1
|
Zhang Z, Xu X, Chen F, Liu Q, Li Z, Zheng X, Zhao Y. Multi-Omics Sequencing Dissects the Atlas of Seminal Plasma Exosomes from Semen Containing Low or High Rates of Sperm with Cytoplasmic Droplets. Int J Mol Sci 2025; 26:1096. [PMID: 39940864 PMCID: PMC11817786 DOI: 10.3390/ijms26031096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Sperm cytoplasmic droplets (CDs) are remnants of cytoplasm that can cause a number of problems if it not shed from the sperm after ejaculation. Exosomes can rapidly bind to sperm, but it is not clear whether exosomes can affect the migration and shedding of CDs. We first extracted and characterized seminal plasma exosomes from boar semen containing sperm with low or high rates of CDs. Then, the transcriptomic and proteomic detection of these exosomes were performed to analyze the differences between the two groups of seminal plasma exosomes. The results revealed that 486 differentially expressed genes (DEGs), 40 differentially expressed proteins (DEPs), and 503 differentially expressed lncRNAs (DElncRNAs) were identified between the low CD rate group and high CD rate group. Integrative multi-omics analysis showed that exosome components may affect migration and shedding of cytoplasmic droplets by influencing cytoskeletal regulation and insulin signaling, including regulation of the actin cytoskeleton, ECM-receptor interaction, axon guidance, insulin secretion, and the insulin signaling pathway. Overall, our study systematically revealed the DEGs, DEPs, and DElncRNAs in seminal plasma exosomes between low CD rate semen and high CD rate semen, which will help broaden our understanding of the complex molecular mechanisms involved in the shedding of CDs.
Collapse
Affiliation(s)
- Zilu Zhang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Xiaoxian Xu
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Fumei Chen
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Qingyou Liu
- College of Animal Science and Technology, Foshan University, Foshan 528231, China; (Q.L.); (Z.L.)
| | - Zhili Li
- College of Animal Science and Technology, Foshan University, Foshan 528231, China; (Q.L.); (Z.L.)
| | - Xibang Zheng
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| | - Yunxiang Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (Z.Z.); (X.X.); (F.C.)
| |
Collapse
|
2
|
Wang Z, Qi Y, Xiao N, She L, Zhang Y, Lu J, Jiang Q, Luo C. Identification of crucial LncRNAs associated with testicular development and LOC108635509 as a potential regulator in black goat spermatogenesis. BMC Genomics 2024; 25:1195. [PMID: 39695400 PMCID: PMC11654314 DOI: 10.1186/s12864-024-11094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The establishment and maintenance of spermatogenesis is a complex process involving a vast of regulatory pathways. There is growing evidence revealing that long noncoding RNAs (lncRNA) play important roles in regulating testicular development and spermatogenesis in a stage-specific way. However, our understanding of how lncRNA regulates testicular development and spermatogenesis in black goats is quite limited. In the current study, we screened the transcriptomes (lncRNA and mRNA) of testicular from Guangxi black goats before puberty (3 days old, D3; 30 days old, D30), puberty (90 days old, D90) and postpuberty (180 days old, D180), in order to identify the lncRNA interaction with mRNAs contributes to goat spermatogenesis. The RNA-sequencing (RNA-seq) analysis showed that there were 1211, 12,180, 834 differential lncRNAs and 1196, 8838,269 differential mRNAs at the ages of D30 vs. D3, D90 vs. D30, and D180 vs. D90. The lncRNAs showed the most significantly changes from D30 to D90, which indicated that D90 was a key node of lncRNAs participated in the regulation of testicular development and spermatogenesis in black goat. According to functional enrichment analysis of GO and KEGG, we found that differentially expressed lncRNAs (DE lncRNAs) and their target genes regulated spermatogenesis through signal pathways including MAPK, Ras, and PI3K-Akt. Using cis- and trans-acting, 39 DE lncRNAs-targeted genes were found to be enriched for male reproduction. Of these, LOC108635509, which specific expressed in testis and upregulated the expression levels at D90, was found participated in the regulation of testicular development through promoting the proliferation of Sertoli cells (SCs). Overall, this study provides new insight into the regulatory mechanisms that support spermatogenesis and testicular development in black goats.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunjia Qi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Nan Xiao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Liu She
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunchuang Zhang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Junzhi Lu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Qinyang Jiang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| | - Chan Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| |
Collapse
|
3
|
Barros S, Coimbra AM, Herath LA, Alves N, Pinheiro M, Ribeiro M, Morais H, Branco R, Martinez O, Santos HG, Montes R, Rodil R, Quintana JB, Santos MM, Neuparth T. Are Environmental Levels of Nonsteroidal Anti-Inflammatory Drugs a Reason for Concern? Chronic Life-Cycle Effects of Naproxen in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19627-19638. [PMID: 39445516 DOI: 10.1021/acs.est.4c05599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The nonsteroidal anti-inflammatory drug naproxen (NPX) is among the most consumed pharmaceuticals worldwide, being detected in surface waters within the ng to μg/L range. Considering the limited chronic ecotoxicity data available for NPX in aquatic ecosystems, the present study aimed at evaluating its impact in the model organism Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (0.1 to 5.0 μg/L). An integration of apical endpoints, i.e., survival, growth, and reproduction, with gonad histopathology and gene transcription (RNA-seq) was performed to provide additional insights into the mode of action (MoA) of NPX. NPX decreased zebrafish growth and reproduction and led to histopathological alterations in gonads at concentrations as low as 0.1 μg/L. At the molecular level, 0.7 μg/L of NPX led to a disruption in gonads transcription of genes involved in several biological processes associated with reproduction, mainly involving steroid hormone biosynthesis and epigenetic/epitranscriptomic machineries. Collectively, these results show that environmentally realistic concentrations of NPX affect zebrafish reproduction and associated signaling pathways, indicating that current hazard and risk assessment data for NPX underestimate the environmental risk of this pharmaceutical.
