1
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
2
|
Dudley JS, Renfree MB, Wagner GP, Griffith OW. The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby. Proc Natl Acad Sci U S A 2024; 121:e2310047121. [PMID: 39378090 PMCID: PMC11494332 DOI: 10.1073/pnas.2310047121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
In the first live-bearing mammals, pregnancy was likely short and ended with a brief period of inflammatory maternal-fetal interaction. This mode of reproduction has been retained in many marsupials. While inflammation is key to successful implantation in eutherians, a key innovation in eutherians is the ability to switch off this inflammation after it has been initiated. This extended period, in which inflammation is suppressed, likely allowed for an extended period of placentation. Extended placentation has evolved independently in one lineage of marsupials, the macropodids (wallabies and kangaroos), with placentation lasting beyond the 2 to 4 d seen in other marsupial taxa, which allows us to investigate the role of inflammation response after attachment in the extension of placentation in mammals. By comparing gene expression changes at attachment in three marsupial species, the tammar wallaby, opossum, and fat-tailed dunnart, we show that inflammatory attachment is an ancestral feature of marsupial implantation. In contrast to eutherians, where attachment-related (quasi-) inflammatory reaction is even involved in epitheliochorial placentation (e.g., pig), this study found no evidence of a distinct attachment-related reaction in wallabies. Instead, only a small number of inflammatory genes are expressed at distinct points of gestation, including IL6 before attachment, LIF throughout placentation, and prostaglandins before birth. During parturition, a more distinct inflammatory reaction is detectable, likely involved in precipitating the parturition cascade similar to eutherians. We suggest that in wallaby, extended gestation became possible by avoiding an inflammatory attachment reaction, which is a different strategy than seen in eutherians.
Collapse
Affiliation(s)
- Jessica S. Dudley
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| | - Marilyn B. Renfree
- School of BioSciences, University of Melbourne, Melbourne, VIC3010, Australia
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06520
- Yale Systems Biology Institute, Yale University, West Haven, CT06520
- Department of Evolutionary Biology, University of Vienna, ViennaA-1030, Austria
| | - Oliver W. Griffith
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| |
Collapse
|
3
|
Shukla R, Kannan A, Laws MJ, Johnson AW, Flaws JA, Bagchi MK, Bagchi IC. Long-term dietary exposure to a mixture of phthalates enhances estrogen and beta-catenin signaling pathways, leading to endometrial hyperplasia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613339. [PMID: 39345621 PMCID: PMC11429868 DOI: 10.1101/2024.09.16.613339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Phthalates, synthetic chemicals widely utilized as plasticizers and stabilizers in various consumer products, present a significant concern due to their persistent presence in daily human life. While past research predominantly focused on individual phthalates, real-life human exposure typically encompasses complex mixtures of these compounds. The cumulative effects of prolonged exposure to phthalate mixtures on uterine health remain poorly understood. To address this knowledge gap, we conducted studies utilizing adult female mice exposed to a phthalate mixture for 6 and 12 months through ad libitum chow consumption. We previously reported that continuous exposure to this phthalate mixture for 6 months led to uterine fibrosis. In this study, we show that the exposure, when continued beyond 6 months to 1 year, caused fibrotic uteri to display hyperplasia with a significant increase in gland to stroma ratio. Endometrial hyperplasia is commonly caused by unopposed estrogen action, which promotes increased expression of pro-inflammatory cytokines and chemokines and proliferation of the endometrial epithelial cells. Indeed, RNA sequencing analysis revealed a marked upregulation of several estrogen-regulated genes, Wnt ligands that are involved in oncogenic pathways, as well as chemokines, in phthalate-exposed uterine tissues. Consequently, the exposed uteri exhibited increased proliferation of endometrial epithelial cells, and a heightened inflammatory response indicated by extensive homing of macrophages. Further studies revealed a marked enhancement of the Wnt/β-Catenin signaling pathway, potentially contributing to the development of endometrial hyperplasia. Collectively, this study underscores the significance of understanding the exposure to environmental factors in the pathogenesis of endometrial disorders.
Collapse
|
4
|
Rusidzé M, Gargaros A, Fébrissy C, Dubucs C, Weyl A, Ousselin J, Aziza J, Arnal JF, Lenfant F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023; 12:cells12040620. [PMID: 36831287 PMCID: PMC9954071 DOI: 10.3390/cells12040620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Adrien Gargaros
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Chanaëlle Fébrissy
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Charlotte Dubucs
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Ariane Weyl
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jessie Ousselin
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jacqueline Aziza
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Correspondence:
| |
Collapse
|
5
|
Kishi H, Komatsu W, Uchiyama K, Takayama H, Udagawa T, Ohhira S, Kobashi G. Vascular endothelial growth factor isoforms are expressed in the uterus during estrous cycle of golden hamsters (Mesocricetus auratus). Anim Sci J 2023; 94:e13804. [PMID: 36617429 DOI: 10.1111/asj.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
We investigated VEGF expression in the uterus during the estrous cycle in the golden hamster (Mesocricetus auratus). Reverse transcription polymerase chain reaction of genes expressed in the uterus revealed the presence of at least three different VEGF isoforms (hamster VEGF188, VEGF164, and VEGF120). They were highly homologous to the respective mouse and human isoforms. Furthermore, VEGF164 and VEGF120 were predominantly expressed in the hamster uterus during the estrous cycle. In situ hybridization revealed that VEGF is expressed only in the luminal and glandular epithelium of the endometrium but not in the stromal cells or myometrium. The positive reaction of luminal and glandular epithelial cells on day 4 of the estrous cycle (day 1 = day of ovulation) was a little stronger than that of other days of the cycle. These findings suggest that VEGF molecules are secreted by endometrial epithelial cells and play an important role in the maintenance of blood vessels in the endometrial stroma. These results also suggest that uterine changes, such as edema, observed from day 4 to day 1 of the estrous cycle, are expected to occur primarily through the action of VEGF secreted by the uterine endometrial epithelium in preparation for subsequent embryo implantation.
Collapse
Affiliation(s)
- Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hidehito Takayama
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Tomomi Udagawa
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
6
|
Tang H, Mourad SM, Wang A, Zhai SD, Hart RJ. Dopamine agonists for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev 2021; 4:CD008605. [PMID: 33851429 PMCID: PMC8092425 DOI: 10.1002/14651858.cd008605.pub4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Ovarian hyperstimulation syndrome (OHSS) is a potentially serious complication of ovarian stimulation in assisted reproduction technology (ART). It is characterised by enlarged ovaries and an acute fluid shift from the intravascular space to the third space, resulting in bloating, increased risk of venous thromboembolism, and decreased organ perfusion. Most cases are mild, but forms of moderate or severe OHSS appear in 3% to 8% of in vitro fertilisation (IVF) cycles. Dopamine agonists were introduced as a secondary prevention intervention for OHSS in women at high risk of OHSS undergoing ART treatment. OBJECTIVES: To assess the effectiveness and safety of dopamine agonists in preventing OHSS in women at high risk of developing OHSS when undergoing ART treatment. SEARCH METHODS We searched the following databases from inception to 4 May 2020: Cochrane Gynaecology and Fertility Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL, and PsycINFO for randomised controlled trials (RCTs) assessing the effect of dopamine agonists on OHSS rates. We also handsearched reference lists and grey literature. SELECTION CRITERIA We considered RCTs for inclusion that compared dopamine agonists with placebo/no intervention or another intervention for preventing OHSS in ART. Primary outcome measures were incidence of moderate or severe OHSS and live birth rate. Secondary outcomes were rates of clinical pregnancy, multiple pregnancy, miscarriage, and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles, abstracts, and full texts of publications; selected studies; extracted data; and assessed risk of bias. We resolved disagreements by consensus. We reported pooled results as odds ratios (OR) and 95% confidence interval (CI) by the Mantel-Haenszel method. We applied GRADE criteria to judge overall quality of the evidence. MAIN RESULTS The search identified six new RCTs, resulting in 22 included RCTs involving 3171 women at high risk of OHSS for this updated review. The dopamine agonists were cabergoline, quinagolide, and bromocriptine. Dopamine agonists versus placebo or no intervention Dopamine agonists probably lowered the risk of moderate or severe OHSS compared to placebo/no intervention (OR 0.32, 95% CI 0.23 to 0.44; 10 studies, 1202 participants; moderate-quality evidence). This suggests that if the risk of moderate or severe OHSS following placebo/no intervention is assumed to be 27%, the risk following dopamine agonists would be between 8% and 14%. We are uncertain of the effect of dopamine agonists on rates of live birth (OR 0.96, 95% CI 0.60 to 1.55; 3 studies, 362 participants; low-quality evidence). We are also uncertain of the effect of dopamine agonists on clinical pregnancy, multiple pregnancy, miscarriage or adverse events (very low to low-quality evidence). Dopamine agonists plus co-intervention versus co-intervention Dopamine agonist plus co-intervention (hydroxyethyl starch, human albumin, or withholding ovarian stimulation 'coasting') may decrease the risk of moderate or severe OHSS compared to co-intervention (OR 0.48, 95% CI 0.28 to 0.84; 4 studies, 748 participants; low-quality evidence). Dopamine agonists may improve rates of live birth (OR 1.21, 95% CI 0.81 to 1.80; 2 studies, 400 participants; low-quality evidence). Dopamine agonists may improve rates of clinical pregnancy and miscarriage, but we are uncertain if they improve rates of multiple pregnancy or adverse events (very low to low-quality evidence). Dopamine agonists versus other active interventions We are uncertain if cabergoline improves the risk of moderate or severe OHSS compared to human albumin (OR 0.21, 95% CI 0.12 to 0.38; 3 studies, 296 participants; very low-quality evidence), prednisolone (OR 0.27, 95% CI 0.05 to 1.33; 1 study; 150 participants; very low-quality evidence), hydroxyethyl starch (OR 2.69, 95% CI 0.48 to 15.10; 1 study, 61 participants; very low-quality evidence), coasting (OR 0.42, 95% CI 0.18 to 0.95; 3 studies, 320 participants; very low-quality evidence), calcium infusion (OR 1.83, 95% CI 0.88 to 3.81; I² = 81%; 2 studies, 400 participants; very low-quality evidence), or diosmin (OR 2.85, 95% CI 1.35 to 6.00; 1 study, 200 participants; very low-quality evidence). We are uncertain of the effect of dopamine agonists on rates of live birth (OR 1.08, 95% CI 0.73 to 1.59; 2 studies, 430 participants; low-quality evidence). We are uncertain of the effect of dopamine agonists on clinical pregnancy, multiple pregnancy or miscarriage (low to moderate-quality evidence). There were no adverse events reported. AUTHORS' CONCLUSIONS Dopamine agonists probably reduce the incidence of moderate or severe OHSS compared to placebo/no intervention, while we are uncertain of the effect on adverse events and pregnancy outcomes (live birth, clinical pregnancy, miscarriage). Dopamine agonists plus co-intervention may decrease moderate or severe OHSS rates compared to co-intervention only, but we are uncertain whether dopamine agonists affect pregnancy outcomes. When compared to other active interventions, we are uncertain of the effects of dopamine agonists on moderate or severe OHSS and pregnancy outcomes.
