending RN402 in phosphate buffer containing 1% glycerol. This formulation could be stored at 30°C for at least 6 months and maintain high efficacy in the treatment of pyrene-contaminated soil. SIGNIFICANCE AND IMPACT OF THE STUDY This work is the first description of a liquid formulation of pyrene-degrading bacteria for prolonged storage that retains biological activity for the treatment of environmental pollutants.
Collapse
Affiliation(s)
- W Nopcharoenkul
- Inter-department of Environmental Science, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
19
|
Melin P, Schnürer J, Håkansson S. Formulation and stabilisation of the biocontrol yeast Pichia anomala. Antonie van Leeuwenhoek 2010; 99:107-12. [DOI: 10.1007/s10482-010-9522-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
|
20
|
Morales H, Marín S, Ramos AJ, Sanchis V. Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control 2010. [DOI: 10.1016/j.foodcont.2009.12.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Cañamás T, Viñas I, Usall J, Magan N, Solsona C, Teixidó N. Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying. J Appl Microbiol 2008; 104:767-75. [DOI: 10.1111/j.1365-2672.2007.03590.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Melin P, Sundh I, Håkansson S, Schnürer J. Biological preservation of plant derived animal feed with antifungal microorganisms: safety and formulation aspects. Biotechnol Lett 2007; 29:1147-54. [PMID: 17479224 DOI: 10.1007/s10529-007-9375-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/14/2007] [Accepted: 03/19/2007] [Indexed: 11/26/2022]
Abstract
During storage of moist animal feed, growth of detrimental fungi causing spoilage, or being mycotoxigenic or pathogenic, is a severe problem. Addition of biopreservative yeasts or lactic acid bacteria can significantly reduce this problem. However, their use requires several careful considerations. One is the safety to the animal, humans and the environment, tightly connected to legal aspects and the need for pre-market authorisation when supplementing feed with microorganisms. Although both yeasts and lactic acid bacteria are considered comparatively safe organisms due to low production of toxic metabolites, it is of great importance to understand the mechanisms behind the biopreservative abilities. Another important issue concerns practical aspects, such as the economic production of large amounts of the organisms and the development of a suitable formulation giving the organisms a long shelf life. These aspects are discussed and a recommendation of this review is that both safety and formulation aspects of a specific microbe should be considered at an early stage in the selection of new organisms with biopreservation potential.
Collapse
Affiliation(s)
- Petter Melin
- Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, Uppsala, 750 07, Sweden.
| | | | | | | |
Collapse
|
23
|
Torres R, Teixidó N, Viñas I, Mari M, Casalini L, Giraud M, Usall J. Efficacy of Candida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. J Food Prot 2006; 69:2703-11. [PMID: 17133815 DOI: 10.4315/0362-028x-69.11.2703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effectiveness of a formulated product of the yeast Candida sake CPA-1 for controlling postharvest diseases on pome fruits was demonstrated in laboratory, semicommercial, and commercial trials carried out in the major pome fruit producing region of the European Union. First, one wettable powder and seven liquid formulations were tested in laboratory trials that involved two varieties of apples and two varieties of pears. In all cases, an efficacy similar to that of fresh cells was demonstrated in the control of artificial Penicillium expansum infection. After these trials, the formulated product chosen for semicommercial and commercial trials was LF1, a liquid formulation that is particularly suitable for commercial applications. In semicommercial trials, LF1 showed a performance similar to fresh cells in most trials, and the population dynamics of both fresh and formulated cells were quite stable throughout the storage period. This indicates the high viability of C. sake CPA-1 in this formulation and the absence of adverse effects during the formulation of the product, which may significantly affect both its ability to grow on fruit and its antagonistic activity. We evaluated the control of natural infection after applying the formulated product in a commercial drencher in different packinghouses. A significant reduction in the incidence of diseases was observed with a recommended dose of around 10(7) CFU/ml when natural infections were greater than 1%. In general, large quantities of yeast were observed on the surface of unwounded fruits of different pome fruit cultivars. Moreover, populations of this biocontrol agent increased rapidly on fruit surfaces and remained quite stable for a long time under commercial storage conditions. Commercial practices used in packinghouses were therefore successfully applied for this formulated product.