Collapse
Affiliation(s)
- Susana Barros
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, Vila Real 5000-801, Portugal
| | - Ana M Coimbra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, Vila Real 5000-801, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real 5000-801,Portugal
| | - Lihini Athapaththu Herath
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Nélson Alves
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marlene Pinheiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marta Ribeiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Hugo Morais
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Ricardo Branco
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Olga Martinez
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Hugo G Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Rosa Montes
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Miguel M Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Teresa Neuparth
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| |
Collapse
|
4
|
Akhigbe RE, Akhigbe TM, Oyedokun PA, Famurewa AC. Molecular mechanisms underpinning the protection against antiretroviral drug-induced sperm-endocrine aberrations and testicular toxicity: A review. Reprod Toxicol 2024; 128:108629. [PMID: 38825169 DOI: 10.1016/j.reprotox.2024.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has revolutionized the treatment of HIV/AIDS worldwide. The HAART approach is the combination of two or more antiretroviral drugs of different classes and are responsible for patient's survival and declining death rates from HIV/AIDS and AIDS-related events. However, the severe and persistent reproductive side effect toxicity of HAART regimens is of great concern to patients within the reproductive age. Till date, the underlying pathophysiology of the HAART-induced reproductive toxicity remains unraveled. Nevertheless, preclinical studies show that oxidative stress and inflammation may be involved in HAART-induced sperm-endocrine deficit and reproductive aberrations. Studies are emerging demonstrating the efficacy of plant-based and non-plant products against the molecular alterations and testicular toxicity of HAART. The testicular mechanisms of mitigation by these products are associated with enhancement of testicular steroidogenesis, spermatogenesis, inhibition of oxidative stress and inflammation. This review presents the toxic effects of HAART on spermatogenesis, reproductive hormones and testis integrity. It also provides insights on the molecular mechanisms underlying the mitigation of HAART testicular toxicity by plant-based and non-plant agents. However, effect of repurposing clinical drugs to combat HAART toxicity is unknown, and more mechanistic studies are evidently needed. Altogether, plant-based and non-plant products are potential agents for prevention of rampant endocrine dysfunction and testicular toxicity of HAART.
Collapse
Affiliation(s)
- Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| |
Collapse
|
5
|
Wanjari UR, Gopalakrishnan AV. Blood-testis barrier: a review on regulators in maintaining cell junction integrity between Sertoli cells. Cell Tissue Res 2024; 396:157-175. [PMID: 38564020 DOI: 10.1007/s00441-024-03894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
The blood-testis barrier (BTB) is formed adjacent to the seminiferous basement membrane. It is a distinct ultrastructure, partitioning testicular seminiferous epithelium into apical (adluminal) and basal compartments. It plays a vital role in developing and maturing spermatocytes into spermatozoa via reorganizing its structure. This enables the transportation of preleptotene spermatocytes across the BTB, from basal to adluminal compartments in the seminiferous tubules. Several bioactive peptides and biomolecules secreted by testicular cells regulate the BTB function and support spermatogenesis. These peptides activate various downstream signaling proteins and can also be the target themself, which could improve the diffusion of drugs across the BTB. The gap junction (GJ) and its coexisting junctions at the BTB maintain the immunological barrier integrity and can be the "gateway" during spermatocyte transition. These junctions are the possible route for toxicant entry, causing male reproductive dysfunction. Herein, we summarize the detailed mechanism of all the regulators playing an essential role in the maintenance of the BTB, which will help researchers to understand and find targets for drug delivery inside the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, PIN 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, PIN 632014, India.
| |
Collapse
|
6
|
Miao C, Wang Z, Wang X, Huang W, Gao X, Cao Z. Deoxynivalenol Induces Blood-Testis Barrier Dysfunction through Disrupting p38 Signaling Pathway-Mediated Tight Junction Protein Expression and Distribution in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12829-12838. [PMID: 37590035 DOI: 10.1021/acs.jafc.3c03552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Deoxynivalenol (DON) is widely present in cereals and processed grains. It can disrupt the blood-testicular barrier (BTB), leading to sterility in males; however, the mechanism is unknown. In this study, 30 Kunming mice and TM4 cells were exposed to 0 or 4.8 mg/kg (28 d) and 0-2.4 μM (24 h) of DON, respectively. Histopathological findings showed that DON increased BTB permeability in mice, leading to tight junction (TJ) structural damage. Immunofluorescence results indicated that DON disrupted the localization of zonula occludens (ZO)-1. The results of protein and mRNA expression showed that the expression of ZO-1, occludin, and claudin-11 was reduced, and that the p38/GSK-3β/snail and p38/ATF-2/MLCK signaling pathways were activated in mouse testes and TM4 cells. Pretreatment with the p38 inhibitor SB203580 maintained TJ integrity in TM4 cells after exposure to DON. Thus, DON induced BTB dysfunction in mice by disrupting p38 pathway-mediated TJ expression and distribution.
Collapse
Affiliation(s)
- Chenjiao Miao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zijia Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Xin Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zheng Cao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| |
Collapse
|
7
|
Freus M, Kabat-Koperska J, Frulenko I, Wiszniewska B, Kolasa A. Morphology of the male rat gonad after in Utero exposure to immunosuppressants. Reprod Biol 2023; 23:100757. [PMID: 37011422 DOI: 10.1016/j.repbio.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
The protocol for immunosuppression of pregnant women is based on immunosuppressant panels. The aim of the study was to determine the influence of commonly applied combinations of immunosuppressants to pregnant rats on the morphology of the offspring' testes. Pregnant rats were treated with cyclosporin A (CsA), mycophenolate mofetil (MMF) and prednisone (Pred) (CMG); tacrolimus (Tc), MMF and Pred (TMG); CsA, everolimus (Ev) and Pred (CEG). Testes of mature offspring underwent morphological analysis. Mainly in the testes of CMG and TMG rats the morphological and functional changes were observed: immature germ cells (GCs) in the seminiferous tubule (ST) lumen, invaginations of the basement membrane, infolding to the seminiferous epithelium (SE), the ST wall thickening, increased acidophilia of Sertoli cells' (SCs) cytoplasm, large residual bodies near the lumen, dystrophic ST and tubules look like the Sertoli cell-only syndrome, Leydig cells with abnormal cell nucleus, hypertrophy of the interstitium, blurring of the boundary between ST wall and interstitium, a reduced number of GCs in the SE, vacuolation of the SE. In the CEG there were only a reduced number of GCs in some tubules and vacuolization of SCs. The safest combination of drugs was CEG, while the TMG and CMG were gonadotoxic.