Collapse
Affiliation(s)
- Huilin Tang
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Selma M Mourad
- Radboud University Medical Centre, Nijmegen, Netherlands
| | - Aihua Wang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Suo-Di Zhai
- Department of Pharmacy, Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Peking University Third Hospital, Beijing, China
| | - Roger J Hart
- School of Women's and Infants' Health, The University of Western Australia, King Edward Memorial Hospital and Fertility Specialists of Western Australia, Subiaco, Perth, Australia
| |
Collapse
|
7
|
Tejada MÁ, Santos-Llamas AI, Fernández-Ramírez MJ, Tarín JJ, Cano A, Gómez R. A Reassessment of the Therapeutic Potential of a Dopamine Receptor 2 Agonist (D2-AG) in Endometriosis by Comparison against a Standardized Antiangiogenic Treatment. Biomedicines 2021; 9:biomedicines9030269. [PMID: 33800198 PMCID: PMC8001569 DOI: 10.3390/biomedicines9030269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dopamine receptor 2 agonists (D2-ags) have been shown to reduce the size of tumors by targeting aberrant angiogenesis in pathological tissue. Because of this, the use of a D2-ag was inferred for endometriosis treatment. When assayed in mouse models however, D2-ags have been shown to cause a shift of the immature vessels towards a more mature phenotype but not a significant reduction in the amount of vascularization and size of lesions. These has raised concerns on whether the antiangiogenic effects of these compounds confer a therapeutic value for endometriosis. In the belief that antiangiogenic effects of D2-ags in endometriosis were masked due to non-optimal timing of pharmacological interventions, herein we aimed to reassess the antiangiogenic therapeutic potential of D2-ags in vivo by administering compounds at a timeframe in which vessels in the lesions are expected to be more sensitive to antiangiogenic stimuli. To prove our point, immunodeficient (NU/NU) mice were given a D2-ag (cabergoline), anti-VEGF (CBO-P11) or vehicle (saline) compounds (n = 8 per group) starting 5 days after implantation of a fluorescently labeled human lesion. The effects on the size of the implants was estimated by monitoring the extent of fluorescence emitted by the lesion during the three-week treatment period. Subsequently mice were sacrificed and lesions excised and fixed for quantitative immunohistochemical/immunofluorescent analysis of angiogenic parameters. Lesion size, vascular density and innervation were comparable in D2-ag and anti-VEGF groups and significantly decreased when compared to control. These data suggest that D2-ags are as powerful as standard antiangiogenic compounds in interfering with angiogenesis and lesion size. Our preliminary study opens the way to further exploration of the mechanisms beneath the antiangiogenic effects of D2-ags for endometriosis treatment in humans.
Collapse
Affiliation(s)
- Miguel Á. Tejada
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Correspondence: (M.Á.T.); (A.C.); (R.G.)
| | - Ana I. Santos-Llamas
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
| | - María José Fernández-Ramírez
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, 46010 Valencia, Spain;
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Juan J. Tarín
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Department of Cellular Biology, Functional Biology, and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.Á.T.); (A.C.); (R.G.)
| | - Raúl Gómez
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.Á.T.); (A.C.); (R.G.)
| |
Collapse
|
8
|
Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules 2021; 11:biom11020253. [PMID: 33578823 PMCID: PMC7916576 DOI: 10.3390/biom11020253] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a well-known angiogenic factor that plays a critical role in various physiological and pathological processes. VEGF also contributes to the process of embryo implantation by enhancing embryo development, improving endometrial receptivity, and facilitating the interactions between the developing embryo and the endometrium. There is a correlation between the alteration of VEGF expression and reproductive failure, including recurrent implantation failure (RIF) and recurrent miscarriage (RM). In order to clarify the role of VEGF in embryo implantation, we reviewed recent literature concerning the expression and function of VEGF in the reproductive system around the time of embryo implantation and we provide a summary of the findings reported so far. We also explored the effects and the possible underlying mechanisms of action of VEGF in embryo implantation.
Collapse
|
9
|
Rezaee D, Bandehpour M, Kazemi B, Salehi M. Role of intrauterine administration of transfected peripheral blood mononuclear cells by GM-CSF on embryo implantation and pregnancy rate in mice. Mol Hum Reprod 2021; 26:101-110. [PMID: 31899496 DOI: 10.1093/molehr/gaz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Indexed: 01/15/2023] Open
Abstract
One of the effective treatments in women with recurrent implantation failure (RIF) is the use of immune cells to facilitate embryo implantation. Previous studies have shown that intrauterine transmission of peripheral blood mononuclear cells (PBMC) increased the embryo implantation rate. In this study using B6D2F1 (C57BL/6 × DBA2) mice, a fragment of the granulocyte macrophage colony-stimulating factor (Gm-csf) gene was cloned into an enhanced green fluorescent protein vector (pEGFP-N1) and then transfected into PBMC. The protein level of GM-CSF was evaluated in the transfected PBMC and untransfected PBMC by ELISA. Attachment of mouse embryos and the mRNA expression levels of leukemia inhibitory factor (Lif), vascular endothelial growth factor (Vegf), matrix metalloproteinase 9 (Mmp9), Gmcsf-receptor (Gmcsf-r) and interleukin 6 (Il6) in vitro were assessed by real-time PCR in endometrial cells. To determine the pregnancy rate and number of implantation sites in vivo, the mouse uterine horns were analyzed on Day 7.5 post coitum. A greater amount of GM-CSF was produced in PBMC transfected with recombinant vector (552 pg/mL) compared with the untransfected PBMC (57 pg/mL) and PBMC transfected with empty vector (34 pg/mL) (P < 0.05). The data showed that the embryo attachment rate and mRNA expression levels (Vegf [1.7-fold], Mmp9 [1.4-fold], Lif [1.5-fold], Gm-csf r [1.6-fold] and Il6 [1.2-fold]) in the in vitro study (P < 0.01), pregnancy rate (P < 0.01) and number of implantation sites (P < 0.01) in the in vivo investigation (P < 0.05) were increased in PBMC transfected with recombinant vector compared with the PBMC group. The study demonstrated that, in mice, endometrium immunotherapy with transfected PBMC that contained recombinant GM-CSF before embryo implantation was effective in improving embryo implantation and endometrial receptivity.
Collapse
Affiliation(s)
- Delsuz Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Koubaa-Ghorbel F, Chaâbane M, Jdidi H, Turki M, Makni-Ayadi F, El Feki A. Salvia officinalis mitigates uterus and liver damages induced by an estrogen deficiency in ovariectomized rats. J Food Biochem 2020; 45:e13542. [PMID: 33124046 DOI: 10.1111/jfbc.13542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The present study evaluated the antioxidant activity of Salvia officinalis (sage) and its protective effect on estrogen deficiency in ovariectomized rats. Female Wistar rats were treated during either 15 or 30 days as follows: group C: negative controls, group S: positive controls treated with sage leaves, ovariectomized rats (group OVX) and ovariectomized rats receiving either sage (OVX-S) or hormonal (Group OVX-E) treatments, respectively. After 15 and 30 days of treatments, OVX rats showed a gain in body weight and an increase of absolute and relative liver weights. Meanwhile, absolute and relative uterus weights were decreased. Moreover, ovariectomy altered plasma transaminases' activities, lipid profile, and disrupted the redox status of liver and uterine tissues. It affected also the reproductive tract by decreasing the uterus glycogen content and plasma LDH activity. Supplementation of sage via the diet reduced weight gain and oxidative stress resulting from estrogen deficiency. PRACTICAL APPLICATIONS: During menopause, sexual hormone deficiency, especially estrogen, causes several morphological and physiological disturbances in liver and uterus tissues. In fact, the body weight gain and disturbances of redox status in liver and uterus were the main health problems detected after menopause. Sage leaves, used as medicinal plant, exerted its beneficial effects in the management of menopause disorders. As an important source of antioxidants, sage leaves could prevent obesity and oxidative damage in the liver and uterus resulting from estrogen deficiency.