Collapse
Affiliation(s)
- R Torres
- Postharvest Unit, Institute of Agro-Food Research and Technology (IRTA), Centre UdL (University of Lleida)-IRTA, Av. Rovira Roure, 191. 25198 Lleida, Catalonia, Spain.
| | | | | | | | | | | | | |
Collapse
|
24
|
Melin P, Håkansson S, Eberhard TH, Schnürer J. Survival of the biocontrol yeast Pichia anomala after long-term storage in liquid formulations at different temperatures, assessed by flow cytometry. J Appl Microbiol 2006; 100:264-71. [PMID: 16430502 DOI: 10.1111/j.1365-2672.2005.02778.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Investigate the survival of liquid formulations of the biocontrol yeast Pichia anomala J121 at different temperatures, and develop a system for comparative studies of different storage conditions and formulations. METHODS AND RESULTS The survival of P. anomala in liquid formulations with lactose, starch and trehalose amendments was measured during prolonged storage at temperatures ranging from -20 to +30 degrees C. The relative survival of the stored cells was rapidly estimated by flow cytometry. After 4 weeks incubation at 4 and 10 degrees C, 75-90% of the cells were viable, with no significant differences between the various formulations. Supplementing the storage buffer with lactose or trehalose increased the survival after longer incubations (8 and 12 weeks) at all temperatures (-20 to 30 degrees C). Trehalose was the most effective protectant at 20 and 30 degrees C (>20% viable cells after 12 weeks at 20 degrees C). The biocontrol activity was maintained after formulation and prolonged storage of P. anomala. CONCLUSIONS The storage potential of liquid formulated P. anomala cells can be increased by supplementation with lactose or trehalose. The combination of a custom made incubation chamber and flow cytometry was suitable to evaluate stability of P. anomala formulations. SIGNIFICANCE AND IMPACT OF THE STUDY Liquid formulated P. anomala have a long shelf life. The developed test system can be used to study different formulations of other biocontrol agents.
Collapse
Affiliation(s)
- P Melin
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
25
|
Patiño-Vera M, Jiménez B, Balderas K, Ortiz M, Allende R, Carrillo A, Galindo E. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. J Appl Microbiol 2005; 99:540-50. [PMID: 16108795 DOI: 10.1111/j.1365-2672.2005.02646.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS To develop a pilot-plant fermentation process for the production of the yeast Rhodotorula minuta, to be used as a biocontrol agent of mango anthracnose, using a low-cost culture medium. To develop a stable liquid formulation that preserve high viability of the yeast stored at 4 degrees C. METHODS AND RESULTS Keeping constant the volumetric power input, a fermentation process was scaled-up from shake flasks to a 100 l bioreactor. Preharvest applications of the yeast resulted in postharvest anthracnose severity equal or lower than that observed with a chemical fungicide. Glycerol was added to the formulation as water activity reducer and xanthan gum as a viscosity-enhancing agent. Yeast initial concentration of 10(10) CFU ml(-1) resulted in 4-5 orders of magnitude decrease after 1 month of storage at 4 degrees C, whereas when it was formulated at 10(9) CFU ml(-1), the decrease was of two orders of magnitude in 6 months. CONCLUSIONS The fermentation process was successfully scaled-up using a low-cost culture medium. Postharvest anthracnose severity could be considerably reduced using this yeast. Formulating the yeast at 10(9) CFU ml(-1) and adding glycerol (20%) and xanthan (5 g l(-1)) avoided both contamination and yeast sedimentation and it was able to preserve up to 10(7) CFU ml(-1) after 6 months at 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY The yeast R. minuta is reported as a novel antagonistic micro-organism against the pathogen Colletotrichum gloeosporioides. Pilot plant production of this yeast allowed us to conduct field tests in commercial orchards during three harvest seasons. Yeast suspensions applied to mango trees reduced the fruit anthracnose severity in levels similar or better than chemical fungicides.