Collapse
|
8
|
Peeney D, Fan Y, Gurung S, Lazaroff C, Ratnayake S, Warner A, Karim B, Meerzaman D, Stetler-Stevenson WG. Whole organism profiling of the Timp gene family. Matrix Biol Plus 2023; 18:100132. [PMID: 37095886 PMCID: PMC10121480 DOI: 10.1016/j.mbplus.2023.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Li Y, Chen Y, Wu W, Li N, Hua J. MMPs, ADAMs and ADAMTSs are associated with mammalian sperm fate. Theriogenology 2023; 200:147-154. [PMID: 36842259 DOI: 10.1016/j.theriogenology.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Metalloproteinases include matrix metalloproteinases and disintegrin metalloproteinases. They are important members of the ECM degradation and reconstruction process and are associated with tissue development and disease. The ECM is a three-dimensional network of large molecules consisting of a variety of proteins. It is a physical scaffold for organs, and all types of cells can be found within the ECM. The testicle, where sperm are produced, is an organ that is constantly in dynamic flux. Metalloproteinases can regulate testicular tissue development and the maturation of sperm by affecting the ECM. Metalloproteinase disorders can lead to cryptorchidism, azoospermia, poor semen quality and other diseases. As a member of the metalloproteinase family, ADAMTS plays an important role in testicular slippage to the scrotum. ADAM is involved in the fertilization process, and excessive MMP can damage the BTB. In the testis, metalloproteinase stability represents the stability of the extracellular microenvironment in which germ cells are located and is associated with reproductive function. Metalloproteinases have a definite relationship with male reproduction, but the underlying mechanism is still unclear. This paper summarizes the literature on various metalloproteinases in testicular tissue physiology and pathology to elucidate their role in reproductive function and male reproductive mechanisms.
Collapse
Affiliation(s)
- Yunxiang Li
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yuguang Chen
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Wenping Wu
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Horvath-Pereira BDO, Almeida GHDR, da Silva Júnior LN, do Nascimento PG, Horvath Pereira BDO, Fireman JVBT, Pereira MLDRF, Carreira ACO, Miglino MA. Biomaterials for Testicular Bioengineering: How far have we come and where do we have to go? Front Endocrinol (Lausanne) 2023; 14:1085872. [PMID: 37008920 PMCID: PMC10060902 DOI: 10.3389/fendo.2023.1085872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Traditional therapeutic interventions aim to restore male fertile potential or preserve sperm viability in severe cases, such as semen cryopreservation, testicular tissue, germ cell transplantation and testicular graft. However, these techniques demonstrate several methodological, clinical, and biological limitations, that impact in their results. In this scenario, reproductive medicine has sought biotechnological alternatives applied for infertility treatment, or to improve gamete preservation and thus increase reproductive rates in vitro and in vivo. One of the main approaches employed is the biomimetic testicular tissue reconstruction, which uses tissue-engineering principles and methodologies. This strategy pursues to mimic the testicular microenvironment, simulating physiological conditions. Such approach allows male gametes maintenance in culture or produce viable grafts that can be transplanted and restore reproductive functions. In this context, the application of several biomaterials have been proposed to be used in artificial biological systems. From synthetic polymers to decellularized matrixes, each biomaterial has advantages and disadvantages regarding its application in cell culture and tissue reconstruction. Therefore, the present review aims to list the progress that has been made and the continued challenges facing testicular regenerative medicine and the preservation of male reproductive capacity, based on the development of tissue bioengineering approaches for testicular tissue microenvironment reconstruction.
Collapse
Affiliation(s)
| | | | | | - Pedro Gabriel do Nascimento
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Panpan Z, Alifu N, Sataer M, Yiming A, Amuti S, Wenjing M, Binghua W. Effects of phytoestrogens combined with cold stress on sperm parameters and testicular proteomics in rats. Open Life Sci 2023; 18:20220531. [PMID: 36742450 PMCID: PMC9883686 DOI: 10.1515/biol-2022-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 01/26/2023] Open
Abstract
Phytoestrogens and cold negatively influence male fertility. However, the combined effects of these two factors on male reproduction remain unknown. Herein, we studied the changes of sperm parameters and identify potential biomarkers involved in testis of rats, which were intervened by phytoestrogens combined with cold stress. Male Sprague-Dawley rats were randomly divided into control and model groups. The rats in the model group were fed an estrogen diet and placed in a climate chamber [10 ± 2°C; humidity of 75 ± 5%] for 12 h/daily. When compared with the control group after 24 weeks, the rats in the model group showed increased food intake, urine and stool outputs, and higher estradiol and follicle-stimulating hormone levels. However, lower sperm concentration, motility, and viability, and reduced testosterone levels were detected. The epithelial cells of the seminiferous tubules and epididymal ducts presented morphological abnormalities. Proteomic analysis showed that 24 testicular proteins were upregulated and 15 were downregulated. The identified proteins were involved in reticulophagy and stress response. Our findings suggest that the phytoestrogens combined with cold stress had negative effects on the reproductive function of male rats and provide the basis for the establishment of "course simulation" type of oligospermia animal model.
Collapse
Affiliation(s)
- Zhang Panpan
- School of Pharmacy, Xinjiang Medical University, Urumqi, China,Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | - Nurbiah Alifu
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | | | - Adilijiang Yiming
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | - Ma Wenjing
- Central Laboratory, Xinjiang Medical University, Urumqi, China
| | - Wang Binghua
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| |
Collapse
|
12
|
Dibus N, Zobalova E, Monleon MAM, Korinek V, Filipp D, Petrusova J, Sedlacek R, Kasparek P, Cermak L. FBXO38 Ubiquitin Ligase Controls Sertoli Cell Maturation. Front Cell Dev Biol 2022; 10:914053. [PMID: 35769260 PMCID: PMC9234700 DOI: 10.3389/fcell.2022.914053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
The ubiquitin ligase SCFFBXO38 controls centromeric chromatin by promoting the degradation of the ZXDB protein. To determine the importance of this pathway during development, Fbxo38-deficient mice were generated. The loss of FBXO38 resulted in growth retardation affecting several organs, including the male reproductive system. A detailed analysis of the mutant testes revealed pathological changes in the seminiferous tubules, accompanied by a significant decrease in sperm production and reduced fertility. In adult testes, FBXO38 was specifically expressed in Sertoli cells, a somatic population essential for spermatogenesis initiation and progression. Sertoli cells lacking FBXO38 exhibited stabilized ZXDB protein and upregulated centromeric chromatin. Furthermore, the gene expression profile revealed that the absence of FBXO38 led to a defect in Sertoli cell maturation, specifically characterized by dysregulation in genes controlling retinoic acid metabolism and intercellular communication. Consequently, we documented significant changes in their ability to initiate spermatogonial differentiation. In conclusion, we show that FBXO38 acts as a Sertoli cell maturation factor, affecting the Sertoli cell transcription program, centromere integrity, and, subsequently, the ability to control spermatogenesis.