Collapse
Affiliation(s)
| | - Mariem Chaâbane
- National Engineering School of Sfax, Sfax University, Sfax, Tunisia
| | - Hajer Jdidi
- Sciences Faculty of Sfax, Sfax University, Sfax, Tunisia
| | - Mouna Turki
- CHU H. Bourguiba, Sfax University, Sfax, Tunisia
| | | | | |
Collapse
|
11
|
Ugwah-Oguejiofor CJ, Okoli CO, Ugwah MO, Okolo RU, Bello SO. Assessment of reproductive impact of the aerial parts of Caralluma dalzielii N. E. Br in female Wistar rats. Heliyon 2020; 6:e05199. [PMID: 33102839 PMCID: PMC7575800 DOI: 10.1016/j.heliyon.2020.e05199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/24/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022] Open
Abstract
Caralluma dalzielii N. E. Brown belonging to family Asclepiadaceae, is a popular cactus-shaped plant native to East Africa. The aerial parts are used traditionally for treating various diseases including infertility. The present study evaluated the effects of the aqueous extract of the aerial parts of Caralluma dalzielii (AECD) on reproductive performance of female Wistar rats. Adult female virgin rats were allotted into four major groups namely pre-conception, post-conception, implantation site and ovariectomized rats' groups. Each group was subdivided into 4 groups and treated orally with 125, 250, 500 mg/kg of AECD or distilled water (vehicle). In the pre-conception and post-conception groups, litter sizes, pups' weights, deformities, gestation length and reproductive indices were determined. Number of implantation sites and weights of embryos were assessed in the implantation site group while in the ovariectomised rats' group, uterine weights were determined. AECD produced no difference in litter size and reproductive indices in pre-conception group while in post-conception group the litter size at 500 mg/kg was significantly (p < 0.05) reduced compared to the control. Post-implantation loss index was high, and the other reproductive indices were reduced at 500 mg/kg. Whereas at the dose of 125 mg/kg, post-implantation loss index was reduced, and litter size was increased when compared to the control group. At 500 mg/kg, AECD caused a significant (p < 0.05) decrease in the number of implantation sites and weight of embryos while at 125 mg/kg the implantation sites increased. A significant (p < 0.05) increase in the uterine weight in the ovariectomised rats' group was observed at all dose levels. Our study provides scientific evidence that supports the traditional use of AECD in the treatment of infertility. At a lower dose, AECD acts by increasing the number of implantation sites and litter size of animals but at a higher dose, it may be embryotoxic. AECD increases uterine wet weight in ovariectomised rats suggesting that the plant may be oestrogen-like.
Collapse
Affiliation(s)
- Chinenye J. Ugwah-Oguejiofor
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
- Corresponding author.
| | - Charles O. Okoli
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Michael O. Ugwah
- Department of Pharmacy, Usmanu Danfodiyo University Teaching Hospital, P.M.B. 2346, Sokoto, Nigeria
| | - Ray U. Okolo
- Department of Anatomical Sciences, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Shuaibu O. Bello
- Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| |
Collapse
|
12
|
Adlanmerini M, Fébrissy C, Zahreddine R, Vessières E, Buscato M, Solinhac R, Favre J, Anquetil T, Guihot AL, Boudou F, Raymond-Letron I, Chambon P, Gourdy P, Ohlsson C, Laurell H, Fontaine C, Metivier R, Le Romancer M, Henrion D, Arnal JF, Lenfant F. Mutation of Arginine 264 on ERα (Estrogen Receptor Alpha) Selectively Abrogates the Rapid Signaling of Estradiol in the Endothelium Without Altering Fertility. Arterioscler Thromb Vasc Biol 2020; 40:2143-2158. [PMID: 32640903 DOI: 10.1161/atvbaha.120.314159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17β-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.
Collapse
Affiliation(s)
- Marine Adlanmerini
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Chanaelle Fébrissy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Rana Zahreddine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Emilie Vessières
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Mélissa Buscato
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Romain Solinhac
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Julie Favre
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Typhaine Anquetil
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Anne-Laure Guihot
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Frederic Boudou
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Isabelle Raymond-Letron
- Institut National Polytechnique, École Nationale Vétérinaire de Toulouse, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Service 006 (I.R.-L.), Université de Toulouse, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Collège de France, Université de Strasbourg, Illkirch, France (P.C.)
| | - Pierre Gourdy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden (C.O.)
| | - Henrik Laurell
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Coralie Fontaine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Raphaël Metivier
- CNRS, Université de Rennes, IGDR (Institut de Génétique De Rennes) - UMR 6290, France (R.M.)
| | - Muriel Le Romancer
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France (M.L.R.)
| | - Daniel Henrion
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Jean-Francois Arnal
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Francoise Lenfant
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| |
Collapse
|
13
|
Milesi MM, Durando M, Lorenz V, Gastiazoro MP, Varayoud J. Postnatal exposure to endosulfan affects uterine development and fertility. Mol Cell Endocrinol 2020; 511:110855. [PMID: 32437785 DOI: 10.1016/j.mce.2020.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Endosulfan is an organochlorine pesticide (OCP) used in large-scale agriculture for controlling a variety of insects and mites that attack food and non-food crops. Although endosulfan has been listed in the Stockholm Convention as a persistent organic pollutant to be worldwide banned, it is still in use in some countries. Like other OCPs, endosulfan is bioaccumulative, toxic and persistent in the environment. Human unintentional exposure may occur through air inhalation, dietary, skin contact, as well as, via transplacental route and breast feeding. Due to its lipophilic nature, endosulfan is rapidly absorbed into the gastrointestinal tract and bioaccumulates in the fatty tissues. Similar to other OCPs, endosulfan has been classified as an endocrine disrupting chemical (EDC). Endocrine action of endosulfan on development and reproductive function of males has been extensively discussed; however, endosulfan effects on the female reproductive tract have received less attention. This review provides an overview of: i) the fate and levels of endosulfan in the environment and human population, ii) the potential estrogenic properties of endosulfan in vitro and in vivo, iii) its effects on uterine development, and iv) the long-term effects on female fertility and uterine functional differentiation during early gestation.
Collapse
Affiliation(s)
- M M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - V Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - M P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - J Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
14
|
Pathophysiological Changes in Female Rats with Estrous Cycle Disorder Induced by Long-Term Heat Stress. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4701563. [PMID: 32685488 PMCID: PMC7320282 DOI: 10.1155/2020/4701563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
High-temperature exposure is detrimental to women's reproductive health; however, the impact caused by long-term high temperature is not comprehensive, and a stable model of estrous cycle disorder induced by a high temperature is yet lacking. Herein, we aimed to establish a stable and effective model of estrous cycle disorder in female rats induced by long-term heat stress to study its physiological and pathological characteristics and explore the underlying mechanism. In the present study, female Sprague-Dawley rats with normal estrous cycles were exposed to the temperature of 38 ± 0.5°C, relative humidity (RH) of 55 ± 5% (2 h/d, 1 time/d) hot cabin at more than 90 days. Consequently, after long-term heat stress, no difference was detected in body weight and rectal temperature, but the estrus cycle was prolonged, the uterine organ index was increased, pathological changes occurred, the increase latitude of stress hormones heat shock protein 70 (Hsp70) and corticosterone (CORT) decreased, estradiol (E2) and luteinizing hormone (LH) levels decreased, follicle stimulating hormone (FSH) and prolactin (Prl) levels increased, gonadotropin-releasing hormone (GnRH) and thyroid hormone (T4) showed no difference, and insulin (INS) decreased significantly. Moreover, the mRNA expression of the sex hormone receptor in the uterus and ovary was altered. Therefore, the estrous cycle disorder in female rats can be induced by regular heat stress for 90 days, which can be considered the pioneer method. Subsequently, prominent physiological and pathological characteristics and disruption in the hypothalamic-pituitary-gonadal (HPG) axis were noted.
Collapse
|
15
|
Mandalà M. Influence of Estrogens on Uterine Vascular Adaptation in Normal and Preeclamptic Pregnancies. Int J Mol Sci 2020; 21:ijms21072592. [PMID: 32276444 PMCID: PMC7177259 DOI: 10.3390/ijms21072592] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, the maternal cardiovascular system undergoes significant changes, including increased heart rate, cardiac output, plasma volume, and uteroplacental blood flow (UPBF) that are required for a successful pregnancy outcome. The increased UPBF is secondary to profound circumferential growth that extends from the downstream small spiral arteries to the upstream conduit main uterine artery. Although some of the mechanisms underlying uterine vascular remodeling are, in part, known, the factors that drive the remodeling are less clear. That higher circulating levels of estrogens are positively correlated with gestational uterine vascular remodeling suggests their involvement in this process. Estrogens binding to the estrogen receptors expressed in cytotrophoblast cells and in the uterine artery wall stimulate an outward hypertrophic remodeling of uterine vasculature. In preeclampsia, generally lower concentrations of estrogens limit the proper uterine remodeling, thereby reducing UPBF increases and restricting the growth of the fetus. This review aims to report estrogenic regulation of the maternal uterine circulatory adaptation in physiological and pathological pregnancy that favors vasodilation, and to consider the underlying molecular mechanisms by which estrogens regulate uteroplacental hemodynamics.
Collapse
Affiliation(s)
- Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
16
|
Equine hydrallantois is associated with impaired angiogenesis in the placenta. Placenta 2020; 93:101-112. [PMID: 32250734 DOI: 10.1016/j.placenta.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydrallantois is the excessive accumulation of fluid in the allantoic cavities during the last trimester of pregnancy, leading to abdominal wall hernias, cardiovascular shock, abortion, and dystocia. It has been postulated that hydrallantois is associated with structural and/or functional changes in the chorioallantoic membrane. In the present study, we hypothesized that angiogenesis is impaired in the hydrallantoic placenta. METHOD Capillary density in the hydrallantoic placenta was evaluated in the chorioallantois via immunohistochemistry for Von Willebrand Factor. Moreover, the expression of angiogenic genes was compared between equine hydrallantois and age-matched, normal placentas. RESULTS In the hydrallantoic samples, edema was the main pathological finding. The capillary density was significantly lower in the hydrallantoic samples than in normal placentas. The reduction in the number of vessels was associated with abnormal expression of a subset of angiogenic and hypoxia-associated genes including VEGF, VEGFR1, VEGFR2, ANGPT1, eNOS and HIF1A. We believe that the capillary density and the abnormal expression of angiogenic genes leads to tissue hypoxia (high expression of HIF1A) and edema. Finally, we identified a lower expression of genes associated with steroidogenic enzyme (CYP19A1) and estrogen receptor signaling (ESR2) in the hydrallantoic placenta. DISCUSSION Based on the presented data, we believe that formation of edema is due to disrupted vascular development (low number of capillaries) and hypoxia in the hydrallantoic placenta. The edema leads to further hypoxia and consequently, causes an increase in vessel permeability which leads to a gradual increase in interstitial fluid accumulation, resulting in an insufficient transplacental exchange rate and accumulation of fluid in the allantoic cavity.
