1
|
Marchese NA, Ríos MN, Guido ME, Valdez DJ. Three different seasonally expressed opsins are present in the brain of the Eared Dove, an opportunist breeder. ZOOLOGY 2024; 162:126147. [PMID: 38277721 DOI: 10.1016/j.zool.2024.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Birds living at high latitudes perceive the photoperiod through deep-brain photoreceptors (DBP) located in deep-brain neurons. During long photoperiods the information transmitted by these photoreceptors increases the activity of the hypothalamic-pituitary-gonadal (HPG) axis, leading to gonadal development. The presence of photopigments such as VA-Opsin, Opn4, Opn5 and Opn2 in brain areas implicated in reproductive behaviors has been firmly established in several avian species with seasonal breeding, whereas their existence in opportunistic breeding birds remains unconfirmed. The Eared Dove is an urban and peri-urban dove that breeds throughout the year. Males of this species do not exhibit the typical gonadal regression/recrudescence cycle, thus posing the question of what occurs upstream of the HPG axis. We addressed this issue by first studying the presence of diverse opsins located in DBP in the brains of Eared Dove males and whether these photopigments changed their expression throughout the year. We carried out an immunohistochemistry analysis on three different opsins: Opn2 (rhodopsin), Opn3 and Opn5. Our results demonstrate the discrete neuroanatomical distribution of these opsins in the brain of Eared Dove males and strongly indicate different seasonal expressions. In the anterior region of the hypothalamus, Opn2-positive cells were detected throughout the year. By contrast, Opn5 was found to be strongly and seasonally expressed during winter in the anterior and the hypothalamic region. Opn3 was also found to be significantly and seasonally expressed during winter in the hypothalamic region. We thus demonstrate for the first time that males of the Eared Dove, have three different deep-brain opsin-expressing photoreceptors with differential location/distribution in the anterior and hypothalamic region and differential seasonality. The persistence of Opn2 and the strong seasonal expression of nonvisual photopigments Opn3 and Opn5 in two areas of the avian brain, which are associated with reproduction, could be the primary distinction between seasonal and opportunistic breeders.
Collapse
Affiliation(s)
- Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maximiliano N Ríos
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego J Valdez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
2
|
Oh SB, Cho S, Kim HJ, Kim SJ. Differential expression of the enzymes regulating myosin light chain phosphorylation are responsible for the slower relaxation of pulmonary artery than mesenteric artery in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:49-57. [PMID: 38154964 PMCID: PMC10762492 DOI: 10.4196/kjpp.2024.28.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/30/2023]
Abstract
While arterial tone is generally determined by the phosphorylation of Ser19 in myosin light chain (p-MLC2), Thr18/Ser19 diphosphorylation of MLC2 (pp-MLC2) has been suggested to hinder the relaxation of smooth muscle. In a dual-wire myography of rodent pulmonary artery (PA) and mesenteric artery (MA), we noticed significantly slower relaxation in PA than in MA after 80 mM KCl-induced condition (80K-contraction). Thus, we investigated the MLC2 phosphorylation and the expression levels of its regulatory enzymes; soluble guanylate cyclase (sGC), Rho-A dependent kinase (ROCK) and myosin light chain phosphatase target regulatory subunit (MYPT1). Immunoblotting showed higher sGC-α and ROCK2 in PA than MA, while sGC-β and MYPT1 levels were higher in MA than in PA. Interestingly, the level of pp-MLC2 was higher in PA than in MA without stimulation. In the 80K-contraction state, the levels of p-MLC2 and pp-MLC2 were commonly increased. Treatment with the ROCK inhibitor (Y27632, 10 μM) reversed the higher pp-MLC2 in PA. In the myography study, pharmacological inhibition of sGC (ODQ, 10 μM) slowed relaxation during washout, which was more pronounced in PA than in MA. The simultaneous treatment of Y27632 and ODQ reversed the impaired relaxation in PA and MA. Although treatment of PA with Y27632 alone could increase the rate of relaxation, it was still slower than that of MA without Y27632 treatment. Taken together, we suggest that the higher ROCK and lower MYPT in PA would have induced the higher level of MLC2 phosphorylation, which is responsible for the characteristic slow relaxation in PA.
Collapse
Affiliation(s)
- Seung Beom Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Suhan Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
3
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
4
|
Li J, Zhang W, Zhu S, Shi F. Nitric Oxide Synthase Is Involved in Follicular Development via the PI3K/AKT/FoxO3a Pathway in Neonatal and Immature Rats. Animals (Basel) 2020; 10:ani10020248. [PMID: 32033275 PMCID: PMC7070647 DOI: 10.3390/ani10020248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
It is assumed that nitric oxide synthase and nitric oxide are involved in the regulation of female reproduction. This study aimed to assess the roles of nitric oxide synthase (NOS) in follicular development. The endothelial NOS (eNOS) inhibitor L-NAME, inducible NOS (iNOS) inhibitor S-Methylisothiourea (SMT) and NOS substrate L-arginine (L-Arg) were used in the NOS inhibition models in vivo. Neonatal female rats were treated with phosphate buffer saline (PBS, control), L-NAME (L-NG-Nitroarginine Methyl Ester, 40 mg/kg), SMT (S-Methylisothiourea, 10 mg/kg), L-NAME + SMT, or L-Arg (L-arginine, 50 mg/kg) via subcutaneous (SC) injection on a daily basis for 19 consecutive days, with the samples being collected on specific postnatal days (PD5, PD10, and PD19). The results indicated that the number of antral follicles, the activity of total-NOS, iNOS, neuronal NOS (nNOS), and eNOS, and the content of NO in the ovary were significantly (p < 0.05) increased in the L-Arg group at PD19, while those in L + S group were significantly (p < 0.05) decreased. Meanwhile, the ovarian expression in the L-Arg group in terms of p-AKT, p-FoxO3a, and LC3-II on PD19 were significantly (p < 0.05) upregulated, while the expressions of PTEN and cleaved Caspase-3 were (p < 0.05) downregulated as a result of NOS/NO generation, respectively. Therefore, the results suggest that NOS is possibly involved in the maturation of follicular development to puberty via the PI3K/ AKT/FoxO3a pathway, through follicular autophagia and apoptosis mechanisms.
