1
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Perna A, Venditti N, Merolla F, Fusco S, Guerra G, Zoroddu S, De Luca A, Bagella L. Nutraceuticals in Pregnancy: A Special Focus on Probiotics. Int J Mol Sci 2024; 25:9688. [PMID: 39273635 PMCID: PMC11395456 DOI: 10.3390/ijms25179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The placenta is crucial to fetal development and performs vital functions such as nutrient exchange, waste removal and hormone regulation. Abnormal placental development can lead to conditions such as fetal growth restriction, pre-eclampsia and stillbirth, affecting both immediate and long-term fetal health. Placental development is a highly complex process involving interactions between maternal and fetal components, imprinted genes, signaling pathways, mitochondria, fetal sexomes and environmental factors such as diet, supplementation and exercise. Probiotics have been shown to make a significant contribution to prenatal health, placental health and fetal development, with associations with reduced risk of preterm birth and pre-eclampsia, as well as improvements in maternal health through effects on gut microbiota, lipid metabolism, vaginal infections, gestational diabetes, allergic diseases and inflammation. This review summarizes key studies on the influence of dietary supplementation on placental development, with a focus on the role of probiotics in prenatal health and fetal development.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
- UO Laboratory Analysis, Responsible Research Hospital, Largo Agostino Gemelli, 1, 86100 Campobasso, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Ecay TW, Stewart JR, Khambaty M. Functional complexity in the chorioallantoic membrane of an oviparous snake: Specializations for calcium uptake from the eggshell. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:331-341. [PMID: 35652464 DOI: 10.1002/jez.b.23146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The chorioallantoic membrane of oviparous reptiles forms a vascular interface with the eggshell. The eggshell contains calcium, primarily as calcium carbonate. Extraction and mobilization of this calcium by the chorioallantoic membrane contributes importantly to embryonic nutrition. Development of the chorioallantoic membrane is primarily known from studies of squamates and birds. Although there are pronounced differences in eggshell structure, squamate and bird embryos each mobilize calcium from eggshells. Specialized cells in the chicken chorionic epithelium transport calcium from the eggshell aided by a second population of cells that secrete protons generated by the enzyme carbonic anhydrase. Calcium transporting cells also are present in the chorioallantoic membrane of corn snakes, although these cells function differently than those of chickens. We used histology and immunohistology to characterize the morphology and functional attributes of the chorioallantoic membrane of corn snakes. We identified two populations of cells in the outer layer of the chorionic epithelium. Calbindin-D28K , a cellular marker for calcium transport expressed in squamate chorioallantoic membranes, is localized in large, flattened cells that predominate in the chorionic epithelium. Smaller cells, interspersed among the large cells, express carbonic anhydrase 2, an enzyme not previously localized in the chorionic epithelium of an oviparous squamate. These findings indicate that differentiation of chorionic epithelial cells contributes to extraction and transport of calcium from the eggshell. The presence of specializations of chorioallantoic membranes for calcium uptake from eggshells in chickens and corn snakes suggests that eggshell calcium was a source of embryonic nutrition early in the evolution of Sauropsida.