Collapse
Affiliation(s)
- Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Eliska Zobalova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Mario A. M. Monleon
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Petrusova
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Lukas Cermak,
| |
Collapse
|
13
|
Akar F, Yildirim OG, Yucel Tenekeci G, Tunc AS, Demirel MA, Sadi G. Dietary high-fructose reduces barrier proteins and activates mitogenic signalling in the testis of a rat model: Regulatory effects of kefir supplementation. Andrologia 2021; 54:e14342. [PMID: 34872158 DOI: 10.1111/and.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
There are limited data on the influence of fructose rich diet on the male reproductive system. Kefir may have health beneficial effects, but its mechanism of action remains mostly unclear. Herein, we investigated the impact of dietary high fructose on tight junction proteins and mitogenic pathways in rat testis as well as their modulation by kefir supplementation. Twenty-two male Wistar rats (4 weeks old) were divided into the following three groups: Control; Fructose; Fructose + Kefir. Fructose was added to drinking water at concentration of 20% and administered to the rats for 15 weeks and kefir was supplemented by gavage once a day during final 6 weeks. Dietary fructose-induced testicular degeneration was associated with the downregulation of the blood-testis barrier proteins, claudin-11 and N-cadherin as well as SIRT1 expression in testicular tissue of rats. However, p38MAPK, p-p38MAPK and p-ERK1/2 levels were increased in testis of fructose-fed rats. Interestingly, JNK1 and p-JNK1 protein levels were decreased following this dietary intervention. Raf1, ERK1/2, and caspase 3 and TUNEL staining of the testis reveal the activation of apoptosis due to fructose intake. Kefir supplementation markedly promoted the expression of claudin-11, SIRT1, JNK1 and p-JNK1 but suppressed testicular mitogenic and apoptotic factors in fructose-fed rats.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Onur Gokhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Gozde Yucel Tenekeci
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Arda Selin Tunc
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Murside Ayse Demirel
- Laboratory Animals Breeding and Experimental Researches Center, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Gokhan Sadi
- Department of Biology, KO Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
14
|
Soltani M, Rahmati M, Nikravesh MR, Saeidinejat S, Jalali M. Evaluation of Sertoli cell autophagy associated with laminin, fibronectin, and caspase-3 proteins' alteration, following testicular torsion rat. Andrologia 2021; 54:e14272. [PMID: 34729793 DOI: 10.1111/and.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022] Open
Abstract
Autophagy is a vital process that maintains cellular homeostasis by joining lysosomes and providing energy production substrates. In testicular tissue, Sertoli cells play functional roles in spermatogenesis and steroidogenesis. It is well known that autophagy physiologically occurs in the Sertoli cells. Under pathological conditions, such as testicular torsion, autophagy can be activated under high-stress stimuli. It is worth noting that Sertoli cells receive autophagy-induced signals through some extracellular matrix proteins, e.g. laminin and fibronectin. The present study aims to evaluate Sertoli cells' autophagy-associated extracellular matrix proteins' alteration following testicular torsion in rat model. The animals were divided into two groups as sham and testicular torsion/detorsion groups. In the testicular torsion/detorsion group, testicular torsion was maintained for 6 hr, followed by detorsion for 14 days. The obtained results revealed that testicular torsion-induced oxidative stress leads to increased autophagy in Sertoli cells as well as the whole testicular tissue. Moreover, extracellular matrix proteins including laminin and fibronectin act as autophagy-regulating proteins, in which their expression levels are reduced and increased respectively. In addition, the level of caspase-3, as an autophagy inhibitory protein, did not increase significantly in the cytoplasm of Sertoli cells as opposed to whole testicular tissue, indicating that autophagy is active after testicular torsion in these cells.
Collapse
Affiliation(s)
- Malihe Soltani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rahmati
- Department of medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahin Saeidinejat
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Volkova N, Yuhta M, Sokil L, Chernyshenko L, Stepanuk L, Goltsev A. Efficiency of Combined Use of Fullerene C60 and Bovine Serum Albumin for Rehabilitation of Vitrified Fragments of Rat Immature Seminiferous Tubules. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2021. [DOI: 10.20535/ibb.2021.5.3.241126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Background. Today, cryopreserved reproductive tissues are used to treat some forms of male infertility. However, after long-term preservation of fragments of seminiferous tubules of testes (FSTT) in a low-temperature bank (-196 °С) their morphological and functional characteristics decrease reversibly. To solve this problem after freezing-thawing, the use of rehabilitation media with special additives is promising. Due to the fact that serum albumin and fullerene C60 have powerful protective and antioxidant properties, their use allows to stabilize the plasma membrane, osmotic pressure, and reduce free radicals that make them promising candidates to use in the development of rehabilitation media for biological objects after cryopreservation.
Objective. The efficacy of fullerene C60, bovine serum albumin (BSA), and their combination as components of rehabilitation medium of vitrified FSTT of immature rats was studied.
Methods. Vitrified-thawed samples of FSTT were incubated (22 °C) for 30 minutes in Leibovitz's medium with addition of 15 mg/mL C60, 5 g/L BSA or their combination. Control samples were incubated in the medium without C60 or BSA addition. Metabolic activity (MTT test), histomorphological data, total antioxidant status (TAS), reactive oxygen species (ROS) production, activity of g-glutamyltransferase (gGGT), and glucose-6-phosphate dehydrogenase were determined in the samples after rehabilitation in the investigated media.
Results. The use of C60 led to the increase of metabolic (by 1.26 times) and TAS (by 1.74 times) activities, to the decrease in the number of ROS+ cells (by 1.35 times) and to the improvement of the spermatogenic epithelium binding to the basement membrane versus control sample. Application of BSA did not significantly affect the studied biochemical indices but decreased the number of tubules with desquamation of spermatogenic epithelium in histological sections. The combined use of BSA and C60 had the best effect among investigated rehabilitation media that led to the increase of metabolic activity (by 1.51 times), TAS activity (by 1.78 times), gGGT activity (by 1.59 times), histostructure restoration and the decrease in the number of ROS+ cells (by 1.45 times) compared to the control samples.
Conclusions. The use of C60 and BSA combination increases the metabolic and antioxidant activity of vitrified FSTT and also has a positive effect on their histostructural characteristics compared to control samples. It should be noted that the effect of С60 and BSA addition to rehabilitation medium exceeds the results of using the investigated additives separately (by the metabolic and gGGT activity as well as architectonics of vitrified FSTT). These data relate to reproductive medicine and can be used to develop an effective rehabilitation protocol for vitrified FSTT.
Collapse
|
16
|
Asgari R, Mansouri K, Abdolmaleki A, Bakhtiari M. Association of matrix metalloproteinases with male reproductive functions; with focus on MMP2, 7, and 9. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Chen H, Miao X, Xu J, Pu L, Li L, Han Y, Mao F, Ma Y. Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats. Anim Biosci 2021; 35:544-555. [PMID: 34530511 PMCID: PMC8902208 DOI: 10.5713/ab.21.0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.