Collapse
Affiliation(s)
- Junrong Li
- College of Agriculture and Bio-Engineering, Jinhua Polytechnic, Jinhua 321017, China;
- Correspondence: ; Tel.: +86-135-8860-6686
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (F.S.)
| | - Shanli Zhu
- College of Agriculture and Bio-Engineering, Jinhua Polytechnic, Jinhua 321017, China;
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (F.S.)
| |
Collapse
|
5
|
Effect of ovarian steroids on vascular endothelial growth factor a expression in bovine uterine endothelial cells during adenomyosis. BMC Vet Res 2019; 15:473. [PMID: 31888628 PMCID: PMC6937854 DOI: 10.1186/s12917-019-2222-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Adenomyosis is a uterine dysfunction defined as the presence of endometrial glands within the myometrium. There is evidence that proangiogenic factors may play a role during the development of adenomyosis; however, exact mechanism remains unknown. The aim of the study was to determine the action of vascular endothelial growth factor A (VEGFA) in uterine tissue and uterine vascular endothelial cells during adenomyosis. Results Uterine tissues were collected and examined for the presence and extent of adenomyosis. Gene and protein expression of VEGFA and its two receptors (VEGFR1 and VEGFR2) was evaluated with quantitative polymerase chain reaction and Western blotting, respectively, in endometrium and myometrium during adenomyosis. Immunolocalization of VEGFA and its receptors within uterine tissues during adenomyosis was also determined. In an in vitro experiment, endothelial cells from non-adenomyotic bovine uteri were treated with media conditioned by non-adenomyotic or adenomyotic uterine slices treated with 17-beta-oestradiol (E2) or progesterone (P4). Both gene and protein expression of VEGFR2 were elevated in endometrium in stages 3–4 of adenomyosis. Protein expression of VEGFA and VEGFR2 as well as VEGFA secretion were increased in endothelial cells treated with media conditioned by adenomyotic uterine slices after E2 treatment. Conclusions Results suggest that VEGFA signalling is an important component, next to E2, that enhances VEGFA action and participates in adenomyosis development in cows.
Collapse
|
6
|
Zhang Z, Wang F, Zhang Y. Expression and Contribution of NLRP3 Inflammasome During the Follicular Development Induced by PMSG. Front Cell Dev Biol 2019; 7:256. [PMID: 31750302 PMCID: PMC6842944 DOI: 10.3389/fcell.2019.00256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Follicular development and following ovulation induced by luteinizing hormone (LH) surge are critical for ovarian functions, but the molecular mechanism regulating ovarian ovulation attracts more attention and remains mainly unknown. Recent researches on the nucleotide leukin rich polypeptide 3 (NLRP3) inflammasome shred light on it. Given pregnant mare serum gonadotropin (PMSG) can not only trigger the follicular development, but also induce the following ovulation, the present study therefore examined that expression and localization of NLRP3 inflammasome through immunohistochemistry and Western blotting during the follicular development induced by PMSG. The results showed expressions of NLRP3 and the adaptor protein apoptosis-associated speck-like protein (ASC) significantly increased in the outside of intrafollicular fluid, further analysis found that caspase-1 was activated and IL-1β production was also upregulated after 52 h-treatment of PMSG. Furthermore, a significant increase of ovulation-related genes, hypoxia inducible factor (HIF)-1α and endothelin (ET)-1, was found after 52 h-treatment of PMSG. To our knowledge, it is the first time to clearly indicated the activation of NLRP3 inflammasome may contribute to the ovulation of PMSG-treated ovaries, which will help to further clarify the ovulatory mechanism in mammals.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fan Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Nath P, Mukherjee U, Biswas S, Pal S, Das S, Ghosh S, Samanta A, Maitra S. Expression of nitric oxide synthase (NOS) in Anabas testudineus ovary and participation of nitric oxide-cyclic GMP cascade in maintenance of meiotic arrest. Mol Cell Endocrinol 2019; 496:110544. [PMID: 31419465 DOI: 10.1016/j.mce.2019.110544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Participation of cyclic nucleotide-mediated signaling in nitric oxide/soluble guanylate cyclase (NO/sGC) regulation of oocyte maturation (OM) in perch (Anabas testudineus) follicle-enclosed oocytes has been investigated. Congruent with sharp decline in follicular cyclic GMP (cGMP) level, nitric oxide synthase (NOS)-inhibitor (L-NAME) attenuates protein kinase A (PKA) phosphorylation but promotes p-ERK1/2 and p-p34Cdc2 (Thr-161) in maturing oocytes. Conversely, NO donor (SNP) prevents OM, potentially through elevated cGMP synthesis. Expression and localization of Nos2 and Nos3 immunoreactivity in perch ovary varied considerably at progressively higher stages of folliculogenesis. While sGC inhibitor (ODQ) alone could induce OM, 8-bromo-cGMP attenuates 17,20β-P-induced OM indicating functional significance of NO/sGC/cGMP in perch ovary. Interestingly, high NO/cGMP inhibition of OM shows positive relation with elevated cAMP level. MIS induced OM is more susceptible to the oocyte-specific phosphodiesterase (PDE) 3 than PDE4 inhibition. Collectively, high NO/cGMP attenuation of OM potentially involves PDE3 inhibition, cAMP accumulation and PKA activation.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sriparna Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Anwesha Samanta