Collapse
Affiliation(s)
- Tom W Ecay
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson, Tennessee, USA
| | - James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Maleka Khambaty
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson, Tennessee, USA
| |
Collapse
|
4
|
Hernández-Díaz N, Leal F, Ramírez-Pinilla MP. Parallel evolution of placental calcium transfer in the lizard Mabuya and eutherian mammals. J Exp Biol 2021; 224:jeb.237891. [PMID: 33568441 DOI: 10.1242/jeb.237891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
An exceptional case of parallel evolution between lizards and eutherian mammals occurs in the evolution of viviparity. In the lizard genus Mabuya, viviparity provided the environment for the evolution of yolk-reduced eggs and obligate placentotrophy. One major event that favored the evolution of placentation was the reduction of the eggshell. As with all oviparous reptiles, lizard embryos obtain calcium from both the eggshell and egg yolk. Therefore, the loss of the eggshell likely imposes a constraint for the conservation of the egg yolk, which can only be obviated by the evolution of alternative mechanisms for the transport of calcium directly from the mother. The molecular and cellular mechanisms employed to solve these constraints, in a lizard with only a rudimentary eggshell such as Mabuya, are poorly understood. Here, we used RT-qPCR on placental and uterine samples during different stages of gestation in Mabuya, and demonstrate that transcripts of the calcium transporters trpv6, cabp28k, cabp9k and pmca are expressed and gradually increase in abundance through pregnancy stages, reaching their maximum expression when bone mineralization occurs. Furthermore, CABP28K/9K proteins were studied by immunofluorescence, demonstrating expression in specific regions of the mature placenta. Our results indicate that the machinery for calcium transportation in the Mabuya placenta was co-opted from other tissues elsewhere in the vertebrate bodyplan. Thus, the calcium transportation machinery in the placenta of Mabuya evolved in parallel with the mammalian placenta by redeploying the expression of similar calcium transporter genes.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Francisca Leal
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Martha Patricia Ramírez-Pinilla
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
5
|
Dittmer KE, Surendran A, Elder PA, Hoyle TJ. The effect of serum 25-hydroxyvitamin D concentration on fecundity of ewes on a New Zealand sheep farm. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
|
7
|
De Clercq K, Vriens J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1815-1829. [PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in many different steps of the reproduction process, from germ cell maturation to placental development. However, the exact function and regulation of calcium throughout subsequent reproductive events remains rather enigmatic. Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. On the one hand, endometrial cell will undergo massive changes to support an implanting embryo, including stromal cell decidualization. On the other hand, trophoblast cells from the trophectoderm surrounding the inner cell mass will differentiate and acquire new functions such as hormone secretion, invasion and migration. The need for calcium in the different gestational processes implicates the presence of specialized ion channels to regulate calcium homeostasis. The superfamily of transient receptor potential (TRP) channels is a class of calcium permeable ion channels that is involved in the transformation of extracellular stimuli into the influx of calcium, inducing and coordinating underlying signaling pathways. Although the necessity of calcium throughout reproduction cannot be negated, the expression and functionality of TRP channels throughout gestation remains elusive. This review provides an overview of the current evidence regarding the expression and function of TRP channels in reproduction.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Centre for Brain & Disease Research, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium.
| |
Collapse
|
8
|
S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep 2018; 8:11488. [PMID: 30065265 PMCID: PMC6068119 DOI: 10.1038/s41598-018-29852-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 01/11/2023] Open
Abstract
S100P has been shown to be a marker for carcinogenesis where its expression in solid tumours correlates with metastasis and a poor patient prognosis. This protein's role in any physiological process is, however, unknown. Here we first show that S100P is expressed both in trophoblasts in vivo as well as in some corresponding cell lines in culture. We demonstrate that S100P is predominantly expressed during the early stage of placental formation with its highest expression levels occurring during the first trimester of gestation, particularly in the invading columns and anchoring villi. Using gain or loss of function studies through overexpression or knockdown of S100P expression respectively, our work shows that S100P stimulates both cell motility and cellular invasion in different trophoblastic and first trimester EVT cell lines. Interestingly, cell invasion was seen to be more dramatically affected than cell migration. Our results suggest that S100P may be acting as an important regulator of trophoblast invasion during placentation. This finding sheds new light on a hitherto uncharacterized molecular mechanism which may, in turn, lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
|
9
|
Hayward CE, Renshall LJ, Sibley CP, Greenwood SL, Dilworth MR. Adaptations in Maternofetal Calcium Transport in Relation to Placental Size and Fetal Sex in Mice. Front Physiol 2017; 8:1050. [PMID: 29311979 PMCID: PMC5732954 DOI: 10.3389/fphys.2017.01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
Appropriate placental transport of calcium is essential for normal fetal skeletal mineralization. In fetal growth restriction (FGR), the failure of a fetus to achieve its growth potential, a number of placental nutrient transport systems show reduced activity but, in the case of calcium, placental transport is increased. In a genetic mouse model of FGR this increase, or adaptation, maintains appropriate fetal calcium content, relative to the size of the fetus, despite a small, dysfunctional placenta. It is unknown whether such an adaptation is also apparent in small, but normally functioning placentas. We tested the hypothesis that calcium transfer would be up-regulated in the lightest vs. heaviest placentas in the same C57Bl/6J wild-type (WT) mouse litter. Since lightest placentas are often from females, we also assessed whether fetal sex influenced placental calcium transfer. Placentas and fetuses were collected at embryonic day (E)16.5 and 18.5; the lightest and heaviest placentas, and female and male fetuses, were identified. Unidirectional maternofetal calcium clearance (CaKmf) was assessed following 45Ca administration to the dam and subsequent radiolabel counts within the fetuses. Placental expression of calcium pathway components was measured by Western blot. Data (median) are lightest placenta expressed as percentage of the heaviest within a litter and analyzed by Wilcoxon signed-rank test. In WT mice having normally grown fetuses, CaKmf, per gram placenta near term, in the lightest placentas was increased (126%; P < 0.05) in association with reduced fetal calcium accretion earlier in gestation (92%; P < 0.05), that was subsequently normalized near term. Increased placental expression of calbindin-D9K, an important calcium binding protein, was observed in the lightest placentas near term (122%; P < 0.01). There was no difference in fetal calcium accretion between male and female littermates but a trend toward higher CaKmf in females (P = 0.055). These data suggest a small, normal placenta adapts calcium transfer according to its size, as previously demonstrated in a mouse model of FGR. Fetal sex had limited influence on this adaptive increase. These adaptations are potentially driven by fetal nutrient demand, as evidenced by the normalization of fetal calcium content. Understanding the regulatory mechanisms involved may provide novel avenues for treating placental dysfunction.