Collapse
Affiliation(s)
- Haolin Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China.,Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Jinge Xu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Ling Pu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Yong Han
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Fengxian Mao
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, Guizhou, 550000, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| |
Collapse
|
18
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
19
|
Kurek M, Åkesson E, Yoshihara M, Oliver E, Cui Y, Becker M, Alves-Lopes JP, Bjarnason R, Romerius P, Sundin M, Norén Nyström U, Langenskiöld C, Vogt H, Henningsohn L, Petersen C, Söder O, Guo J, Mitchell RT, Jahnukainen K, Stukenborg JB. Spermatogonia Loss Correlates with LAMA 1 Expression in Human Prepubertal Testes Stored for Fertility Preservation. Cells 2021; 10:241. [PMID: 33513766 PMCID: PMC7911157 DOI: 10.3390/cells10020241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Fertility preservation for male childhood cancer survivors not yet capable of producing mature spermatozoa, relies on experimental approaches such as testicular explant culture. Although the first steps in somatic maturation can be observed in human testicular explant cultures, germ cell depletion is a common obstacle. Hence, understanding the spermatogonial stem cell (SSC) niche environment and in particular, specific components such as the seminiferous basement membrane (BM) will allow progression of testicular explant cultures. Here, we revealed that the seminiferous BM is established from 6 weeks post conception with the expression of laminin alpha 1 (LAMA 1) and type IV collagen, which persist as key components throughout development. With prepubertal testicular explant culture we found that seminiferous LAMA 1 expression is disrupted and depleted with culture time correlating with germ cell loss. These findings highlight the importance of LAMA 1 for the human SSC niche and its sensitivity to culture conditions.
Collapse
Affiliation(s)
- Magdalena Kurek
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology Care Sciences & Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- The R & D Unit, Stockholms Sjukhem, 112 19 Stockholm, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden;
| | - Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Yanhua Cui
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Department of Women’s and Children’s Health, Karolinska Institutet, Centre for Psychiatry Research, Region Stockholm and Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 64 Solna, Sweden;
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Ragnar Bjarnason
- Children’s Medical Center, Landspítali University Hospital, 101 Reykjavik, Iceland;
- Department of Paediatrics Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Patrik Romerius
- Department of Paediatric Oncology and Haematology, Clinical Sciences, Lund University, Barn-och Ungdomssjukhuset Lund, Skånes Universitetssjukhus, 221 85 Lund, Sweden;
| | - Mikael Sundin
- Division of Paediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden;
- Pediatric Blood Disorders, Immunodeficiency and Stem Cell Transplantation Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ulrika Norén Nyström
- Division of Paediatrics, Department of Clinical Science, Umeå University, 901 87 Umeå, Sweden;
| | - Cecilia Langenskiöld
- Department of Paediatric Oncology, The Queen Silvia Children’s Hospital, 416 50 Gothenburg, Sweden;
| | - Hartmut Vogt
- Crown Princess Victoria’s Child and Youth Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Lars Henningsohn
- Division of Urology, Institution for Clinical Science Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Cecilia Petersen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Rod T. Mitchell
- MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
- Edinburgh Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
- Division of Haematology-Oncology and Stem Cell Transplantation, Children’s Hospital, University of Helsinki, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, and Karolinska University Hospital, 171 64 Solna, Sweden; (E.O.); (Y.C.); (J.P.A.-L.); (C.P.); (O.S.); (K.J.)
| |
Collapse
|
20
|
Liu SW, Li HT, Ge RS, Cheng CY. NC1-peptide derived from collagen α3 (IV) chain is a blood-tissue barrier regulator: lesson from the testis. Asian J Androl 2021; 23:123-128. [PMID: 32896837 PMCID: PMC7991810 DOI: 10.4103/aja.aja_44_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood–testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell–cell and also Sertoli–spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.
Collapse
Affiliation(s)
- Shi-Wen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Hui-Tao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
21
|
Gao S, Wu X, Wang L, Bu T, Perrotta A, Guaglianone G, Silvestrini B, Sun F, Cheng CY. Signaling Proteins That Regulate Spermatogenesis Are the Emerging Target of Toxicant-Induced Male Reproductive Dysfunction. Front Endocrinol (Lausanne) 2021; 12:800327. [PMID: 35002976 PMCID: PMC8739942 DOI: 10.3389/fendo.2021.800327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
There is emerging evidence that environmental toxicants, in particular endocrine disrupting chemicals (EDCs) such as cadmium and perfluorooctanesulfonate (PFOS), induce Sertoli cell and testis injury, thereby perturbing spermatogenesis in humans, rodents and also widelife. Recent studies have shown that cadmium (e.g., cadmium chloride, CdCl2) and PFOS exert their disruptive effects through putative signaling proteins and signaling cascade similar to other pharmaceuticals, such as the non-hormonal male contraceptive drug adjudin. More important, these signaling proteins were also shown to be involved in modulating testis function based on studies in rodents. Collectively, these findings suggest that toxicants are using similar mechanisms that used to support spermatogenesis under physiological conditions to perturb Sertoli and testis function. These observations are physiologically significant, since a manipulation on the expression of these signaling proteins can possibly be used to manage the toxicant-induced male reproductive dysfunction. In this review, we highlight some of these findings and critically evaluate the possibility of using this approach to manage toxicant-induced defects in spermatrogenesis based on recent studies in animal models.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Guaglianone
- Department of Hospital Pharmacy, “Azienda Sanitaria Locale (ASL) Roma 4”, Civitavecchia, Italy
| | - Bruno Silvestrini
- Institute of Pharmacology and Pharmacognosy, Sapienza University of Rome, Rome, Italy
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| |
Collapse
|
22
|
Chen H, Chen K, Qiu X, Xu H, Mao G, Zhao T, Feng W, Okeke ES, Wu X, Yang L. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio). CHEMOSPHERE 2020; 258:127238. [PMID: 32563064 DOI: 10.1016/j.chemosphere.2020.127238] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Dibutyl phthalate (DBP) and diisobutyl phthalate (DiBP) are phthalate compounds frequently detected in the environment. Despite increasing awareness of their toxicity in human and animals, the male reproductive toxicity of their combined exposure remains elusive. The purposes of this study were to investigate whether combined exposure to DBP and DiBP could induce male reproductive toxicity, and to explore the potential toxicological mechanisms. Adult male zebrafish were exposed to DBP (11, 113 and 1133 μg L-1), DiBP (10, 103 and 1038 μg L-1) and their mixtures (Mix) (11 + 10, 113 + 103, 1133 + 1038 μg L-1) for 30 days, and their effects on plasma hormone secretion, testis histology and transcriptomics were examined. Highest concentrations of Mix exposure caused greater imbalance ratio of T/E2 and more severe structural damage to testis than single exposure. These effects were consistent with the testis transcriptome analysis for which 4570 genes were differentially expressed in Mix exposure, while 2795 and 1613 genes were differentially expressed in DBP and DiBP, respectively. KEGG pathway analysis showed that both single and combined exposure of DBP and DiBP could affect cytokine-cytokine receptor interaction. The difference was that combined exposure could also affect steroid hormone synthesis, extracellular matrix receptor interaction, retinol metabolism, and PPAR signaling pathways. These results demonstrated that combined exposure to DBP and DiBP could disrupt spermatogenesis and elicit male reproductive toxicity in zebrafish.