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
8
|
Nath P, Maitra S. Physiological relevance of nitric oxide in ovarian functions: An overview. Gen Comp Endocrinol 2019; 279:35-44. [PMID: 30244056 DOI: 10.1016/j.ygcen.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
9
|
Thompson JG, Brown HM, Kind KL, Russell DL. The Ovarian Antral Follicle: Living on the Edge of Hypoxia or Not?1. Biol Reprod 2015; 92:153. [DOI: 10.1095/biolreprod.115.128660] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 11/01/2022] Open
|
10
|
Li Y, Wei QW, Feng JG, Xu ML, Huang RH, Shi FX. Expression of bone morphogenetic protein 2, 4, and related components of the BMP signaling pathway in the mouse uterus during the estrous cycle. J Zhejiang Univ Sci B 2015; 15:601-10. [PMID: 25001220 DOI: 10.1631/jzus.b1300288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective was to investigate the expression of bone morphogenetic protein (BMP) family members in the mouse uterus during the estrous cycle by real-time polymerase chain reaction (PCR) and immunohistochemistry. Uterine samples from Swiss ICR mice were collected and dissected free of surrounding tissue. One uterine horn was snap frozen in liquid nitrogen immediately after collection and stored at -80 °C for RNA extraction, and the other was fixed in 40 mg/ml paraformaldehyde at room temperature for immunolocalization of BMP2 protein. Real-time PCR analysis showed that the expression level of Bmp2 was significantly higher at proestrus than at estrus and metestrus (P<0.05). The relative abundance of Bmp4 exhibited significant fluctuations, but there were no statistically significant differences between the expression levels of Bmp2 and Bmp4 (P>0.05). The expression levels of Bmpr1a and Bmpr2 remained unchanged during estrous cycles. However, the level of Bmpr1b mRNA decreased significantly at estrus (P<0.05), increasing subsequently at metestrus. Furthermore, the level of Bmpr1b mRNA was significantly lower than those of Bmpr1a and Bmpr2 mRNA at the corresponding stages (P<0.05). All three receptor-regulated Smads (R-Smads) detected were differentially expressed in the mouse uterus and the expression levels of Smad1 and Smad5 were significantly higher than that of Smad8 (P<0.05). In addition, the expression level of Smad4 did not change substantially throughout the estrous cycle. Immunohistochemical experiments revealed that BMP2 protein was differentially expressed and localized mainly in the uterine luminal and glandular epithelial cells throughout the estrous cycle. In conclusion, our results provide information about the variation in the mRNA levels of Bmp2 and Bmp4 and related components of the BMP signaling pathway. The data provide quantitative and useful information about the roles of endometrial BMP proposed and demonstrated by others, such as the degradation and remodeling of the endometrium.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
11
|
Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol 2014; 9:221. [PMID: 25432701 PMCID: PMC4260254 DOI: 10.1186/s13000-014-0221-9] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immunohistochemistry (IHC) is a well-established, widely accepted method in both clinical and experimental parts of medical science. It allows receiving valuable information about any process in any tissue, and especially in bone. Each year the amount of data, received by IHC, grows in geometric progression. But the lack of standardization, especially on the post-analytical stage (interpreting and reporting of results), makes the comparison of the results of different studies impossible. METHODS Comprehensive PubMED literature search with a combination of search words "immunohistochemistry" and "scoring system" was performed and 773 articles describing IHC results were identified. After further manual analysis 120 articles were selected for detailed evaluation of used approaches. RESULTS Six major approaches to the interpretation and presentation of IHC analysis results were identified, analyzed and described. CONCLUSIONS The overview of the existing approaches in evaluation and interpretation of IHC data, which are provided in the article, can be used in bone tissue research and for either better understanding of existing scoring systems or developing a new one. Standard multiparametric, semiquantitative IHC scoring systems should simplify and clarify the process of interpretation and reporting of received data. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_221.
Collapse
Affiliation(s)
- Nickolay Fedchenko
- Small Animal Clinic, University of Veterinary Medicine, Foundation, Bünteweg 9, 30559, Hannover, Germany.