Collapse
Affiliation(s)
- Christina E Hayward
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Lewis J Renshall
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Colin P Sibley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Susan L Greenwood
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Mark R Dilworth
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
10
|
Muscogiuri G, Altieri B, de Angelis C, Palomba S, Pivonello R, Colao A, Orio F. Shedding new light on female fertility: The role of vitamin D. Rev Endocr Metab Disord 2017; 18:273-283. [PMID: 28102491 DOI: 10.1007/s11154-017-9407-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the last decades several studies suggested that vitamin D is involved in the modulation of the reproductive process in women due to the expression of VDR and 1α-hydroxylase in reproductive tissues such as ovary, uterus, placenta, pituitary and hypothalamus. Vitamin D has also a role in the regulation of sex hormone steroidogenesis. Increasing evidence suggests that vitamin D might have a regulatory role in polycystic ovary syndrome (PCOS)-associated symptoms, including ovulatory dysfunction, insulin resistance and hyperandrogenism. Vitamin D deficiency also has been reported to contribute to the pathogenesis of endometriosis due to its immunomodulatory and anti-inflammatory properties. Although most of the studies supported a role of vitamin D in the onset of these diseases, randomized controlled trials to assess the efficacy of vitamin D supplementation have never been performed. In this review we critically discuss the role of vitamin D in female fertility, starting from in vitro and in vivo studies, focusing our attention on the two most frequent causes of female infertility: PCOS and endometriosis.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Ios and Coleman Medicina Futura Medical Center, Department of Clinical Medicine and Surgery, Section of Endocrinology, University "Federico II", Via Sergio Pasini, 580121, Naples, Italy.
| | - Barbara Altieri
- Division of Endocrinology and Metabolic Diseases, Institute of Medical Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Cristina de Angelis
- Ios and Coleman Medicina Futura Medical Center, Department of Clinical Medicine and Surgery, Section of Endocrinology, University "Federico II", Via Sergio Pasini, 580121, Naples, Italy
| | - Stefano Palomba
- Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova-IRCCS, 42123, Reggio Emilia, Italy
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, "Parthenope" University Naples, Naples, Italy
| |
Collapse
|
11
|
Koel M, Võsa U, Krjutškov K, Einarsdottir E, Kere J, Tapanainen J, Katayama S, Ingerpuu S, Jaks V, Stenman UH, Lundin K, Tuuri T, Salumets A. Optimizing bone morphogenic protein 4-mediated human embryonic stem cell differentiation into trophoblast-like cells using fibroblast growth factor 2 and transforming growth factor-β/activin/nodal signalling inhibition. Reprod Biomed Online 2017. [PMID: 28647356 DOI: 10.1016/j.rbmo.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several studies have demonstrated that human embryonic stem cells (hESC) can be differentiated into trophoblast-like cells if exposed to bone morphogenic protein 4 (BMP4) and/or inhibitors of fibroblast growth factor 2 (FGF2) and the transforming growth factor beta (TGF-β)/activin/nodal signalling pathways. The goal of this study was to investigate how the inhibitors of these pathways improve the efficiency of hESC differentiation when compared with basic BMP4 treatment. RNA sequencing was used to analyse the effects of all possible inhibitor combinations on the differentiation of hESC into trophoblast-like cells over 12 days. Genes differentially expressed compared with untreated cells were identified at seven time points. Additionally, expression of total human chorionic gonadotrophin (HCG) and its hyperglycosylated form (HCG-H) were determined by immunoassay from cell culture media. We showed that FGF2 inhibition with BMP4 activation up-regulates syncytiotrophoblast-specific genes (CGA, CGB and LGALS16), induces several molecular pathways involved in embryo implantation and triggers HCG-H production. In contrast, inhibition of the TGF-β/activin/nodal pathway decreases the ability of hESC to form trophoblast-like cells. Information about the conditions needed for hESC differentiation toward trophoblast-like cells helps us to find an optimal model for studying the early development of human trophoblasts in normal and in complicated pregnancy.