Collapse
Affiliation(s)
- M Patiño-Vera
- Scaling-up and Pilot Plant Unit, Department of Cellular Engineering and Biocatalysis, Institute of Biotechnology, National University of Mexico, Box 510-3, Cuernavaca 62250, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
26
|
Li GQ, Huang HC, Acharya SN, Erickson RS. Biological Control of Blossom Blight of Alfalfa Caused by Botrytis cinerea Under Environmentally Controlled and Field Conditions. PLANT DISEASE 2004; 88:1246-1251. [PMID: 30795320 DOI: 10.1094/pdis.2004.88.11.1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fungal and bacterial antagonists were tested for their inhibition of sporulation of Botrytis cinerea on detached alfalfa florets. Clonostachys rosea, Gliocladium catenulatum, and Trichoderma atroviride were evaluated for protecting young blossoms and pods of alfalfa from infection by B. cinerea in vitro. C. rosea was further tested to control pod rot and seed rot caused by B. cinerea under field conditions. The results showed that four of the tested antagonists, C. rosea, G. catenulatum, T. atroviride, and Trichothecium roseum, could inhibit sporulation by B. cinerea on detached alfalfa florets. Both C. rosea and G. catenulatum were effective in suppression of infection of alfalfa pods by B. cinerea when inoculated on fresh petals of alfalfa at the anthesis stage, and their efficacy was greater than that of Trichoderma atroviride. A significant suppression of B. cinerea by C. rosea and G. catenulatum on pods and seed of alfalfa was observed when they were inoculated on senescent petals at the pod-development stage. Results of a field trial indicated that C. rosea applied to upper parts of alfalfa plants significantly suppressed pod rot and seed rot caused by B. cinerea, and significantly increased seed production of alfalfa in each of 3 years. These studies show that C. rosea has potential as a biocontrol agent for control of alfalfa blossom blight caused by B. cinerea.
Collapse
Affiliation(s)
- G Q Li
- Department of Plant Protection, Huazhong Agricultural University, Wuhan, 430070, China
| | - H C Huang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - S N Acharya
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - R S Erickson
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
27
|
Current awareness on yeast. Yeast 2003; 20:1007-14. [PMID: 14587515 DOI: 10.1002/yea.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
Torres R, Usall J, Teixidó N, Abadias M, Viñas I. Liquid formulation of the biocontrol agent Candida sake by modifying water activity or adding protectants. J Appl Microbiol 2003; 94:330-9. [PMID: 12534826 DOI: 10.1046/j.1365-2672.2003.01843.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To evaluate the effect of modification of water activity (aw) and the addition of protective substances in the preservation medium of liquid formulations of the biocontrol agent Candida sake stored at 4 and 20 degrees C. METHODS AND RESULTS The aw of the preservation medium of C. sake was modified from 0.72 to 0.95 by adding glycerol or polyethylene glycol (PEG). Moreover, several protectant substances at different concentrations were evaluated. Modification of lower aw-levels (0.721-0.901) with glycerol did not maintain the viability of the yeast cells. Higher aw-levels (0.93-0.95) with either glycerol or PEG improved the viability but not at acceptable viability levels. C. sake cells maintained viabilities >60% when sugars, such as trehalose, and polyols, such as glycerol and PEG were used as protectants in liquid formulations. Moreover, liquid formulations of C. sake stored at 4 degrees C showed higher number of viable counts than at 20 degrees C. When different sugars were tested, all of them, except 10% fructose, resulted in a viability higher than 50% of the C. sake formulations. Biocontrol of liquid formulation treatments was similar to fresh cells in controlling Penicillium expansum on wounded apples. CONCLUSIONS Sugars such as lactose and trehalose could be considered as good protectants in order to obtain liquid formulations of C. sake cells as they maintain the viability >70% for 4 months at 4 degrees C. SIGNIFICANCE AND IMPACT OF STUDY This study shows that a suitable liquid formulation for commercial application can be produced with high viability and conservation of biocontrol efficacy. Moreover, if 10% lactose is the protectant used in the formulation, the economic costs would not be limiting for industrial production.
Collapse
Affiliation(s)
- R Torres
- Postharvest Unit. CeRTA. Centre UdL-IRTA, Av. Rovira Roure, 177. 25198 Lleida, Catalonia, Spain.
| | | | | | | | | |
Collapse
|