- Department of Pathological Anatomy and Forensic Medicine, SE "Dnipropetrovsk Medical Academy of Health Ministry of Ukraine", Dzerginskogo st. 9, 49044, Dnipropetrovsk, Ukraine.
| | - Janin Reifenrath
- Small Animal Clinic, University of Veterinary Medicine, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
12
|
Li Y, Zhou X, Wei QW, Huang RH, Shi FX. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α and β subunits in postnatal porcine uteri. Acta Histochem 2014; 116:466-73. [PMID: 24238988 DOI: 10.1016/j.acthis.2013.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to investigate the cellular expression and immunolocalization of nitric oxide synthase (NOS) isoforms and soluble guanylyl cyclase (sGC) subunits in postnatal porcine uteri. Immunohistochemical experiments showed that three isoforms of NOS were mainly localized in the uterine luminal and glandular epithelium and myometrium, and the intensity of immunostaining for iNOS and eNOS was increased gradually with temporal development of the postnatal uterus. In addition, sGC subunits, sGCα1 and β, were present in the uterine luminal and glandular epithelium, myometrium and stromal cells. The uterine NOS activity data showed that the total NOS and iNOS activities were significantly increased at postnatal days 21 and 35. Although constitutive NOS activity was increased at postnatal day 21, it decreased subsequently at postnatal day 35. Immunoblot analysis revealed that iNOS protein expression was significantly increased at postnatal days 21 and 35. Furthermore, sGCα1 protein expression was not significantly changed throughout days 7 to 35. Collectively, our findings suggest that NO/cGMP signaling is involved in the process of postnatal porcine uterine development.
Collapse
|
13
|
Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes. Theriogenology 2013; 81:556-64. [PMID: 24331454 DOI: 10.1016/j.theriogenology.2013.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO) is a chemical messenger involved in the control of oocyte maturation. It stimulates guanylate cyclase to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases that may interfere with cAMP levels, a nucleotide also involved in meiosis resumption. The aim of this study was to determine the role played by NO on the cGMP/cAMP pathway during meiosis resumption in bovine oocytes. The effects of increasing NO generated by S-nitroso-N-acetylpenicillamine (SNAP; 10(-7)-10(-3) mol/L) and of other drugs that may affect the NO/cGMP pathway (proptoporfirin IX and 8-Br-cGMP) on meiosis resumption were investigated in bovine cumulus-oocyte complexes (COCs) matured for 9 hours in a semidefined medium (TCM199 + 3 mg/mL BSA). The COCs matured with 10(-7) mol/L SNAP associated or not with 100 μmol/L oxadiazole-one quinoxaline, a guanylate cyclase inhibitor, also had their cGMP and cAMP levels measured during the first hours of maturation (1, 3, and 6 hours). Quantitative polymerase chain reaction was performed by real-time polymerase chain reaction to determine the effects of NO on expression of genes encoding for enzymes of the NO/guanylate cyclase/cGMP and cAMP pathways during the first 9 hours of oocyte maturation. Increasing NO levels using 10(-7) mol/L SNAP resulted in lower rate of germinal vesicle breakdown (36% germinal vesicle breakdown; P < 0.05) at 9 hours IVM, whereas control group and the treatments with 10(-9) and 10(-8) mol/L SNAP showed about 70% germinal vesicle breakdown (P > 0.05). A temporary increase in cGMP levels was also observed with the same treatment (4.51 pmol/COC) at 1 hour IVM, which was superior to the control group (2.97 pmol/COC; P < 0.05) and was reversed by inhibiting guanylate cyclase activity with 100 μmol/L oxadiazole-one quinoxaline. Neither cAMP levels nor gene expression were affected by NO. These results suggest that NO acts via guanylate cyclase/cGMP and that even a temporary increase in cGMP levels leads to a delay in meiosis resumption, even when cAMP levels have declined. Nitric oxide does not act on oocyte maturation by affecting cAMP levels or the expression of genes related to the NO/guanylate cyclase/cGMP and cAMP pathways. Also, to our knowledge this is the first report to detect PKG1, PKG2, phosphodiesterase-5A, ADCY3, ADCY6, and ADCY9 transcripts in bovine oocytes.
Collapse
|
14
|
Shi F, Perez E, Wang T, Peitz B, Lapolt PS. Stage- and Cell-Specific Expression of Soluble Guanylyl Cyclase Alpha and Beta Subunits, cGMP-Dependent Protein Kinase I Alpha and Beta, and Cyclic Nucleotide-Gated Channel Subunit 1 in the Rat Testis. ACTA ACUST UNITED AC 2013; 26:258-63. [PMID: 15713832 DOI: 10.1002/j.1939-4640.2005.tb01093.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies suggest that nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) modulate testicular function. In this study, we examined the expression of cGMP-dependent protein kinase G-I (PKG-I), and cyclic nucleotide-gated channel 1 (CNG-1), 2 known mediators of cGMP action, and the expression of soluble guanylyl cyclase (sGC) subunits in the rat testis. Immunohistochemical analysis revealed that the alpha subunit of sGC was expressed in the blood vessels and Leydig cells of adult rat testes. In addition, the sGC alpha subunit was observed in the acrosomal structures of spermatids undergoing the middle and later stages of spermiogenesis, but not in mature spermatozoa. Similar localization and expression patterns were seen for the sGC beta subunit, indicating coexpression of the sGC subunits. PKG-I was expressed in blood vessels and in the acrosomal region of spermatids during the early and middle stages of spermiogenesis but was not observed in Leydig cells or in mature spermatozoa. In contrast to sGC and PKG-I, CNG-1 was expressed only in cytoplasm and the residual bodies of late-stage (17-19) spermatids, with no staining observed in blood vessels and Leydig cells. These results demonstrate that sGC, PKG-I, and CNG-1 are expressed in a stage- and cell-specific manner in the rat testis. The distinct temporal patterns of expression of these components of cGMP signaling pathways suggest different physiological roles for sGC, PKG-I, and CNG-1 in spermiogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Fangxiong Shi
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China.