Collapse
Affiliation(s)
- Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia; Department of Biosciences and Nutrition, and Centre for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Urmo Võsa
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Biosciences and Nutrition, and Centre for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, and Centre for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, and Centre for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Juha Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, and Centre for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sulev Ingerpuu
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia; Department of Biosciences, Karolinska Institutet, Huddinge, Sweden
| | - Ulf-Hakan Stenman
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Fedotova J, Pivina S, Sushko A. Effects of Chronic Vitamin D₃ Hormone Administration on Anxiety-Like Behavior in Adult Female Rats after Long-Term Ovariectomy. Nutrients 2017; 9:E28. [PMID: 28054941 PMCID: PMC5295072 DOI: 10.3390/nu9010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/10/2016] [Accepted: 12/27/2016] [Indexed: 11/16/2022] Open
Abstract
The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E₂) on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days) on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX) rats and OVX rats treated with 17β-E₂ (0.5 µg/rat SC, once daily, for 14 days). Anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light/dark test (LDT), and locomotor and grooming activities were tested in the open field test (OFT). Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E₂ produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency.
Collapse
Affiliation(s)
- Julia Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Emb. Makarova, Saint Petersburg 199034, Russia.
- Laboratory of Comparative Somnology and Neuroendocrinology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Tores pr., Saint Petersburg 194223, Russia.
- International Research Centre, Biotechnologies of the Third Millennium, ITMO University, 9 Lomonosova str., Saint Petersburg 191002, Russia.
| | - Svetlana Pivina
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Emb. Makarova, Saint Petersburg 199034, Russia.
| | - Anastasia Sushko
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Emb. Makarova, Saint Petersburg 199034, Russia.
- Department of Chemistry and Molecular biology, ITMO University, 49 Kronverksky pr., Saint Petersburg 197101, Russia.
| |
Collapse
|
13
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
14
|
Hong SH, Lee JE, Kim HS, Jung YJ, Hwang D, Lee JH, Yang SY, Kim SC, Cho SK, An BS. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes. J Biomed Res 2016; 30:203-8. [PMID: 27533930 PMCID: PMC4885168 DOI: 10.7555/jbr.30.2016k0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022] Open
Abstract
1,25-dihydroxyvitamin D3 (VD3), an active form of Vitamin D, is photosynthesized in the skin of vertebrates in response to solar ultraviolet B radiation (UV-B). VD3 deficiency can cause health problems such as immune disease, metabolic disease, and bone disorders. It has also been demonstrated that VD3 is involved in reproductive functions. Female sex hormones such as estrogen and progesterone are biosynthesized mainly in ovarian granulosa cells as the ovarian follicle develops. The functions of sex hormones include regulation of the estrus cycle and puberty as well as maintenance of pregnancy in females. In this study, we isolated granulosa cells from porcine ovaries and cultured them for experiments. To examine the effects of VD3 on ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by Real-time PCR and Western blotting assay. Production of progesterone from granulosa cells was also measured by ELISA assay. As a result, transcriptional and translational regulation of progesterone biosynthesis-related genes in granulosa cells was significantly altered by VD3. Furthermore, progesterone concentrations in porcine granulosa cell-cultured media decreased in response to VD3. These results show that VD3 was a strong regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.