Collapse
Affiliation(s)
- Hui Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ting Zhao
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Liuqing Yang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
23
|
Kavarthapu R, Anbazhagan R, Sharma AK, Shiloach J, Dufau ML. Linking Phospho-Gonadotropin Regulated Testicular RNA Helicase (GRTH/DDX25) to Histone Ubiquitination and Acetylation Essential for Spermatid Development During Spermiogenesis. Front Cell Dev Biol 2020; 8:310. [PMID: 32478068 PMCID: PMC7242631 DOI: 10.3389/fcell.2020.00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
GRTH/DDX25 is a testicular RNA helicase expressed in germ cells that plays a crucial role in completion of spermatogenesis. Previously, we demonstrated a missense mutation (R242H) of GRTH gene in Japanese infertile patients (5.8%) with non-obstructive azoospermia. This mutation upon expression in COS-1 cells revealed absence of the 61 kDa phosphorylated GRTH in cytoplasm and the presence of the 56 kDa non-phosphorylated GRTH in the nucleus. GRTH knock-in (KI) mice carrying the human GRTH (R242H) mutation, lack phosphorylated GRTH, and sperm due to failure of round spermatid elongation during spermiogenesis. To determine the impact of phosphorylated GRTH on molecular events/pathways participating in spermatid development during spermiogenesis, we analyzed transcriptome profiles obtained from RNA-Seq of germ cells from KI and WT mice. RNA-Seq analysis of 2624 differentially expressed genes revealed 1404 down-regulated and 1220 up-regulated genes in KI mice. Genes relevant to spermatogenesis, spermatid development and spermatid differentiation were significantly down-regulated. KEGG enrichment analysis showed genes related to ubiquitin-mediated proteolysis and protein processing in endoplasmic reticulum pathway genes were significantly down-regulated while the up-regulated genes were found to be involved in Focal adhesion and ECM-receptor interaction pathways. Real-Time PCR analysis confirmed considerable reduction in transcripts of ubiquitination related genes Ube2j1, Ube2k, Ube2w, Rnf8, Rnf133, Rnf138, Cul3 and increased expression of Ccnd2, Col1a, Lamb1, Cav1, Igf1, Itga9 mRNA's in KI mice compared to WT. Also, marked reduction in protein expression of UBE2J1, RNF8, RNF138 (ubiquitination network), MOF (histone acetyltransferase), their modified Histone substrates (H2AUb, H2BUb) and H4Ac, H4K16Ac were observed in KI mice. GRTH-IP mRNA binding studies revealed that Rnf8 and Ube2J1 mRNAs from WT mice associated with GRTH protein and the binding is greatly impaired in the KI mice. Immunohistochemistry analysis showed significantly reduced expression of RNF8, MOF, H4Ac and H4K16Ac in round spermatids of KI mice. Absence of phosphorylated GRTH impairs UBE2J1, RNF8 and MOF-dependent histone ubiquitination and acetylation essential for histone replacement, chromatin condensation and spermatid elongation during spermiogenesis.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ashish K. Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Komarowska M, Szymańska B, Ołdak Ł, Sankiewicz A, Matuszczak E, Gorodkiewicz E, Debek W, Milewski R, Hermanowicz A. Plasma level of laminin 5 and collagen IV in cryptorchidism. Adv Med Sci 2020; 65:176-181. [PMID: 31978696 DOI: 10.1016/j.advms.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/15/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Laminin 5 and collagen IV are the main compounds of the extracellular matrix of the germinal epithelium. The purpose of this study was to evaluate the concentration of these two markers of fibrosis in the plasma of boys with congenital unilateral cryptorchidism. MATERIALS AND METHODS The study group comprised 43 boys aged 1-3 years with congenital unilateral cryptorchidism. The control group included 54 healthy, age matched boys, admitted for planned hernioplasty. To assess laminin 5 and collagen IV in the plasma of boys with unilateral cryptorchidism, we used a new biosensor with Surface Plasmon Resonance Imaging technique detection. RESULTS The median concentration of laminin 5 and collagen IV in the serum of boys with congenital, unilateral cryptorchidism was higher than in boys with normal scrotal testis. The difference was statistically significant (p < 0.0001). We did not notice a correlation between a higher position of the testicles in the inguinal and/or their condition and levels of laminin 5 and collagen IV in the plasma. CONCLUSION Laminin 5 and collagen IV concentrations in the plasma were higher in patients with congenital unilateral cryptorchidism. We believe that in the future, our results could be compared with fertility level in adulthood.
Collapse
Affiliation(s)
- Marta Komarowska
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland
| | - Beata Szymańska
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Łukasz Ołdak
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Anna Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Wojciech Debek
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
25
|
Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med 2019; 26:215-231. [PMID: 31727542 DOI: 10.1016/j.molmed.2019.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is supported by intricate crosstalk between Sertoli cells and germ cells including spermatogonia, spermatocytes, haploid spermatids, and spermatozoa, which takes place in the epithelium of seminiferous tubules. Sertoli cells, also known as 'mother' or 'nurse' cells, provide nutrients, paracrine factors, cytokines, and other biomolecules to support germ cell development. Sertoli cells facilitate the generation of several biologically active peptides, which include F5-, noncollagenous 1 (NC1)-, and laminin globular (LG)3/4/5-peptide, to modulate cellular events across the epithelium. Here, we critically evaluate the involvement of these peptides in facilitating crosstalk between Sertoli and germ cells to support spermatogenesis and thus fertility. Modulating or mimicking the activity of F5-, NC1-, and LG3/4/5-peptide could be used to enhance the transport across the blood-testis barrier (BTB) of contraceptive drugs or to treat male infertility.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
26
|
Mansouri S, Jalali M, Nikravesh MR, Soukhtanloo M. Alteration of collagen type IV and laminin α5 expression in seminiferous tubules of BALB/c mice following methamphetamine exposure. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1649285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Qu YH, Jian LY, Ce L, Ma Y, Xu CC, Gao YF, Machaty Z, Luo HL. Identification of candidate genes in regulation of spermatogenesis in sheep testis following dietary vitamin E supplementation. Anim Reprod Sci 2019; 205:52-61. [PMID: 31005359 DOI: 10.1016/j.anireprosci.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/24/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Dietary vitamin E supplementation is beneficial to semen quality in different sheep and goat breeds. The aim of this research was to further investigate the effect of vitamin E in sheep on spermatogenesis and its regulatory mechanisms using RNA-seq. Thirty male Hu lambs were randomly divided into three groups. The animals received 0, 200 or 2000 IU/day vitamin E dietary supplementation for 105 days, and its effects were subsequently evaluated. The results indicate vitamin E supplementation increased the number of germ cells in the testes and epididymides. The positive effects were reduced, however, in animals that received 2000 IU/d vitamin E. Using the RNA-seq procedure, there was detection of a number of differentially expressed genes such as NDRG1, FSCN3 and CYP26B1 with these genes being mainly related to the regulation of spermatogenesis. Supplementation with 2000 IU/d vitamin E supplementation resulted in a lesser abundance of skeleton-related transcripts such as TUBB, VIM and different subtypes of collagen, and there was also an effect on the ECM-receptor interaction pathway. These changes appear to be responsible for the lesser beneficial effect of the greater vitamin E concentrations. The results provide a novel insight into the regulation of spermatogenesis by vitamin E at the molecular level, however, for a precise understanding of functions of the affected genes there needs to be further study.