| | | | | | | | | |
Collapse
|
15
|
Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α1 and β1 subunits in the ovary of fetal, neonatal and immature pigs. Anim Reprod Sci 2012; 131:172-80. [PMID: 22498451 DOI: 10.1016/j.anireprosci.2012.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/16/2012] [Accepted: 02/28/2012] [Indexed: 11/22/2022]
Abstract
The present study is designed to investigate the cellular expression and immunolocalization of three different nitric oxide synthase (NOS) isoforms and soluble guanylyl cyclase (sGC) subunits in the porcine ovary. Our results showed that in the fetal and neonatal pigs, all three isoforms of NOS were mainly localized in the oocyte and showed the expression of gradual increase in the granulosa cell and theca cell with the growing follicle. In addition, subunits of the sGC, sGC α1 and β1 were mainly expressed in the granulosa cell in precious studies. The bioactivity of total NOS, eNOS, iNOS and nNOS was detected in the ovary and were higher at prenatal stages compared to postnatal stages. However, the activities of nNOS were no different between prenatal stages and postnatal stages. Taken together, our findings suggested that the NOS/sGC pathway may be involved in the follicular formation and development in the porcine ovary.
Collapse
|
16
|
Huang P, Zhou ZQ, Huang RH, Zhou B, Wei QW, Shi FX. Age-dependent expression of forkhead box O proteins in the duodenum of rats. J Zhejiang Univ Sci B 2012; 12:730-5. [PMID: 21887848 DOI: 10.1631/jzus.b1000298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The O subfamily of forkhead box (FoxO) proteins is the downstream effector of the insulin-like growth factor-1/phosphoinositide 3-kinase/protein kinase B (IGF-1/PI3K/PKB) signal pathway. The objective of the present study was to examine the expressions of three members of FoxO proteins, FoxO1, FoxO3a, and FoxO4 in the duodenum of Sprague-Dawley rats at different ages. The result demonstrated that the expression of FoxO4 in rat duodenum showed an age-dependent manner. At Day 21, there were no detectable localization and expression of FoxO4 in the duodenum, while, at Months 2 and 6, localization and expression of FoxO4 were distinct. In addition, FoxO4 staining was primarily concentrated in the cell nuclei of the lamina propria around the intestinal gland of the duodenum in 2-month-old rats, but was not detectable in the same area in 6-month-old rats. Our results showed also that although FoxO3a existed in the cytoplasm of the lamina propria at a low level at the 2- and 6-month marks, it was still not detectable at Day 21. Besides, FoxO1 was not detectable in all parts and stages. Taken together, our findings suggested that the cell-specific and age-dependent expressional patterns of FoxO4 and FoxO3a proteins in the duodenum play some roles in the development and growth performance of the rat duodenum.
Collapse
Affiliation(s)
- Pan Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
17
|
Zhang W, Wei QW, Wang ZC, Ding W, Wang W, Shi FX. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and the related nitric oxide/cyclic GMP signaling pathway in the ovaries of neonatal and immature rats. J Zhejiang Univ Sci B 2011; 12:55-64. [PMID: 21194187 DOI: 10.1631/jzus.b1000174] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study is designed to investigate the cellular expressions and immunolocalizations of three different nitric oxide synthase (NOS) isoforms and the related nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway in the ovaries of neonatal and immature rats. METHODS The ovaries were obtained from ICR (Institute for Cancer Research) female Sprague-Dawley rats at postnatal days 1, 5, 7, 10, and 19. Then we carried out the histologic examination, immunohistochemistry, measurement of NOS activity, and modifications within the NO/cGMP pathway. RESULTS During postnatal days 1, 5, 7, 10, and 19, all three isoforms of NOS were mainly localized to the oocytes and expressed as a gradual increase in granulosa cells and theca cells within the growing follicle. The ovarian total NOS activities and NO levels were increased at postnatal days 7 and 10 compared with other days. CONCLUSIONS Our findings suggest that the locally produced NO and the NO/NOS signaling systems are involved in the follicular development to puberty.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
18
|
Escudero JM, Haller JL, Clay CM, Escudero KW. Microarray analysis of Foxl2 mediated gene regulation in the mouse ovary derived KK1 granulosa cell line: Over-expression of Foxl2 leads to activation of the gonadotropin releasing hormone receptor gene promoter. J Ovarian Res 2010; 3:4. [PMID: 20167115 PMCID: PMC2831895 DOI: 10.1186/1757-2215-3-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/18/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The Foxl2 transcription factor is required for ovarian function during follicular development. The mechanism of Foxl2 regulation of this process has not been elucidated. Our approach to begin to understand Foxl2 function is through the identification of Foxl2 regulated genes in the ovary. METHODS Transiently transfected KK1 mouse granulosa cells were used to identify genes that are potentially regulated by Foxl2. KK1 cells were transfected in three groups (mock, activated, and repressed) and twenty-four hours later RNA was isolated and submitted for Affymetrix microarray analysis. Genesifter software was used to carry out analysis of microarray data. One identified target, the gonadotropin releasing hormone receptor (GnRHR) gene, was chosen for further study and validation of Foxl2 responsiveness. Transient transfection analyses were carried out to study the effect of Foxl2 over-expression on GnRHR gene promoter-luciferase fusion activity. Data generated was analyzed with GraphPad Prism software. RESULTS Microarray analysis identified 996 genes of known function that are potentially regulated by Foxl2 in mouse KK1 granulosa cells. The steroidogenic acute regulatory protein (StAR) gene that has been identified as Foxl2 responsive by others was identified in this study also, thereby supporting the effectiveness of our strategy. The GnRHR gene was chosen for further study because it is known to be expressed in the ovary and the results of previous work has indicated that Foxl2 may regulate GnRHR gene expression. Cellular levels of Foxl2 were increased via transient co-transfection of KK1 cells using a Foxl2 expression vector and a GnRHR promoter-luciferase fusion reporter vector. The results of these analyses indicate that over-expression of Foxl2 resulted in a significant increase in GnRHR promoter activity. Therefore, these transfection data validate the microarray data which suggest that Foxl2 regulates GnRHR and demonstrate that Foxl2 acts as an activator of the GnRHR gene. CONCLUSIONS Potential Foxl2 regulated ovarian genes have been identified through microarray analysis and comparison of these data to other microarray studies. The Foxl2 responsiveness of the GnRHR gene has been validated and provided evidence of Foxl2 transcriptional activation of the GnRHR gene promoter in the mouse ovary derived KK1 granulosa cell line.