Collapse
Affiliation(s)
- So-Hye Hong
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Jae-Eon Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Hong Sung Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Young-Jin Jung
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - DaeYoun Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Jae Ho Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 46269, Korea
| | - Seong-Keun Cho
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea.
| |
Collapse
|
15
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Special attention has been given to the effect of vitamin D supplementation on fertility outcomes in both sexes. AIMS The purpose of this narrative review was to elucidate the role of vitamin D in male and female reproduction, providing current evidence from both animal and human studies. MATERIALS AND METHODS Using PubMed and Medline, we searched for publications during the last 30 years regarding the role of vitamin D in human reproduction. RESULTS Accumulating evidence from animal and human studies suggests that vitamin D is involved in many functions of the reproductive system in both genders. In women, vitamin D status has been associated with in vitro fertilization (IVF) outcome, features of polycystic ovarian syndrome (PCOS) and endometriosis. Although several data converge towards a beneficial effect of vitamin D supplementation in metabolic disturbances in women with PCOS, a significant knowledge gap precludes the establishment of a clear cause-effect relationship. In men, vitamin D status has been associated with semen quality and sperm count, motility and morphology. There is evidence for a favourable effect of vitamin D supplementation on semen quality, testosterone concentrations and fertility outcomes. DISCUSSION Studies with superior methodological characteristics are needed in order to establish a role for vitamin D on the treatment of female and male infertility. CONCLUSIONS Recent data on vitamin D provide new insights in the complex pathogenesis and treatment of infertility.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, "Papageorgiou" General Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
17
|
Baczyk D, Kingdom JCP, Uhlén P. Calcium signaling in placenta. Cell Calcium 2011; 49:350-6. [PMID: 21236488 DOI: 10.1016/j.ceca.2010.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/19/2022]
Abstract
The placenta sustains the developing fetus throughout gestation and its major functions include nutrition, gas and waste exchange via a variety of passive or active mechanisms. Up to 30 g of calcium (Ca(2+)) actively crosses the trophoblast layer during human pregnancy. The Ca(2+) ion not only plays an important role for skeletal development but is also an essential second messenger. This review is intended to highlight the implications of Ca(2+) signaling during reproduction and specifically placentation. Initially, a Ca(2+) wave induces fertilization of the oocyte. The intracellular Ca(2+) concentration is key for the blastocyst implantation, proper placental development and function. Current knowledge of many proteins involved in placental Ca(2+) regulation and their function in pathologic conditions is largely limited. Recent studies, however, point to alterations in Ca(2+) homeostasis in placental pathologies such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR). A broader understanding of the role of Ca(2+) signaling during human reproduction may offer insight into impaired pregnancy outcomes.
Collapse
Affiliation(s)
- Dora Baczyk
- Research Centre for Women's and Infants' Health (RCWIH) at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
18
|
Halhali A, Figueras AG, Díaz L, Avila E, Barrera D, Hernández G, Larrea F. Effects of calcitriol on calbindins gene expression and lipid peroxidation in human placenta. J Steroid Biochem Mol Biol 2010; 121:448-51. [PMID: 20214988 DOI: 10.1016/j.jsbmb.2010.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 11/30/2022]
Abstract
Pregnancy is associated with increased maternal calcitriol levels and placenta is an extrarenal source of this hormone. Calbindin-D9k and calbindin-D28k are vitamin D-dependent. Since calbindin-D28k has been considered as an antioxidant factor, the aim of the present work was to investigate the effects of calcitriol on calbindins gene expression and lipid peroxidation in cultured syncytiotrophoblast cells obtained from healthy human placentas. Gene expression of calbindins was evaluated using RT and real-time PCR techniques. Malondialdehyde (MDA) levels were used as lipid peroxidation marker. The results of the present study showed that cultured syncytiotrophoblast cells expressed the mRNA of calbindin-D9k and calbindin-D28k. In addition, calcitriol stimulated gene expression of both calbindins in a dose-dependent manner. Placental MDA levels were not significantly different at physiological concentrations of calcitriol (10(-11) M and 10(-9) M). However, the use of calcitriol at 10(-7) M resulted in significantly higher MDA levels (P<0.05). In conclusion, the results showed that cultured syncytiotrophoblast cells expressed calbindin-D9k and calbindin-D28k genes, which were stimulated by calcitriol. In addition, the results suggest that calcitriol may be considered as pro-oxidant when used at pharmacological doses.