Collapse
|
17
|
Bafor EE, Greg-Egor E, Omoruyi O, Ochoyama E, Omogiade GU. Disruptions in the female reproductive system on consumption of calcium carbide ripened fruit in mouse models. Heliyon 2019; 5:e02397. [PMID: 31517122 PMCID: PMC6733785 DOI: 10.1016/j.heliyon.2019.e02397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/27/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
This study investigated for the first time the outcome of ingestion of calcium carbide-ripened fruit on some female reproductive parameters. A set of unripe mature bananas ripened with calcium carbide (CCRB) and another set ripened via non-artificial means (NARB) were fed orally to prepubertal female mice for three days using the uterotrophic assay procedure. A distilled water group and oestradiol group (10 mg/kg) were also assigned. Food intake, body weights, vaginal openings and cytology were analysed. Samples of blood, uteri, ovaries and cervices were additionally collected and analysed. Increased serum oestrogen level and uterus weight were detected in the CCRB and oestradiol treated groups. Histopathology showed increased numbers of myometrial cells, presence of secondary follicles and regressing corpus lutea as well as thickened cervix epithelia which were evidence of oestrogenic disruptions. This study has shown that consumption of fruits ripened with calcium carbide negatively alters the female reproductive physiology, accelerates puberty onset and increases serum oestrogen levels. Caution must therefore be exercised by fruit sellers in the use of calcium carbide and policies set in place for strict regulation of its use worldwide.
Collapse
Affiliation(s)
- Enitome E Bafor
- Reproductive Health/Ethnopharmacology Research Group, Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, 300283, Nigeria
| | - Emmanuella Greg-Egor
- Reproductive Health/Ethnopharmacology Research Group, Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, 300283, Nigeria
| | - Osemelomen Omoruyi
- Reproductive Health/Ethnopharmacology Research Group, Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, 300283, Nigeria
| | - Ejiroghene Ochoyama
- Reproductive Health/Ethnopharmacology Research Group, Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, 300283, Nigeria
| | - Glory U Omogiade
- Reproductive Health/Ethnopharmacology Research Group, Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, 300283, Nigeria
| |
Collapse
|
18
|
Alarcón R, Varayoud J, Luque EH, Milesi MM. Effect of neonatal exposure to endosulfan on myometrial adaptation during early pregnancy and labor in rats. Mol Cell Endocrinol 2019; 491:110435. [PMID: 31029737 DOI: 10.1016/j.mce.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
Proper myometrial adaptation during gestation is crucial for embryo implantation, pregnancy maintenance and parturition. Previously, we reported that neonatal exposure to endosulfan alters uterine development and induces implantation failures. The present work investigates the effects of endosulfan exposure on myometrial differentiation at the pre-implantation period, and myometrial activation during labor. Newborn female rats were s.c. injected with corn oil (vehicle) or 600 μg/kg/day of endosulfan (Endo600) on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate: i) the myometrial differentiation on gestational day 5 (GD5, pre-implantation period), by assessment myometrial histomorphology, smooth muscle cells (SMCs) proliferation, and expression of proteins involved in myometrial adaptation for embryo implantation (steroid receptors, Wnt7a and Hoxa10); ii) the timing of parturition and myometrial activation during labor by determining the uterine expression of contraction-associated genes (oxytocin receptor, OTXR; prostaglandin F2α receptor, PTGFR and connexin-43, Cx-43). Endosulfan decreased the thickness of both myometrial layers, with a concomitant decrease in the collagen remodeling. Blood vessels relative area in the interstitial connective tissue between muscle layers was also decreased. Endo600 group showed lower myometrial proliferation in association with a downregulation of Wnt7a and Hoxa10. Although in all females labor occurred on GD23, the exposure to endosulfan altered the timing of parturition, by inducing advancement in the initiation of labor. This alteration was associated with an increased uterine expression of OTXR, PTGFR and Cx-43. In conclusion, neonatal exposure to endosulfan produced long-term effects affecting myometrial adaptation during early pregnancy and labor. These alterations could be associated with the aberrant effects of endosulfan on the implantation process and the timing of parturition.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
19
|
Sugiura T, Akiyoshi S, Inoue F, Yanagawa Y, Moriyoshi M, Tajima M, Katagiri S. Relationship between bovine endometrial thickness and plasma progesterone and estradiol concentrations in natural and induced estrus. J Reprod Dev 2018; 64:135-143. [PMID: 29398684 PMCID: PMC5902901 DOI: 10.1262/jrd.2017-139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to investigate cyclical changes in endometrial thickness in relation to progesterone (P4) and estradiol-17β (E2) concentrations during natural and induced estrus in 15 cows. In the prostaglandin (PG) F2α-induced estrus group, ultrasonography (USG) at 6-h intervals was used to determine endometrial thickness 48-24 h before the PGF2α treatment until 24 h after ovulation (ovulation = Day 0). In the natural estrus group, USG was performed every 48 h from Day 3 to Days 15-18 after the first ovulation, and then every 6 h until 24 h after ovulation. Endometrial thickness was standardized using Day 13 as a reference day. Blood was collected during every USG examination and plasma P4 and E2 concentrations were determined. Endometrial thickness of the induced estrus group (n = 11) was greater than that of the natural estrus group (n = 9) between 60 and 12 h before ovulation (P < 0.05). In the natural estrus group, prior to an increase in endometrial thickness, a decrease in P4 and an increase in E2 were detected. In the induced estrus group, based on the time of ovulation, an increase in endometrial thickness was detected at the same time of a decrease in P4 before an increase in E2. These results suggest that decreases in P4 concentrations may be a cue to changes in endometrial thickness, while increases in E2 concentrations appear to sustain and/or enhance these changes.
Collapse
Affiliation(s)
- Tomochika Sugiura
- Department of Large Animal Clinical Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Shun Akiyoshi
- Department of Large Animal Clinical Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Fumihiro Inoue
- Department of Large Animal Clinical Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Yojiro Yanagawa
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Masaharu Moriyoshi
- Department of Large Animal Clinical Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Motoshi Tajima
- Department of Large Animal Clinical Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Seiji Katagiri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| |
Collapse
|
20
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
21
|
Soeters PB, De Leeuw PW. Disease or adaptation: another look at the practice of medicine. Postgrad Med 2018; 130:239-243. [PMID: 29369696 DOI: 10.1080/00325481.2018.1433435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The practice of medicine has changed considerably over the past few decades and is now focusing more and more on early intervention strategies. As a result, we tend to consider pre-symptomatic abnormalities, however small, already as a potential target for treatment. In this viewpoint, we argue that we should put more emphasis on pathophysiological thinking as many of the so-called early abnormalities may, in fact, reflect adaptive mechanisms rather than disease. This view should influence medical care and education, emphasizing the importance of knowledge of pathophysiology.
Collapse
Affiliation(s)
- Peter B Soeters
- a Department of Surgery , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Peter W De Leeuw
- b Department of Medicine , Maastricht University Medical Center , Maastricht , The Netherlands.,c Department of Medicine , Zuyderland Medical Center , Geleen/Heerlen , The Netherlands
| |
Collapse
|
22
|
Rizov M, Andreeva P, Dimova I. Molecular regulation and role of angiogenesis in reproduction. Taiwan J Obstet Gynecol 2017; 56:127-132. [PMID: 28420494 DOI: 10.1016/j.tjog.2016.06.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis is an essential process for proper functioning of the female reproductive system and for successful pregnancy realization. The multitude of factors required for physiological angiogenesis and the complexity of regulation of their temporal-spatial activities contribute to aberrations in human fertilization and pregnancy outcomes. In this study, we reviewed the current knowledge of the temporal expression patterns, functions, and regulatory mechanisms of angiogenic factors during foliculogenesis, early implantation/placentation and embryo development, as well as recurrent spontaneous abortions. Angiogenic factors including vascular endothelial growth factors and angiopoietins have documented roles in the development of primordial follicles into mature antral follicles. They also participate in decidualization, which is accompanied by the creation of an extensive network of vessels in the stromal bed that support the growth of the embryo and the placenta, and maintain early pregnancy. During placentation angiogenic and angiomodulatory cytokines, T and B lymphocytes and macrophages affect angiogenesis in a context-dependent manner. Defects in angiogenesis at the maternal-fetal interface contribute to miscarriage in humans. The establishment of more polymorphisms in the genes involved in angiogenesis/vasculogenesis, and their pathological phenotype and expression could give opportunities for prediction, creating a therapeutic strategy, and treatment of diseases related to female reproductive health and problematic conception.
Collapse
Affiliation(s)
| | | | - Ivanka Dimova
- Department of Medical Genetics, Medical University Sofia, Sofia, Bulgaria.
| |
Collapse
|
23
|
Su QQ, Chen Y, Qin J, Wang TL, Wang DH, Liu QS. Responses in reproductive organs, steroid hormones and CYP450 enzymes in female Mongolian gerbil (Meriones unguiculatus) over time after quinestrol treatment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:122-126. [PMID: 29183580 DOI: 10.1016/j.pestbp.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/05/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the effects and reversibility of the synthetic estrogen compound, quinestrol, on the reproductive organs, steroid hormones, and drug-metabolizing enzymes CYP3A4 and CYP1A2 in liver and kidney over time after two quinestrol treatments in female Mongolian gerbils (Meriones unguiculatus). Female gerbils were treated with 4mg/kg quinestrol (9 gerbils/group, 3 treated group) (1 control group, 0mg/kg) for 3days and treated again after 25days. Animals were killed for collection of samples at 5, 10 and 15days after the second treatment ending. Two interval quinestrol treatments significantly increased uterine weight, with trend of increase over time, but no change could be detected in ovarian weights. Quinestrol treatment increased progesterone and estradiol levels, both with trend of decline over time. Quinestrol increased liver and kidney weights and total enzyme content of CYP3A4 and CYP1A2, with trend of decline over time. On the basis of reversible changes of detoxification enzymes or organs, interval quinestrol treatment effectively and reversibly influenced the reproductive hormone and organ to some extent.