Collapse
Affiliation(s)
- Jean M Escudero
- Department of Biological and Health Sciences, Texas A&M University- Kingsville, Kingsville, TX, USA
| | - Jodi L Haller
- Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Colin M Clay
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kenneth W Escudero
- Department of Biological and Health Sciences, Texas A&M University- Kingsville, Kingsville, TX, USA
| |
Collapse
|
19
|
Sasseville M, Côté N, Gagnon MC, Richard FJ. Up-regulation of 3'5'-cyclic guanosine monophosphate-specific phosphodiesterase in the porcine cumulus-oocyte complex affects steroidogenesis during in vitro maturation. Endocrinology 2008; 149:5568-76. [PMID: 18669600 DOI: 10.1210/en.2008-0547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 3'5'-cyclic GMP (cGMP) pathway is known to influence ovarian functions, including steroidogenesis, ovulation, and granulosa cell proliferation. We show here that cGMP-phosphodiesterase (PDE) activity increased in a gonadotropin-dependent manner more than 3-fold in the cumulus-oocyte complex (COC) after 24 h in vitro maturation (IVM) and up to 5-fold after 48 h. Further characterization of this increase demonstrated that the activity was located primarily in cumulus cells, and was sensitive to sildenafil and zaprinast, two inhibitors specific to both type 5 and 6 PDEs. RT-PCR experiments showed that the mRNAs for cGMP-degrading PDEs 5A and 6C are present in the COC before and after 30 h IVM. Western blotting confirmed the presence of PDE 5A in the COC. Western blotting of PDE 6C revealed a significant up-regulation in the COC during IVM. Isolation and analysis of detergent-resistant membranes suggested that PDE 6C protein, along with half of the total sildenafil-sensitive cGMP-degradation activity, is associated with detergent-resistant membrane in the COC after 30 h IVM. Treatment of porcine COC with sildenafil during IVM caused a significant decrease in gonadotropin-stimulated progesterone secretion. Together, these results constitute the first report exploring the contribution of cGMP-PDE activity in mammalian COC, supporting a functional clustering of the enzyme, and providing the first evidence of its role in steroidogenesis.
Collapse
Affiliation(s)
- Maxime Sasseville
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
20
|
Reyna-Neyra A, Sarkar G, Etgen AM. Regulation of soluble guanylyl cyclase activity by oestradiol and progesterone in the hypothalamus but not hippocampus of female rats. J Neuroendocrinol 2007; 19:418-25. [PMID: 17388815 DOI: 10.1111/j.1365-2826.2007.01546.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oestradiol and progesterone act in the hypothalamus to coordinate the timing of lordosis and ovulation in female rats in part through regulation of nitric oxide (NO) and cyclic guanosine monophosphate (cyclic GMP) signalling pathways. Soluble guanylyl cyclase is an enzyme that produces cyclic GMP when stimulated by NO and plays a crucial role in the display of lordosis behaviour. We examined the effects of oestradiol and progesterone on the stimulation of cyclic GMP synthesis by NO-dependent and independent activators of soluble guanylyl cyclase in preoptic-hypothalamic and hippocampal slices. Ovariectomised Sprague-Dawley rats were injected with oestradiol (2 microg oestradiol benzoate, s.c.) or vehicle for 2 days. Progesterone (500 microg, s.c.) or vehicle was injected 44 h after the first dose of oestradiol. Rats were killed 48 h after the first oestradiol or vehicle injection, and hypothalamus and hippocampus were obtained. NO-dependent activation of soluble guanylyl cyclase was induced by NO donors, sodium nitroprusside or diethylamine NONOate; NO-independent activation of soluble guanylyl cyclase was induced with 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole and 5'-cyclopropyl-2-[1-2fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyridine-4-ylamine. The NO-dependent activators of soluble guanylyl cyclase produced a concentration-dependent increase in cyclic GMP accumulation and induced significantly greater cyclic GMP accumulation in preoptic-hypothalamic slices from animals treated with oestradiol and progesterone than in slices from rats injected with vehicle, oestradiol or progesterone alone. Hormones did not modify soluble guanylyl cyclase activation by NO-independent stimulators or influence NO content in preoptic-hypothalamic slices. Oestradiol and progesterone did not affect activation of soluble guanylyl cyclase in hippocampal slices by any pharmacological agent, indicating a strong regional selectivity for the hormone effect. Thus, oestradiol and progesterone, administered in vivo, enhance the ability of NO to activate soluble guanylyl cyclase in brain areas modulating female reproductive function without an effect on production of NO itself.