Collapse
Affiliation(s)
- Ali Halhali
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan 14000, México D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
19
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
20
|
Lafond J, Simoneau L. Calcium Homeostasis in Human Placenta: Role of Calcium‐Handling Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:109-74. [PMID: 16861065 DOI: 10.1016/s0074-7696(06)50004-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human placenta is a transitory organ, representing during pregnancy the unique connection between the mother and her fetus. The syncytiotrophoblast represents the specialized unit in the placenta that is directly involved in fetal nutrition, mainly involving essential nutrients, such as lipids, amino acids, and calcium. This ion is of particular interest since it is actively transported by the placenta throughout pregnancy and is associated with many roles during intrauterine life. At term, the human fetus has accumulated about 25-30 g of calcium. This transfer allows adequate fetal growth and development, since calcium is vital for fetal skeleton mineralization and many cellular functions, such as signal transduction, neurotransmitter release, and cellular growth. Thus, there are many proteins involved in calcium homeostasis in the human placenta.
Collapse
Affiliation(s)
- Julie Lafond
- Laboratoire de Physiologie Materno Foetale, Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Canada, H3C 3P8
| | | |
Collapse
|
21
|
Arcuri F, Papa S, Meini A, Carducci A, Romagnoli R, Bianchi L, Riparbelli MG, Sanchez JC, Palmi M, Tosi P, Cintorino M. The Translationally Controlled Tumor Protein Is a Novel Calcium Binding Protein of the Human Placenta and Regulates Calcium Handling in Trophoblast Cells1. Biol Reprod 2005; 73:745-51. [PMID: 15958728 DOI: 10.1095/biolreprod.105.042077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The translationally controlled tumor protein (TPT1, also known as TCTP) is a highly conserved, abundantly expressed protein found in mammals as well as in a wide range of other organisms of both the animal and plant kingdom. Initially considered as a growth-related protein, later studies showed TPT1 is endowed with multiple biological activities, including calcium binding. The present study aimed to evaluate the expression of TPT1 in the human placenta and to examine the functional role of the protein in the calcium binding and homeostasis of trophoblast cells. Samples were analyzed by Western blot, reverse transcription-polymerase chain reaction and immunohistochemistry. The effect of TPT1 knockdown by small interfering RNA (siRNA) on calcium uptake and buffering was assessed in the HTR-8/SVneo cell line. TPT1 protein and mRNA were detected in first-trimester and term placenta. In the tissue, TPT1 was localized in the villous trophoblast. TPT1 expression significantly increased during gestation, with the higher protein and mRNA levels reached at term. Recombinant placental TPT1 bound calcium in vitro, while downregulation of the protein levels by siRNA in HTR-8/SVneo cells was associated with a reduced cellular calcium-uptake activity and buffering capacity. These data demonstrate, for the first time, the expression of TPT1 in the human placenta and support a direct role of the protein in placental calcium transport.
Collapse
Affiliation(s)
- Felice Arcuri
- Department of Human Pathology and Oncology, University of Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Belkacemi L, Züegel U, Steinmeyer A, Dion JP, Lafond J. Calbindin-D28k (CaBP28k) identification and regulation by 1,25-dihydroxyvitamin D3 in human choriocarcinoma cell line JEG-3. Mol Cell Endocrinol 2005; 236:31-41. [PMID: 15922086 DOI: 10.1016/j.mce.2005.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/03/2005] [Accepted: 03/10/2005] [Indexed: 11/25/2022]
Abstract
Calbindin-D28k (CaBP28k) is a cytosolic calcium (Ca2+)-binding protein expressed in tissues such as intestine, kidneys and placenta. This protein is thought to be involved in Ca2+ homeostasis. While it is well known that CaBP28k is influenced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the intestine and kidneys, nothing is known regarding the regulation of this protein in trophoblasts of human placenta. We used JEG-3 syncytiotrophoblast-like carcinoma cell line to study the regulation of CaBP28k in correlation with 1,25(OH)2D3 receptor (VDR) following 1,25(OH)2D3 treatments. Our data demonstrated for the first time that both CaBP28k mRNA and protein were highly induced by the addition of 1,25(OH)2D3 in dose-dependent manner. Moreover, the increase and subsequent decrease in the expression of CaBP28k and VDR mRNAs indicates the transient nature of the changes in gene expression in response to 1,25(OH)2D3. This is in contrast with the temporal pattern of increasing protein for CaBP28k and VDR. We also showed that new RNA and protein syntheses are required for 1,25(OH)2D3-induced upregulation of CaBP28k. Furthermore, a 25-carboxylic ester analogue of 1,25(OH)2D3, ZK159222, used as an antagonist of 1,25(OH)2D3 signaling confirmed that indeed 1,25(OH)2D3 was implicated in the induction of CaBP28k. These novel findings are a contribution to the processes that drive CaBP28k expression regulation in human placenta.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Laboratoire de Physiologie Materno-foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Qué., Canada H3C 3P8