Collapse
Affiliation(s)
- Qian-Qian Su
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Yi Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Jiao Qin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Tong-Liang Wang
- College of Life Science, Hainan Normal University, 571158 Haikou, China; State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Quan-Sheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China.
| |
Collapse
|
24
|
Shawber CJ, Lin L, Gnarra M, Sauer MV, Papaioannou VE, Kitajewski JK, Douglas NC. Vascular Notch proteins and Notch signaling in the peri-implantation mouse uterus. Vasc Cell 2015; 7:9. [PMID: 26629328 PMCID: PMC4666149 DOI: 10.1186/s13221-015-0034-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/17/2015] [Indexed: 12/01/2022] Open
Abstract
Background Angiogenesis is essential for uterine decidualization, the progesterone-mediated transformation of the uterus allowing embryo implantation and initiation of pregnancy. In the current study, we define the vasculature, expression of Notch proteins and Notch ligands, and Notch activity in both endothelial cells and vascular-associated mural cells of blood vessels in the pre-implantation endometrium and post-implantation decidua of the mouse uterus. Methods We used immunofluorescence to determine the expression of Notch in endothelial cells and mural cells by co-staining for the endothelial cell marker, CD31, the pan-mural cell marker, platelet-derived growth factor receptor beta (PDGFR-β), the pericyte markers, neural/glial antigen 2 (NG2) and desmin, or the smooth muscle cell marker, alpha smooth muscle actin (SMA). A fluorescein isothiocyanate-labeled dextran tracer, was used to identify functional peri-implantation vasculature. CBF:H2B-Venus Notch reporter transgenic mice were used to determine Notch activity. Results Notch signaling is observed in endothelial cells and pericytes in the peri-implantation uterus. Prior to implantation, Notch1, Notch2 and Notch4 and Notch ligand, Delta-like 4 (Dll4) are expressed in capillary endothelial cells, while Notch3 is expressed in the pericytes. Jagged1 is expressed in both capillary endothelial cells and pericytes. After implantation, Notch1, Notch4 and Dll4 are expressed in endothelial cells of newly formed decidual capillaries. Jagged1 is expressed in endothelial cells of spiral arteries and a subset of decidual pericytes. Notch proteins are not expressed in lymphatic vessels or macrophages in the peri-implantation uterus. Conclusions We show Notch activity and distinct expression patterns for Notch proteins and ligands, suggesting unique roles for Notch1, Notch4, Dll4, and Jag1 during decidual angiogenesis and early placentation. These data set the stage for loss-of-function and gain-of-function studies that will determine the cell-type specific requirements for Notch proteins in decidual angiogenesis and placentation. Electronic supplementary material The online version of this article (doi:10.1186/s13221-015-0034-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Lu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Maria Gnarra
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Mark V Sauer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Jan K Kitajewski
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Nataki C Douglas
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| |
Collapse
|
25
|
Gram A, Hoffmann B, Boos A, Kowalewski MP. Expression and localization of vascular endothelial growth factor A (VEGFA) and its two receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine corpus luteum and utero-placental compartments during pregnancy and at normal and induced parturition. Gen Comp Endocrinol 2015; 223:54-65. [PMID: 26414127 DOI: 10.1016/j.ygcen.2015.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/08/2015] [Accepted: 09/19/2015] [Indexed: 11/27/2022]
Abstract
VEGFA is one of the most potent known inducers of angiogenesis. However, the function of angiogenic factors in the canine corpus luteum (CL) of pregnancy and in the pregnant uterus and placenta has not yet been elucidated. Therefore, here we investigated the expression and localization of VEGFA and its receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine CL and utero-placental compartments (ut-pl) throughout pregnancy until prepartum luteolysis. Antigestagen-mediated effects on expression of VEGF system in ut-pl were elucidated in mid-pregnant dogs. While displaying high individual variation, the luteal VEGFA was elevated during pre-implantation and post-implantation, followed by a decrease during mid-gestation, which was more pronounced at the mRNA level, and showed constant expression afterwards. Within the uterus, it increased following implantation and during mid-gestation in ut-pl compartments, but was downregulated at prepartum luteolysis. Luteal VEGFR1 expression resembled that of VEGFA; VEGFR2 remained unaffected throughout pregnancy. In ut-pl compartments, both receptors increased gradually towards mid-gestation; a prepartum decrease was observed for VEGFR1. Antigestagen-treatment resulted in decreased expression of ut-pl VEGFR1. In the CL, VEGFA stained in luteal cells. Uterine signals of VEGFA and its two receptors were observed in epithelial and vascular compartments, and in myometrium. In placental labyrinth, additionally, trophoblast stained positively. Luteal VEGFR1 was localized to the luteal cells and tunica media of blood vessels, whereas VEGFR2 stained only in capillary endothelial cells. The upregulation of luteal and the ut-pl VEGF system during early gestational stages supports the increased vascularization rate during this time. The diminishing effects of the prepartum endocrine milieu on VEGFA function seem to be more pronounced in the ut-pl units.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynecology and Andrology of Large- and Small Animals, Justus-Liebig University Giessen, DE-35392 Giessen, Germany
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
26
|
Guo B, Tian XC, Li DD, Yang ZQ, Cao H, Zhang QL, Liu JX, Yue ZP. Expression, regulation and function of Egr1 during implantation and decidualization in mice. Cell Cycle 2015; 13:2626-40. [PMID: 25486203 DOI: 10.4161/15384101.2014.943581] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract Early growth response gene 1 (Egr1), a zinc finger transcriptional factor, plays an important role in regulating cell proliferation, differentiation and angiogenesis. Current data have shown that Egr1 is involved in follicular development, ovulation, luteinization and placental angiogenesis. However, the expression, regulation and function of Egr1 in mouse uterus during embryo implantation and decidualization are poorly understood. Here we showed that Egr1 was strongly expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy. Injection of Egr1 siRNA into the mouse uterine horn could obviously reduce the number of implanted embryos and affect the uterine vascular permeability. Further study found that Egr1 played a role through influencing the expression of cyclooxygenase-2 (Cox-2), microsomal prostaglandin E synthase 1 (mPGES-1), vascular endothelial growth factor (Vegf), transformation related protein 53 (Trp53) and matrix metallopeptidase 9 (Mmp9) genes in the process of mouse embryo implantation. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) might direct the expression of Egr1 in the uterine stromal cells. Under in vivo and in vitro artificial decidualization, Egr1 expression was significantly decreased. Overexpression of Egr1 downregulated the expression of decidual marker decidual/trophoblast PRL-related protein (Dtprp) in the uterine stromal cells, while inhibition of Egr1 upregulated the expression of Dtprp under in vitro decidualization. Estrogen and progesterone could regulate the expression of Egr1 in the ovariectomized mouse uterus and uterine stromal cells. These results suggest that Egr1 may be essential for embryo implantation and decidualization.
Collapse
Affiliation(s)
- Bin Guo
- a College of Veterinary Medicine ; Jilin University ; Changchun , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gong X, Tong Q, Chen Z, Zhang Y, Xu C, Jin Z. Microvascular density and vascular endothelial growth factor and osteopontin expression during the implantation window in a controlled ovarian hyperstimulation rat model. Exp Ther Med 2015; 9:773-779. [PMID: 25667627 PMCID: PMC4316967 DOI: 10.3892/etm.2015.2181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and osteopontin (OPN) are suggested to facilitate angiogenesis and vascular remodeling in endometrial receptivity. Determination of the endometrial microvascular density (MVD) is the commonest method used to indirectly assess the levels of vasculogenesis and angiogenesis; however, the associations among VEGF, OPN and MVD remain unclear. Controlled ovarian hyperstimulation (COH) with the gonadotrophin-releasing hormone agonist-long protocol may impair endometrial receptivity, and Traditional Chinese Medicine (TCM) may exert therapeutic effects to relieve this impairment. The aim of the present study was to investigate the effects of COH on implantation biology and pregnancy outcome, and to explore the potential therapeutic role of the TCM Zi Dan Yin (ZDY). Female Sprague Dawley rats were divided into four groups: Control, COH, ZDY and COH + ZDY. On days 3, 4 and 5 of pregnancy (D3, D4 and D5, respectively), endometrial MVD was measured with cluster of differentiation 34 immunohistochemical detection, and VEGF and OPN protein and mRNA expression was detected through western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. On D10, the average number of implantation sites was observed. Subsequent to conceiving and bearing newborn rats, the number of live births from each group was recorded. COH was shown to have adverse effects on implantation and pregnancy outcome. The MVD was found to be significantly increased in the COH group compared with that in the control, ZDY and COH+ZDY groups. The results of the protein and RT-qPCR analysis of VEGF and OPN revealed the same trend. Conversely, ZDY reversed the changes in endometrial MVD, VEGF and OPN, and was indicated to improve uterine receptivity and pregnancy outcome. No significant difference was observed among the control, ZDY and COH + ZDY groups. In conclusion, since the results for MVD and VEGF and OPN expression were consistent, MVD could be used as an alternative approach to identify the period of receptivity in rats.
Collapse
Affiliation(s)
- Xin Gong
- Reproductive Endocrinology Center, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Qing Tong
- Reproductive Endocrinology Center, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Zhenzhen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Yunna Zhang
- Reproductive Endocrinology Center, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Cai Xu
- Reproductive Endocrinology Center, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Zhe Jin
- Reproductive Endocrinology Center, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
28
|
Zhu H, Hou CC, Luo LF, Hu YJ, Yang WX. Endometrial stromal cells and decidualized stromal cells: origins, transformation and functions. Gene 2014; 551:1-14. [PMID: 25168894 DOI: 10.1016/j.gene.2014.08.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
Decidualization of endometrium, which is characterized by endometrial stromal cell (ESC) decidualization, vascular reconstruction, immune cell recruitment, and plentiful molecule production, is a crucial step for uterus to become receptive for embryo. When implantation takes place, ESCs surround and directly interact with embryo. Decidualized stromal cells (DSCs) are of great importance in endometrial decidualization, having a broad function in regulating immune activity and vascular remodeling of uterus. DSCs are shown to have a higher metabolic level and looser cytoskeleton than ESCs. What's the origin of ESCs and how ESCs successfully transform into DSCs had puzzled scientists in the last decades. Breakthrough had been achieved recently, and many studies had elucidated some of the characters and functions of DSCs. However, several questions still remain unclear. This paper reviews current understanding of where ESCs come from and how ESCs differentiate into DSCs, summarizes some characters and functions of DSCs, analyzes current studies and their limitations and points out research areas that need further investigation.