Collapse
Affiliation(s)
- A Reyna-Neyra
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
21
|
Wang Z, Shi F, Jiang YQ, Lu LZ, Wang H, Watanabe G, Taya K. Changes of cyclic AMP levels and phosphodiesterase activities in the rat ovary. J Reprod Dev 2007; 53:717-25. [PMID: 17380041 DOI: 10.1262/jrd.18156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP (cAMP) is a second messenger that plays a critical role in follicular recruitment, development and luteinization in the mammalian ovary. The cellular level of cAMP is largely dependent on the activity of phosphodiesterase (PDE), which degrades cAMP into 5'-AMP. The present study was conducted to investigate the level of cAMP and the activity of cAMP-PDE in postnatal rats; immature rats during gonadotropin-primed follicular development, ovulation and luteinization; adult rats during normal estrous cycling; and aged rats that spontaneously developed persistent estrous (PE) by radioimmunoassay (RIA). All four rat models were confirmed by histological examination of one ovary and assayed using the other ovary by RIA. In the postnatal rats, the ovarian cAMP level was high on day 10 after birth, while ovarian cAMP-PDE activity was highest at 21 days of age. In the immature female rats, both the ovarian cAMP level and cAMP-PDE activity increased remarkably after treatment with equine chorionic gonadotropin (eCG), increased continuously 24 h after injection of human chorionic gonadotropin (hCG) for induction of ovulation and luteinization, and then declined significantly. In the adult rats during the normal estrous cycle, the ovarian cAMP levels were low on the day of estrus, and there were no significant changes in ovarian cAMP-PDE activity throughout the estrous cycle. In the PE rats, the ovarian cAMP levels were similar to those of the adult rats on the day of estrus but were lower than those on the other days of the estrous cycle; ovarian cAMP-PDE activity was lower than that in the adult rats on any day of the estrous cycle. Together, these findings indicate that the ovarian cAMP level and cAMP-PDE activity were regulated in a stage-dependent manner during ovarian follicular development, atresia and luteinization and providing evidences that cAMP and cAMP-specific PDEs are involved in these physiological processes.
Collapse
Affiliation(s)
- Zhengchao Wang
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Shi F. Phosphodiesterase 4 and compartmentalization of cyclic AMP signaling. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0025-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Palanisamy GS, Cheon YP, Kim J, Kannan A, Li Q, Sato M, Mantena SR, Sitruk-Ware RL, Bagchi MK, Bagchi IC. A Novel Pathway Involving Progesterone Receptor, Endothelin-2, and Endothelin Receptor B Controls Ovulation in Mice. Mol Endocrinol 2006; 20:2784-95. [PMID: 16887885 DOI: 10.1210/me.2006-0093] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe steroid hormone progesterone (P) plays a pivotal role during ovulation. Mice lacking P receptor (Pgr) gene fail to ovulate due to a defect in follicular rupture. The P receptor (PGR)-regulated pathways that modulate ovulation, however, remain poorly understood. To identify these pathways, we performed gene expression profiling using ovaries from mice subjected to gonadotropin-induced superovulation in the presence and in the absence of CDB-2914, a synthetic PGR antagonist. Prominent among the genes that were down-regulated in response to CDB-2914 was endothelin (ET)-2, a potent vasoactive molecule. ET-2 mRNA was transiently induced in mural granulosa cells of the preovulatory follicles immediately preceding ovulation. This induction was absent in the ovaries of PGR null mice, indicating a critical role of this receptor in ET-2 expression. To investigate the functional role of ET-2 during ovulation, we employed selective antagonists of endothelin receptors, ETR-A and ETR-B. Mice treated with an ETR-B antagonist exhibited a dramatic (>85%) decline in the number of released oocytes. Strong expression of ETR-B was observed in the mural and cumulus granulosa cells of the preovulatory follicles as well as in the capillaries lining the inner border of the theca interna. We also identified cGMP-dependent protein kinase II, a previously reported PGR-regulated gene, as a downstream target of ET-2 during ovulation. Collectively, our studies uncovered a unique pathway in which ET-2, produced by PGR in mural granulosa cells, acts in a paracrine or autocrine manner on multiple cell types within the preovulatory follicle to control the final events leading to its rupture.