Collapse
Affiliation(s)
- Yang-Hua Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lu-Yang Jian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Liu Ce
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yong Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Chen-Chen Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yue-Feng Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Zoltan Machaty
- Purdue University, Department of Animal Sciences, West Lafayette, IN, 47907, USA.
| | - Hai-Ling Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
28
|
Asgari R, Mansouri K, Bakhtiari M, Vaisi-Raygani A. CD147 as an apoptosis regulator in spermatogenesis: deciphering its association with matrix metalloproteinases' pathway. Mol Biol Rep 2019; 46:1099-1105. [PMID: 30600459 DOI: 10.1007/s11033-018-4568-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022]
Abstract
CD147 plays an important role in germ cells migration and survival/apoptosis during the spermatogenesis process. However, to best of our knowledge, there is no report on the exact role of CD147 gene in the regulation of germ cells apoptosis through matrix metalloproteinases (MMPs). So, the current study aims to evaluate the role of CD147 gene expression in the regulation of germ cells apoptosis in conjunction with MMPs. Real-Time PCR was applied to investigate the expression of CD147, MMP2, MMP7, and MMP9 genes in the azoospermic patients and fertile males. Receiver-operating characteristic curve was used to interpret gene expression data. According to our results, a significant decrease in the expression of CD147 gene and an increase in MMPs genes expression were observed in infertile patients compared to fertile males. These results proved this fact that the CD147 gene has an important role in the regulation of germ cells apoptosis via a MMPs-dependent pathway.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Department of Anatomical Sciences & Cell Biology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Rezaei Topraggaleh T, Rezazadeh Valojerdi M, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci 2019; 7:1422-1436. [DOI: 10.1039/c8bm01001c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extracellular matrix-derived scaffolds provide an efficient platform for the generation of organ-like structures.
Collapse
Affiliation(s)
| | | | - Leila Montazeri
- Department of Cell Engineering
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
- Iran
| |
Collapse
|
30
|
Miyamoto Y, Whiley PAF, Goh HY, Wong C, Higgins G, Tachibana T, McMenamin PG, Mayne L, Loveland KL. The STK35 locus contributes to normal gametogenesis and encodes a lncRNA responsive to oxidative stress. Biol Open 2018; 7:bio.032631. [PMID: 29970477 PMCID: PMC6124569 DOI: 10.1242/bio.032631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serine/threonine kinase 35 (STK35) is a recently identified human kinase with an autophosphorylation function, linked functionally to actin stress fibers, cell cycle progression and survival. STK35 has previously been shown to be highly expressed in human testis, and we demonstrated its regulation by nuclear-localized importin α2 in HeLa cells. The present study identifies progressive expression from the STK35 locus of two coding mRNA isoforms and one long non-coding RNA (lncRNA) in mouse testis during spermatogenesis, indicating their tightly controlled synthesis. Additionally, lncRNA transcripts are increased by exposure to oxidative stress in mouse GC-1 germ cell line. STK35 knockout (KO) mice lacking all three RNAs are born at sub-Mendelian frequency, and adults manifest both male and female germline deficiency. KO males exhibit no or partial spermatogenesis in most testis tubule cross-sections; KO ovaries are smaller and contain fewer follicles. Eyes of KO mice display phenotypes ranging from gross deformity to mild goniodysgenesis or iridocorneal angle malformation, to overtly normal. These findings demonstrate the tight regulation of transcription from the STK35 locus and its central importance to fertility, eye development and cell responses to oxidative stress. Summary: Transcripts from the STK35 locus impact on male and female fertility and on eye development. A lncRNA (Stk35os1) transcript from this locus is upregulated by oxidative stress.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia .,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Penny A F Whiley
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
| | - Hoey Y Goh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Chin Wong
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Gavin Higgins
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, School of Biological Sciences, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Lynne Mayne
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia .,Department of Anatomy and Developmental Biology, School of Biological Sciences, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| |
Collapse
|
31
|
Park MH, Kim MS, Yun JI, Choi JH, Lee E, Lee ST. Integrin Heterodimers Expressed on the Surface of Porcine Spermatogonial Stem Cells. DNA Cell Biol 2018; 37:253-263. [DOI: 10.1089/dna.2017.4035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Min Hee Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Min Seong Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon, Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
32
|
Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod 2017; 96:720-732. [PMID: 28339648 DOI: 10.1095/biolreprod.116.143446] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/02/2017] [Indexed: 11/01/2022] Open
Abstract
Existing methods for evaluating the potential gonadotoxicity of environmental agents and pharmaceutical compounds rely heavily on animal studies. The current gold standard in vivo functional assays in animals are limited in their human predictive capacity. In addition, existing human two-dimensional in vitro models of testicular toxicity do not accurately reflect the in vivo situation. A more reliable testicular in vitro model system is needed to better assess the gonadotoxic potential of drugs prior to progression into clinical trials. The overall goal of this study was to develop a three-dimensional (3D) in vitro human testis organoid culture system for use as both a predictive first tier drug-screening tool and as a model of human testicular function. Multicellular human testicular organoids composed of Spermatogonial Stem Cells, Sertoli, Leydig and peritubular cells were created and evaluated over time for morphology, viability, androgen production and ability to support germ cell differentiation. Enzyme-linked immunosorbent assay measurements confirmed that the organoids produced testosterone continuously with and without hCG stimulation. Upregulation of postmeiotic genes including PRM1 and Acrosin, detected by quantitative-PCR, digital PCR and Immunofluorescence, indicated the transition of a small percentage of diploid to haploid germ cells. As a novel screening tool for reproductive toxicity, 3D organoids were exposed to four chemotherapeutic drugs, and they responded in a dose-dependent manner and maintained IC50 values significantly higher than 2D cultures. This 3D human testis organoid system has the potential to be used as a novel testicular toxicity-screening tool and in vitro model for human spermatogenesis.