Collapse
Affiliation(s)
- Ha Zhu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Douglas NC, Zimmermann RC, Tan QK, Sullivan-Pyke CS, Sauer MV, Kitajewski JK, Shawber CJ. VEGFR-1 blockade disrupts peri-implantation decidual angiogenesis and macrophage recruitment. Vasc Cell 2014; 6:16. [PMID: 25101167 PMCID: PMC4122670 DOI: 10.1186/2045-824x-6-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/21/2014] [Indexed: 11/21/2022] Open
Abstract
Background Angiogenesis and macrophage recruitment to the uterus are key features of uterine decidualization; the progesterone-mediated uterine changes that allow for embryo implantation and initiation of pregnancy. In the current study, we characterized the expression of vascular endothelial growth factor receptor-1 (VEGFR-1) in macrophages and endothelial cells of the peri-implantation uterus and determined if VEGFR-1 function is required for decidual angiogenesis, macrophage recruitment, and/or the establishment of pregnancy. Methods Expression of VEGFR-1 in uterine endothelial cells and macrophages was determined with immunohistochemistry. To assess the effect of continuous VEGFR-1 blockade, adult female mice were given VEGFR-1 blocking antibody, MF-1, every 3 days for 18 days. After 6 doses, females were mated and a final dose of MF-1 was given on embryonic day 3.5. Endothelial cells and macrophages were quantified on embryonic day 7.5. Pregnancy was analyzed on embryonic days 7.5 and 10.5. Results F4/80+ macrophages are observed throughout the stroma and are abundant adjacent to the endometrial lumen and glands prior to embryo implantation and scatter throughout the decidua post implantation. VEGFR-1 expression is restricted to the uterine endothelial cells. F4/80+ macrophages were often found adjacent to VEGFR-1+ endothelial cells in the primary decidual zone. Continuous VEGFR-1 blockade correlates with a significant reduction in decidual vascular and macrophage density, but does not affect embryo implantation or maintenance of pregnancy up to embryonic day 10.5. Conclusions We found that VEGFR-1 functions in both decidual angiogenesis and macrophage recruitment to the implantation site during pregnancy. VEGFR-1 is expressed by endothelial cells, however blocking VEGFR-1 function in endothelial cells results in reduced macrophage recruitment to the uterus. VEGFR-1 blockade did not compromise the establishment and/or maintenance of pregnancy.
Collapse
Affiliation(s)
- Nataki C Douglas
- Department of Obstetrics and Gynecology, PH 16-64, Division of Reproductive Endocrinology and Infertility, Columbia University Medical Center, 622 W. 168th Street, New York, NY 10032, USA
| | - Ralf C Zimmermann
- Department of Obstetrics and Gynecology, PH 16-64, Division of Reproductive Endocrinology and Infertility, Columbia University Medical Center, 622 W. 168th Street, New York, NY 10032, USA
| | - Qian Kun Tan
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032, USA
| | - Chantae S Sullivan-Pyke
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032, USA
| | - Mark V Sauer
- Department of Obstetrics and Gynecology, PH 16-64, Division of Reproductive Endocrinology and Infertility, Columbia University Medical Center, 622 W. 168th Street, New York, NY 10032, USA
| | - Jan K Kitajewski
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032, USA
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032, USA
| |
Collapse
|
30
|
Filant J, DeMayo FJ, Pru JK, Lydon JP, Spencer TE. Fibroblast growth factor receptor two (FGFR2) regulates uterine epithelial integrity and fertility in mice. Biol Reprod 2014; 90:7. [PMID: 24227756 PMCID: PMC7289345 DOI: 10.1095/biolreprod.113.114496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate luminal epithelial (LE) cell proliferation in the adult mouse uterus. This study tested the hypothesis that FGFR2 has a biological role in postnatal development and function of the uterus by conditionally deleting Fgfr2 after birth using progesterone receptor (Pgr)-Cre mice. Adult Fgfr2 mutant female mice were initially subfertile and became infertile with increasing parity. No defects in uterine gland development were observed in conditional Fgfr2 mutant mice. In the adult, Fgfr2 mutant mice possessed a histologically normal reproductive tract with the exception of the uterus. The LE of the Fgfr2 mutant uterus was stratified, but no obvious histological differences were observed in the glandular epithelium, stroma, or myometrium. Within the stratified LE, cuboidal basal cells were present and positive for basal cell markers (KRT14 and TRP63). Nulliparous bred Fgfr2 mutants contained normal numbers of blastocysts on Day 3.5 postmating, but the number of embryo implantation sites was substantially reduced on Day 5.5 postmating. These results support the idea that loss of FGFR2 in the uterus after birth alters its development, resulting in LE stratification and peri-implantation pregnancy loss.
Collapse
Affiliation(s)
- Justyna Filant
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, Washington
| | | | | | | | | |
Collapse
|
31
|
Varayoud J, Ramos JG, Muñoz-de-Toro M, Luque EH. Long-lasting effects of neonatal bisphenol A exposure on the implantation process. VITAMINS AND HORMONES 2014; 94:253-75. [PMID: 24388194 DOI: 10.1016/b978-0-12-800095-3.00010-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful implantation is the result of complex molecular interactions between the hormonally primed uterus and a mature blastocyst. This very carefully synchronized interplay of hormonal signals and feedback loops is potentially vulnerable to chemicals such as endocrine disruptors that may disrupt endocrine signaling. Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide. This chapter describes the effects of brief postnatal exposure to BPA on female reproductive performance and specifically on the uterine adaptations during the preimplantation period. We propose that an early alteration in Hoxa10 gene expression affects the functional differentiation of the preimplantation uterus as part of an altered endocrine signal transduction pathway. These molecular alterations could explain, at least in part, the adverse effects of BPA on uterine implantation. Exposure to endocrine disruptors, such as BPA, could contribute to the impaired female fertility noted over the past decades.
Collapse
Affiliation(s)
- Jorgelina Varayoud
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Laboratorio de Endocrinología y Tumores Hormonodependientes, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
32
|
Hata M, Yamanegi K, Yamada N, Ohyama H, Yukitatsu Y, Nakasho K, Okamura H, Terada N. Estrogen decreases the expression of claudin-5 in vascular endothelial cells in the murine uterus. Endocr J 2014; 61:705-15. [PMID: 24759004 DOI: 10.1507/endocrj.ej13-0442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial (VE)-cadherin and claudin-5 are major components of the adherens and tight junctions of vascular endothelial cells, respectively, and decreases in their expression are associated with increases in endothelial paracellular permeability. In the uterus, estrogen induces endometrial edema. However, the in vivo effect of estrogen on endothelial paracellular permeability is unknown. Therefore, we studied the expression of VE-cadherin and claudin-5 in vascular endothelial cells in murine uteri stimulated by estrogen or progesterone. Ovariectomized mature mice were injected with estradiol-17β (1 μg/mouse) or progesterone (1 mg/mouse) at intervals of 24 hours for 6 days. The frozen transverse sections of the uteri of these mice and untreated mice were stained for CD31 (vascular endothelial cell marker) plus VE-cadherin or claudin-5 using a double-immunofluorescence method. Then, the percentages of VE-cadherin- or claudin-5-positive vessels among CD31-positive vessels were examined in the uterine endometria. VE-cadherin and claudin-5 were expressed in most CD31-positive vessels in the endometria of the untreated mice. Progesterone did not affect the expression of both VE-cadherin and claudin-5 and estradiol-17β also did not affect the VE-cadherin expression, but estradiol-17β significantly decreased the claudin-5 expression. This decreasing effect of estradiol-17β was detected from 24 hours later when the water content per a uterus significantly increased. The present study indicates that estrogen, but not progesterone, decreases the expression of claudin-5 in vascular endothelial cells in the murine uterine endometrium from 24 hours later, suggesting that the decrease in the claudin-5 expression contributes to the endometrial edema late after the estrogen stimulation.
Collapse
Affiliation(s)
- Masaki Hata
- Department of Pathology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xia HF, Cao JL, Jin XH, Ma X. MiR199a is implicated in embryo implantation by regulating Grb10 in rat. Reproduction 2013; 147:91-9. [PMID: 24149516 DOI: 10.1530/rep-13-0290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MiR199a was found to be differentially expressed in rat uteri between the prereceptive and receptive phase via microRNA (miRNA) microarray analysis in our previous study. However, the role of miR199a in rat embryo implantation remained unknown. In the study, northern blot results showed that the expression levels of miR199a were higher on gestation days 5 and 6 (g.d.5-6) in rat uteri than on g.d.3-4 and g.d.7-8. In situ localization of miR199a in rat uteri showed that miR199a was mainly localized in the stroma or decidua. The expression of miR199a was not significantly different in the uteri of pseudopregnant rats and evidently increased in the uteri of rats subjected to activation of delayed implantation and experimentally induced decidualization. Treatment with 17β-estradiol or both 17β-estradiol and progesterone significantly diminished miR199a levels. Gain of function of miR199a in endometrial stromal cells isolated from rat uteri inhibited cell proliferation and promoted cell apoptosis. Loss of function of miR199a displayed opposite roles on cell proliferation and apoptosis. Further investigation uncovered a significant inverse association between the expression of miR199a and growth factor receptor-bound protein 10 (Grb10), an imprinted gene, and miR199a could bind to the 3'UTR of Grb10 to inhibit Grb10 translation. In addition, in vivo analysis found that the immunostaining of GRB10 was attenuated in the stroma or decidua from g.d.4 to 6, contrary to the enhancement of miR199a. Collectively, upregulation of miR199a in rat uterus during the receptive phase is regulated by blastocyst activation and uterine decidualization. Enforced miR199a expression suppresses cell proliferation partially through targeting Grb10.