Collapse
Affiliation(s)
- Gopinath S Palanisamy
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vonnahme KA, Redmer DA, Borowczyk E, Bilski JJ, Luther JS, Johnson ML, Reynolds LP, Grazul-Bilska AT. Vascular composition, apoptosis, and expression of angiogenic factors in the corpus luteum during prostaglandin F2alpha-induced regression in sheep. Reproduction 2006; 131:1115-26. [PMID: 16735551 DOI: 10.1530/rep.1.01062] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Corpora lutea and blood samples were collected from superovulated ewes 0, 4, 8, 12 and 24 h after prostaglandin F(2alpha) (PGF) analog injection on day 10 of the estrous cycle. Changes in vascular cell and fibroblast composition, apoptosis and mRNA expression for several angiogenic factors in the corpus luteum (CL) were determined. While peripheral progesterone concentration decreased at 24 h after PGF injection, CL weight did not change. The area of positive BS-1 lectin staining (endothelial cell marker), smooth muscle cell actin (SMCA; pericyte and SMC marker), collagen type 1 (fibroblast marker), and the rate of cell death changed in luteal tissues after PGF treatment. In association with these cellular changes, mRNA for several angiogenic factors including vascular endothelial growth factor (VEGF) and receptors (Flt and KDR), basic fibroblast growth factor (FGF2) and receptor, angiopoietin (ANGPT) 1 and receptor Tie-2, endothelial nitric oxide synthase (NOS3), and angiotensin II receptor 1 (AT1) were altered. Changes in endothelial cell marker expression were positively correlated with changes in VEGF and NO systems. In addition, changes in mRNA expression for VEGF, Flt and KDR were positively correlated with changes in ANGPT2, Tie-2, and NOS3, indicating a functional relationship. This data demonstrates that after an initial increase, the endothelial component of the vascular bed decreases during PGF-induced luteal regression. However, SMCA expression remained high during luteal regression, potentially indicating a role of pericytes and vascular SMC in luteolysis, likely to regulate tissue remodeling and to maintain the integrity of larger blood vessels. Further, it appears that early regression may increase collagen type 1 production and/or expression by fibroblasts. Expression of angiogenic factors is influenced by PGF-induced luteolysis and may serve to maintain vascular structure in order to aid luteal regression.
Collapse
Affiliation(s)
- Kimberly A Vonnahme
- Department of Animal and Range Sciences, North Dakota State University, Fargo, 58105, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Grazul-Bilska AT, Navanukraw C, Johnson ML, Arnold DA, Reynolds LP, Redmer DA. Expression of endothelial nitric oxide synthase in the ovine ovary throughout the estrous cycle. Reproduction 2006; 132:579-87. [PMID: 17008469 DOI: 10.1530/rep-06-0009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was conducted to evaluate the expression of endothelial nitric oxide synthase (eNOS) in ovarian follicles and corpora lutea (CL) throughout the estrous cycle in sheep. Three experiments were conducted to (1) immunolocalize eNOS protein, (2) determine expression of mRNA for eNOS and its receptor guanylate cyclase 1 soluble β3 (GUCY1B3), and (3) co-localize eNOS and vascular endothelial growth factor (VEGF) proteins in the follicles and/or CL throughout the estrous cycle. In experiment 1, ovaries were collected from ewes treated with FSH, to induce follicular growth or atresia. In experiment 2, ovaries were collected from ewes treated with FSH and hCG to induce follicular growth and ovulation. In experiment 3, ovaries were collected from superovulated ewes to generate multiple CL on days 2, 4, 10, and 15 of the estrous cycle. In experiments 1 and 2, the expression of eNOS protein was detected in the blood vessels of the theca externa and interna of healthy ovarian follicles. However, in early and advanced atretic follicles, eNOS protein expression was absent or reduced. During the immediate postovulatory period, eNOS protein expression was detected in thecal-derived cells that appeared to be invading the granulosa layer. Expression of eNOS mRNA tended to increase in granulosa cells at 12 and 24 h, and in theca cells 48 h after hCG injection. In experiment 3, eNOS protein was located in the blood vessels of the CL during the estrous cycle. Dual localization of eNOS and VEGF proteins in the CL demonstrated that both were found in the blood vessels.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal and Range Sciences, North Dakota State University, Fargo, North Dakota 58105-5727, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang Z, Pan L, Luo J, Wang H, Shi F. Role of phosphodiesterase in cyclic AMP signaling in cultured rat granulosa cells. ACTA ACUST UNITED AC 2006; 46:179-87. [PMID: 16597423 DOI: 10.1051/rnd:2006004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/05/2005] [Indexed: 11/14/2022]
Abstract
Inactivation of the cyclic nucleotide signal in granulosa cells depends on a complex array of cyclic nucleotide phosphodiesterases (PDE). In order to examine the role of PDE in cyclic AMP (cAMP) signaling in granulosa cells, the present study examined the expression of PDE4D proteins and regulation of cAMP-PDE activities in cultured rat granulosa cells. The results of immunoblot analyses showed that two predominant PDE4D subtypes of approximately 80 and 70 kDa appeared when immature rat granulosa cells were treated with FSH. However, these two new subtypes presumed to be PDE4D proteins were not influenced by treatments of DETA/NO, cGMP and PKB inhibitor, LY294002. Immature rat granulosa cells treated with medium alone displayed low cAMP-PDE activity throughout 48 h of culture while those treated with FSH (2 ng.mL-1) showed a marked increase in cAMP-PDE activity between 6 and 12 h of culture, followed by a decline. The findings from the present study indicate that the increased cAMP-PDE activity by FSH is mainly related to the changes of PDE4D protein levels. However, the inhibitory effects of NO on cAMP accumulation in rat granulosa cells are not via the increased cAMP-PDE activity.
Collapse
Affiliation(s)
- Zhengchao Wang
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | | | | | | | | |
Collapse
|
27
|
Sriraman V, Rudd MD, Lohmann SM, Mulders SM, Richards JS. Cyclic Guanosine 5′-Monophosphate-Dependent Protein Kinase II Is Induced by Luteinizing Hormone and Progesterone Receptor-Dependent Mechanisms in Granulosa Cells and Cumulus Oocyte Complexes of Ovulating Follicles. Mol Endocrinol 2006; 20:348-61. [PMID: 16210344 DOI: 10.1210/me.2005-0317] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractCyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.
Collapse
Affiliation(s)
- Venkataraman Sriraman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|