| | | | | | | | | |
Collapse
|
23
|
Daoud G, Simoneau L, Masse A, Rassart E, Lafond J. Expression of cFABP and PPAR in trophoblast cells: effect of PPAR ligands on linoleic acid uptake and differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:181-94. [PMID: 15708366 DOI: 10.1016/j.bbalip.2004.11.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/19/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
Throughout gestation, fetal growth depends, in part, on placental transfer of maternal essential fatty acid (EFA) and long-chain polyunsaturated fatty acid. All fatty acid (FA) can cross lipid bilayer by simple diffusion, such as those in the syncytiotrophoblasts, the multinucleated, terminally differentiated trophoblast cells. The trophoblasts differentiation process is accompanied by an increase of human chorionic gonadotropin (hCG) secretion and an inhibition of Human Achaete-Scute Homologue-2 expression (Hash-2). Furthermore, a number of FA-binding proteins (FABPs) have been identified in membrane and cytoplasm of mammalian cells, which are thought to facilitate the transfer of FA across membranes and their intracellular channeling. Thus, the aim of this study was to investigate the implication of cFABPs in linoleic acid (LA) uptake by human trophoblast cells according to differentiation. Moreover, since peroxisome proliferator-activated receptor (PPARs) regulate the expression of cFABP and play an important role in trophoblast cells differentiation, the effects of PPARs ligands are verified on cFABP expression and differentiation. Herein, we reported the increase of the expression of liver and heart FABP (L- and H-FABP) upon differentiation of trophoblast cells, an inhibition of PPAR alpha and beta, while PPAR gamma levels remains unchanged. The nonselective peroxisome-proliferating agents, bezafibrate and LA, impaired trophoblast differentiation, and reduced L- and H-FABP expression. Furthermore, cobalt, a chemical agent known to mimic hypoxia, inhibits trophoblast cells differentiation and diminishes H-, L-FABP and PPARs expression. Finally, both treatments show no influence on LA uptake by trophoblast cells. In conclusion, this study showed that there is no correlation between the expression of H- and L-FABP and LA uptake by trophoblast cells and that bezafibrate and LA greatly impaired trophoblast cells differentiation.
Collapse
Affiliation(s)
- Georges Daoud
- Laboratoire de Physiologie materno-fonetale, Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | |
Collapse
|
24
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
25
|
Lafond J, Hamel A, Takser L, Vaillancourt C, Mergler D. Low environmental contamination by lead in pregnant women: effect on calcium transfer in human placental syncytiotrophoblasts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:1069-1079. [PMID: 15205024 DOI: 10.1080/15287390490452263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is an extensive literature on the neurotoxic effects of lead (Pb) on the developing fetus; however, little is known about the mechanisms of action at low levels. Heavy metals are known to affect calcium (Ca2+) homeostasis through perturbation of Ca2+ channels and pumps and interference with protein kinase C (PKC) and Ca2+ binding protein (CaBP). During pregnancy, placental Ca2+ exchange is one of the most important mechanisms for fetal survival. This ion is an essential element for healthy fetal growth and development. The aim of the present study was to determine the influence of low maternal blood Pb levels on Ca2+ levels in serum and placenta and placental Ca2+ transfer. Blood samples (maternal and cord) and placental tissue were obtained at birth from 30 women residing in southwest Quebec. Total Ca2+ and Pb levels were measured in maternal and umbilical cord samples and placental tissue at term. The placentas were taken for trophoblast cell isolation and Ca2+ incorporation kinetic experiments. Data showed that Ca2+ in maternal blood did not influence Ca2+ uptake by syncytiotrophoblast. However, although maternal and cord blood Pb levels were low, maternal blood Pb concentration was significantly linked to a decrease in Ca2+ uptake by syncytiotrophoblast. This suggests that exposure to very levels of Pb significantly modifies Ca2+ transfer in syncytiotrophoblasts.
Collapse
Affiliation(s)
- Julie Lafond
- Laboratoire de Physiologie Materno-Foetale and Centre d'étude des interactions biologiques entre la santé et l'environnement (CINBOISE), Département des Sciences Biologiques, Université du Québec à Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|