Collapse
Affiliation(s)
- Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | | | | | | |
Collapse
|
34
|
Winterhager E, Gellhaus A, Blois SM, Hill LA, Barr KJ, Kidder GM. Decidual angiogenesis and placental orientation are altered in mice heterozygous for a dominant loss-of-function Gja1 (connexin43) mutation. Biol Reprod 2013; 89:111. [PMID: 24048574 DOI: 10.1095/biolreprod.113.111690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Connexin43 (CX43), encoded by Gja1 in the mouse, is highly expressed in decidual cells and is known to be important for the transformation of stromal cells into the compact decidua and for neoangiogenesis. Here we investigated if the dominant Gja1(Jrt) mutation encoding CX43(G60S) in mice, which results in a phenotype resembling oculodentodigital dysplasia in humans, has an impact on decidualization, angiogenesis, and implantation. We found a reduced mean weight of fetuses at Gestational Day 17.5 in dams carrying this mutation, with the growth deficiency being independent of fetal genotype. Although the mutant implantation sites exhibited a reduction in CX43 protein, with most immunoreactivity being cytoplasmic, the decidua was morphologically intact at Embryonic Days 5.5 to 7.5. However, the mutation resulted in enhanced and irregular angiogenesis and an increased level of expression of the angiogenic factor-encoding genes Vegfa, Flt1, Kdr, and Fgf2 as well as the prolactin-related gene Prl6a. Moreover, immunolocalization of VEGFA, FLT1, and KDR revealed a homogeneous distribution pattern in the mesometrial as well as antimesometrial decidua of the mutants. Most obviously, uterine NK cells are drastically diminished in the mesometrial decidua of the mutant mice. Invasion of ectoplacental cone cells was disoriented, and placentation was established more laterally in the implantation chambers. It was concluded that the CX43(G60S) mutant impairs control of decidual angiogenesis, leading to dysmorphic placentation and fetal growth restriction. This phenomenon could contribute to the reduced fetal weights and viability of pups born of Gja1(Jrt)/+ dams.
Collapse
Affiliation(s)
- Elke Winterhager
- Department of Molecular Biology, University Clinics Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Yu N, Yang J, Guo Y, Fang J, Yin T, Luo J, Li X, Li W, Zhao Q, Zou Y, Xu W. Intrauterine Administration of Peripheral Blood Mononuclear Cells (PBMCs) Improves Endometrial Receptivity in Mice with Embryonic Implantation Dysfunction. Am J Reprod Immunol 2013; 71:24-33. [PMID: 23909917 DOI: 10.1111/aji.12150] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/19/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Nan Yu
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Jing Yang
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Yue Guo
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Jianye Fang
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Tailang Yin
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Jing Luo
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Xing Li
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Wei Li
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Qinghong Zhao
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Yujie Zou
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| | - Wangming Xu
- Reproductive Medical Center; Renmin Hospital of Wuhan University; Wuhan China
| |
Collapse
|
36
|
Abot A, Fontaine C, Raymond-Letron I, Flouriot G, Adlanmerini M, Buscato M, Otto C, Bergès H, Laurell H, Gourdy P, Lenfant F, Arnal JF. The AF-1 activation function of estrogen receptor α is necessary and sufficient for uterine epithelial cell proliferation in vivo. Endocrinology 2013; 154:2222-33. [PMID: 23580568 DOI: 10.1210/en.2012-2059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-α (ERα) regulates gene transcription through the 2 activation functions (AFs) AF-1 and AF-2. The crucial role of ERαAF-2 was previously demonstrated for endometrial proliferative action of 17β-estradiol (E2). Here, we investigated the role of ERαAF-1 in the regulation of gene transcription and cell proliferation in the uterus. We show that acute treatment with E2 or tamoxifen, which selectively activates ERαAF-1, similarly regulate the expression of a uterine set of estrogen-dependent genes as well as epithelial cell proliferation in the uterus of wild-type mice. These effects were abrogated in mice lacking ERαAF-1 (ERαAF-1(0)). Four weeks of E2 treatment led to uterine hypertrophy and sustained luminal epithelial and stromal cell proliferation in wild-type mice, but not in ERαAF-1(0) mice. However, ERαAF-1(0) mice still presented a moderate uterine hypertrophy essentially due to a stromal edema, potentially due to the persistence of Vegf-a induction. Epithelial apoptosis is largely decreased in these ERαAF-1(0) uteri, and response to progesterone is also altered. Finally, E2-induced proliferation of an ERα-positive epithelial cancer cell line was also inhibited by overexpression of an inducible ERα isoform lacking AF-1. Altogether, these data highlight the crucial role of ERαAF-1 in the E2-induced proliferative response in vitro and in vivo. Because ERαAF-1 was previously reported to be dispensable for several E2 extrareproductive protective effects, an optimal ERα modulation could be obtained using molecules activating ERα with a minimal ERαAF-1 action.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tian XC, Wang QY, Li DD, Wang ST, Yang ZQ, Guo B, Yue ZP. Differential expression and regulation of Cryab in mouse uterus during preimplantation period. Reproduction 2013; 145:577-85. [PMID: 23579188 DOI: 10.1530/rep-13-0042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to examine the expression and regulation of the crystallin, alpha B (Cryab) gene in mouse uterus during the peri-implantation period by in situ hybridization and real-time PCR. There was no detectable Cryab mRNA signal on days 1-4 of pregnancy. On day 5 of pregnancy when embryo implanted, a high level of Cryab mRNA signal was found in the subluminal stroma surrounding the implanting blastocyst. On days 6-8, Cryab mRNA was strongly expressed in the primary decidua. By real-time PCR, a high level of Cryab expression was detected on days 7 and 8 of pregnancy, although Cryab expression was seen from days 1 to 8. Under in vivo and in vitro artificial decidualization, Cryab expression was significantly elevated. Compared with the progesterone-primed delayed implantation uterus, a high level of Cryab mRNA expression was observed in estrogen-activated implantation uterus. In the uterine stromal cells, cAMP, estrogen, and progesterone could induce the expression of Cryab gene. In the ovariectomized mouse uterus, estrogen could also induce the expression of Cryab while progesterone inhibited its expression. Our data suggest that Cryab may play an important role during mouse embryo implantation and decidualization and that estrogen and progesterone can regulate the expression of Cryab gene.
Collapse
Affiliation(s)
- Xue-Chao Tian
- College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Bai ZK, Guo B, Tian XC, Li DD, Wang ST, Cao H, Wang QY, Yue ZP. Expression and regulation of Runx3 in mouse uterus during the peri-implantation period. J Mol Histol 2013; 44:519-26. [PMID: 23572423 DOI: 10.1007/s10735-013-9501-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023]
Abstract
The aim of this study was to investigate the differential expression and regulation of Runt-related transcription factor 3 (Runx3) in mouse uterus during early pregnancy and its regulation by steroid hormones using in situ hybridization. There was a low level of the Runx3 mRNA expression in the mouse uterus on days 1-4 of pregnancy. On day 5 when embryo implanted, Runx3 mRNA signal was obviously observed in the stromal cells surrounding the implanting blastocyst. From day 6 to 8 of pregnancy, Runx3 mRNA was highly expressed in the decidual cells and mesometrial decidual beds. Similarly, Runx3 mRNA was strongly expressed in decidualized cells under artificial decidualization. Compared with the delayed uterus, a high level of Runx3 mRNA signal was detected in the uterus with activated implantation. In the ovariectomized mouse uterus, estrogen could induce the expression of Runx3, while progesterone had no effects. These results suggest that Runx3 may play an important role during mouse implantation and decidualization. Estrogen can induce the expression of Runx3 in the ovariectomized mouse uterus.
Collapse
Affiliation(s)
- Zhi-Kun Bai
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Activation of estrogen receptor β reduces blood–brain barrier breakdown following ischemic injury. Neuroscience 2013; 235:165-73. [DOI: 10.1016/j.neuroscience.2013.01.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 01/02/2023]
|
40
|
GUO BIN, ZHANG XUEMING, LI SHIJIE, TIAN XUECHAO, WANG SHOUTANG, LI DANGDANG, LIU JUXIONG, YUE ZHANPENG. Differential Expression and Regulation of Angiopoietin-3 in Mouse Uterus during Preimplantation Period. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:316-24. [DOI: 10.1002/jez.b.22449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- BIN GUO
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| | - XUE-MING ZHANG
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| | - SHI-JIE LI
- College of Life Science; Northeast Agricultural University; Harbin; P. R. China
| | - XUE-CHAO TIAN
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| | - SHOU-TANG WANG
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| | - DANG-DANG LI
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| | - JU-XIONG LIU
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| | - ZHAN-PENG YUE
- College of Animal Science and Veterinary Medicine; Jilin University; Changchun; P. R. China
| |
Collapse
|
41
|
Burke W, Leung J, Davey D. Lunar and solar influences on human visual disease: the relevance of oedema? BIOL RHYTHM RES 2012. [DOI: 10.1080/09291016.2011.571026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Soares SR. Etiology of OHSS and use of dopamine agonists. Fertil Steril 2012; 97:517-22. [PMID: 22265002 DOI: 10.1016/j.fertnstert.2011.12.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/11/2023]
Abstract
Vascular endothelial growth factor is the factor that causes increased capillary permeability and therefore the most serious manifestations of ovarian hyperstimulation syndrome. Dopamine agonists can both prevent and treat ovarian hyperstimulation syndrome by blocking expression of the vascular endothelial growth factor receptor.
Collapse
|
43
|
Abstract
After decades of research, the mechanism by which estrogens stimulate the proliferation of epithelial cells in the endometrium and mammary gland, and in the carcinomas that arise in those tissues, is still not understood. Cells do not proliferate in response to 17β-estradiol (E2) alone, and although it is widely recognized that growth factors play a role in E2's proliferative effect, exactly how they are involved is unclear. It has long been known that the proliferation of endometrial epithelial cells is preceded by dramatic increases in blood flow and microvascular permeability, filling the subepithelial stroma with plasma and the proteins it contains, such as IGF-I, which is known to synergize with E2 in the induction of cell proliferation. The hyperpermeability is caused by vascular endothelial growth factor (VEGF), which is rapidly induced by E2, via the transcription factors hypoxia-inducible factor 1 and estrogen receptor α, in luminal epithelial cells in vivo. As we recently showed, VEGF is also strongly induced in endometrial cancer cells in vitro when excessive degradation of hypoxia-inducible factor 1α, caused by the abnormally high oxygen level to which cultured cells are exposed, is prevented. Putting these facts together, we now propose a new model of E2-induced proliferation in which VEGF-induced vascular hyperpermeability plays an essential role. E2 first induces the expression by endometrial epithelial cells of VEGF, which then acts in a paracrine manner to induce interendothelial cell gaps in subepithelial blood vessels, through which plasma and the proteins therein enter the adjacent stroma. Plasma carries even more E2, which circulates bound to proteins, and IGF-l, which together drive epithelial cells completely through the cell cycle.
Collapse
Affiliation(s)
- Robert D Koos
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201-1559, USA.
| |
Collapse
|
44
|
Guo B, Wang W, Li SJ, Han YS, Zhang L, Zhang XM, Liu JX, Yue ZP. Differential expression and regulation of angiopoietin-2 in mouse uterus during preimplantation period. Anat Rec (Hoboken) 2011; 295:338-46. [PMID: 22095930 DOI: 10.1002/ar.21494] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 11/06/2022]
Abstract
Angiogenesis is crucial to successful implantation and decidualization, however, as an important angiogenic growth factor, the effect of Ang-2 in the process of implantation and decidualization is still unknown. This study is to investigate the differential expression of Ang-2 in mouse uterus during early pregnancy and its regulation by steroid hormones using in situ hybridization and RT-PCR. There is no detectable Ang-2 mRNA signal on days 1-5 of pregnancy by in situ hybridization. On days 6-8, Ang-2 mRNA is mainly expressed in the primary decidua of mesometrial side, and the expression gradually increases. By RT-PCR, a significantly higher level of Ang-2 expression is observed on day 8 of pregnancy, although Ang-2 expression can be found through days 1-8. Similarly, Ang-2 is highly expressed in decidualized cells under artificial decidualization. In the ovariectomized mouse uterus, Ang-2 expression gradually increases after estrogen injection and with peak levels at 12 hr, while progesterone injection can cause a decline in uterine Ang-2 mRNA level, which reaches a nadir at 12 hr. These results suggest that Ang-2 may play a key role in the process of mouse decidualization. Estrogen can induce the expression of Ang-2 while progesterone can inhibit its expression in the ovariectomized mouse uterus.
Collapse
Affiliation(s)
- Bin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Silva LA, Klein C, Ealy AD, Sharp DC. Conceptus-mediated endometrial vascular changes during early pregnancy in mares: an anatomic, histomorphometric, and vascular endothelial growth factor receptor system immunolocalization and gene expression study. Reproduction 2011; 142:593-603. [DOI: 10.1530/rep-11-0149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This work examined how the conceptus modulates endometrial tissue remodeling and vascular development prior to implantation in mares. A macroscopic uterine examination was completed at day 21 of pregnancy.In situmorphology revealed that the endometrium involved in encroachment is restricted to the dorsal endometrium immediately overlying the yolk sac. The amount of stromal area occupied by blood vessels and the number of endometrial glands were increased during early pregnancy. Endometrial histomorphometry as well as the endometrial mRNA abundance and immunolocalization of VEGF, VEGFR1, VEGFR2, and Ki-67 was completed at days 14 and 21 of pregnancy, at day 10 of the estrous cycle, and during estrus. No obvious differences in VEGF and VEGFR1 protein localization were detected between pregnant and cycling mares but differential staining pattern for VEGFR2 and Ki-67 was observed. VEGFR2 localized to luminal and glandular epithelium of pregnant mares, while luminal epithelium was negative in cycling mares. Ki-67 staining was weak during the luteal phase but exhibited prominent luminal epithelium staining during estrus. In pregnant mares, all endometrial layers were Ki-67 positive. Quantitative RT-PCR revealed a greater abundance ofVEGFmRNA during pregnancy.VEGFR2transcript abundance was greatest in pregnant mares on day 21. This study supports the concept that the conceptus plays an active role in directing vasculogenesis within the uterus and thereby establishing hemotrophic nutrition that supports pregnancy after implantation.
Collapse
|
46
|
Delgado-Rosas F, Gómez R, Ferrero H, Gaytan F, Garcia-Velasco J, Simón C, Pellicer A. The effects of ergot and non-ergot-derived dopamine agonists in an experimental mouse model of endometriosis. Reproduction 2011; 142:745-55. [PMID: 21862695 DOI: 10.1530/rep-11-0223] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Implantation of a retrogradely shed endometrium during menstruation requires an adequate blood supply, which allows the growth of endometriotic lesions. This suggests that the development of endometriosis can be impaired by inhibiting angiogenesis. The growth of endometriotic foci is impaired by commercial oncological antiangiogenic drugs used to block vascular endothelial growth factor (VEGF) signaling. The dopamine agonist cabergoline (Cb2) inhibits the growth of established endometriosis lesions by exerting antiangiogenic effects through VEGFR2 inactivation. However, the use of ergot-derived Cb2 is associated with an increased incidence of cardiac valve regurgitation. To evaluate the potential usage of non-ergot-derived dopamine agonists for the treatment of human endometriosis, we compared the efficacy of quinagolide with that of Cb2 in preventing angiogenesis and vascularization in a heterologous mouse model of endometriosis. Nude mice whose peritoneum had been implanted with eutopic human endometrial fragments were treated with vehicle, 50 μg/kg per day oral Cb2, or 50 or 200 μg/kg per day quinagolide during a 14-day period. At the end of the treatment period, the implants were excised in order to assess lesion size, cell proliferation, degree of vascularization, and angiogenic gene expression. Neoangiogenesis was inhibited and the size of active endometriotic lesions, cellular proliferation index, and angiogenic gene expression were significantly reduced by both dopamine agonists when compared with the placebo. Given that Cb2 and quinagolide were equally effective in inhibiting angiogenesis and reducing lesion size, these experiments provide the rationale for pilot studies to explore the use of non-ergot-derived dopamine agonists for the treatment of endometriosis in humans.
Collapse
Affiliation(s)
- Francisco Delgado-Rosas
- Fundacion IVI-Instituto Universitario IVI, INCLIVA, Universidad de Valencia, C/Guadassuar 1 Bajo, 46015 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Martínez-Hernández MG, Baiza-Gutman LA, Castillo-Trápala A, Armant DR. Regulation of proteinases during mouse peri-implantation development: urokinase-type plasminogen activator expression and cross talk with matrix metalloproteinase 9. Reproduction 2010; 141:227-39. [PMID: 21075828 DOI: 10.1530/rep-10-0334] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Trophoblast cells express urokinase-type plasminogen activator (PLAU) and may depend on its activity for endometrial invasion and tissue remodeling during peri-implantation development. However, the developmental regulation, tissue distribution, and function of PLAU are not completely understood. In this study, the expression of PLAU and its regulation by extracellular matrix proteins was examined by RT-PCR, immunocytochemistry, and plasminogen-casein zymography in cultured mouse embryos. There was a progressive increase in Plau mRNA expression in blastocysts cultured on gestation days 4-8. Tissue-type plasminogen activator (55 kDa) and PLAU (a triplet of 40, 37, and 31 kDa) were present in conditioned medium and embryo lysates, and were adsorbed to the culture plate surface. The temporal expression pattern of PLAU, according to semi-quantitative gel zymography, was similar in non-adhering embryos and embryos cultured on fibronectin, laminin, or type IV collagen, although type IV collagen and laminin upregulated Plau mRNA expression. Immunofluorescence revealed PLAU on the surface of the mural trophectoderm and in non-spreading giant trophoblast cells. Exogenous human plasminogen was transformed to plasmin by cultured embryos and activated endogenous matrix metalloproteinase 9 (MMP9). Indeed, the developmental expression profile of MMP9 was similar to that of PLAU. Our data suggest that the intrinsic developmental program predominantly regulates PLAU expression during implantation, and that PLAU could be responsible for activation of MMP9, leading to localized matrix proteolysis as trophoblast invasion commences.
Collapse
Affiliation(s)
- M G Martínez-Hernández
- Obstetrics and Gynecology and Anatomy and Cell Biology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock Avenue, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
48
|
|
49
|
Motta AB. Dehydroepiandrosterone to induce murine models for the study of polycystic ovary syndrome. J Steroid Biochem Mol Biol 2010; 119:105-11. [PMID: 20188831 DOI: 10.1016/j.jsbmb.2010.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/05/2010] [Accepted: 02/16/2010] [Indexed: 12/25/2022]
Abstract
During the last decade a battery of animal models used for the study of polycystic ovary syndrome (PCOS) have allowed a focus on different aspects of the pathology. Since dehydroepiandrosterone (DHEA) was found to be one of the most abundant circulating androgens in women with PCOS, a rodent model showing the salient features found in women with PCOS was developed by the injection of DHEA. Although insulin-sensitizing agents, such as biguanides, are clinically used in the treatment of diabetes and PCOS, the complete understanding of their mechanisms of action remains unknown. The present review discusses the molecular mechanisms involved in the development of PCOS by using the DHEA-PCOS murine model and analyzes the role of the biguanide metformin as treatment.
Collapse
Affiliation(s)
- A B Motta
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
50
|
Silva LA, Ginther OJ. Local effect of the conceptus on uterine vascular perfusion during early pregnancy in heifers. Reproduction 2010; 139:453-63. [DOI: 10.1530/rep-09-0363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colour-Doppler ultrasonography was used to study the spatial relationship between vascular perfusion in the middle of each uterine horn and the reported location of the embryo proper and expanding conceptus using endometrial vascularity scores 1–4 (nil–maximal). Vascularity increased in both uterine horns between days 14 and 18 (day 0=ovulation) in nonpregnant heifers (n=6) but not in pregnant heifers (n=11). The increase was temporally associated with decreasing plasma progesterone and increasing oestradiol. In pregnant heifers, a transient increase in endometrial vascularity in the ipsilateral horn (horn with embryo) was not detected before day 18, despite a reported transient increase in blood flow in the ipsilateral uterine artery between days 13 and 17. Endometrial vascularity in the ipsilateral horn first increased (P<0.05) between days 18 and 20. Day 20 is the reported day of adhesiveness between chorion and uterus. An increase (P<0.05) in the contralateral horn between days 18 and 22 was slight, but a greater increase occurred after day 32. Day 32 is the reported day of entry of the allantochorion into the contralateral horn. By day 42, scores were similar between the two horns, and the allantochorion reportedly fills both horns. On days 42–60, at a time when placentomes apparently are limited to the ipsilateral horn, vascularity remained elevated in the ipsilateral horn but decreased in the contralateral horn. Results support the hypothesis that vascular perfusion in each uterine horn during early pregnancy is mediated by direct contact between conceptus and uterus.
Collapse
|