Collapse
Affiliation(s)
- Samuel S Pendergraft
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
33
|
Gao Y, Chen H, Lui WY, Lee WM, Cheng CY. Basement Membrane Laminin α2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling. Endocrinology 2017; 158:963-978. [PMID: 28323988 PMCID: PMC5460804 DOI: 10.1210/en.2016-1630] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022]
Abstract
A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
| | - Wing-yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Will M. Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
34
|
Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez VM, Otte K, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells. Endocrinology 2016; 157:2416-31. [PMID: 26974005 PMCID: PMC4891789 DOI: 10.1210/en.2015-1927] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conditional deletion of Gata4 in Sertoli cells (SCs) of adult mice has been shown to increase permeability of the blood-testis barrier (BTB) and disrupt spermatogenesis. To gain insight into the molecular underpinnings of these phenotypic abnormalities, we assessed the impact of Gata4 gene silencing in cell culture models. Microarray hybridization identified genes dysregulated by siRNA-mediated inhibition of Gata4 in TM4 cells, an immortalized mouse SC line. Differentially expressed genes were validated by quantitative RT-PCR analysis of primary cultures of Gata4(flox/flox) mouse SCs that had been subjected to cre-mediated recombination in vitro. Depletion of GATA4 in TM4 cells and primary SCs was associated with altered expression of genes involved in key facets of BTB maintenance, including tight/adherens junction formation (Tjp1, Cldn12, Vcl, Tnc, Csk) and extracellular matrix reorganization (Lamc1, Col4a1, Col4a5, Mmp10, Mmp23, Timp2). Western blotting and immunocytochemistry demonstrated reduced levels of tight junction protein-1, a prototypical tight junction protein, in GATA4-depleted cells. These changes were accompanied by a loss of morphologically recognizable junctional complexes and a decline in epithelial membrane resistance. Furthermore, Gata4 gene silencing was associated with altered expression of Hk1, Gpi1, Pfkp, Pgam1, Gls2, Pdk3, Pkd4, and Ldhb, genes regulating the production of lactate, a key nutrient that SCs provide to developing germ cells. Comprehensive metabolomic profiling demonstrated impaired lactate production in GATA4-deficient SCs. We conclude that GATA4 plays a pivotal role in the regulation of BTB function and lactate metabolism in mouse SCs.
Collapse
Affiliation(s)
- Anja Schrade
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Antti Kyrönlahti
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Oyediran Akinrinade
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Marjut Pihlajoki
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Simon Fischer
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Verena Martinez Rodriguez
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Kerstin Otte
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Vidya Velagapudi
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Jorma Toppari
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - David B Wilson
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Markku Heikinheimo
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| |
Collapse
|
35
|
Park MH, Park JE, Kim MS, Lee KY, Hwang JY, Yun JI, Choi JH, Lee E, Lee ST. Effects of Extracellular Matrix Protein-derived Signaling on the Maintenance of the Undifferentiated State of Spermatogonial Stem Cells from Porcine Neonatal Testis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1398-406. [PMID: 26954208 PMCID: PMC5003964 DOI: 10.5713/ajas.15.0856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/24/2022]
Abstract
In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Ji Eun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Min Seong Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Kwon Young Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Jae Yeon Hwang
- Division of Applied Animal Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Korea.,Division of Applied Animal Science, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
36
|
Uluçam E, Bakar E. The effect of proanthocyanidin on formaldehyde-induced toxicity in rat testes. Turk J Med Sci 2016; 46:185-93. [PMID: 27511353 DOI: 10.3906/sag-1411-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/11/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM This study investigated the effect of proanthocyanidin (PA) against formaldehyde (FA)-induced lipid peroxidation damage and morphological changes in rat testes. MATERIALS AND METHODS Twenty-one Wistar albino rats were randomized into 3 groups: control, FA, and FA + PA groups. Plasma and tissue malondialdehyde (MDA) and total sialic acid (TSA) levels were measured. Testes tissues were observed by light and electron microscopy. RESULTS TSA (plasma and tissue) levels decreased and MDA (plasma) significantly increased (P < 0.05) in rats treated with FA compared to the controls. Tissue MDA levels were not significantly different. Several necrotic changes were observed in testes tissues by light and electron microscopy. Disordering in epithelia of seminiferous tubules, vacuolization between germinal epithelium cells, and separated basement membranes were observed by light microscope. Immunopositivity in Leydig cells decreased in the FA group (P < 0.05). In the FA + PA group there were more immune Leydig cells reacting immune-positively than in the FA group (P < 0.05). Ultrastructurally, FA also caused disorganization and loss of mitochondrial cristae, and dilatation in endoplasmic reticulum in testes. CONCLUSION The results suggest that PA has a protective effect on FA toxicity in testes.
Collapse
Affiliation(s)
- Enis Uluçam
- Department of Anatomy, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Elvan Bakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
37
|
Chojnacka K, Mruk DD. The Src non-receptor tyrosine kinase paradigm: New insights into mammalian Sertoli cell biology. Mol Cell Endocrinol 2015; 415:133-42. [PMID: 26296907 DOI: 10.1016/j.mce.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
Src kinases are non-receptor tyrosine kinases that phosphorylate diverse substrates, which control processes such as cell proliferation, differentiation and survival; cell adhesion; and cell motility. c-Src, the prototypical member of this protein family, is widely expressed by several organs that include the testis. In the seminiferous epithelium of the adult rat testis, c-Src is highest at the tubule lumen during the release of mature spermatids. Other studies show that testosterone regulates spermatid adhesion to Sertoli cells via c-Src, indicating Src phosphorylates key substrates that prompt the disassembly of Sertoli cell-spermatid junctions. A more recent in vitro study reveals that c-Src participates in the internalization of proteins that constitute the blood-testis barrier, which is present between Sertoli cells, suggesting a similar mechanism of junction disassembly is at play during spermiation. In this review, we discuss recent findings on c-Src, with an emphasis on its role in spermatogenesis in the mammalian testis.
Collapse
Affiliation(s)
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, USA.
| |
Collapse
|
38
|
Drug delivery to the testis: current status and potential pathways for the development of novel therapeutics. Drug Deliv Transl Res 2015; 1:351-60. [PMID: 25788421 DOI: 10.1007/s13346-011-0039-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nanotechnology has been increasingly utilized for the targeting and delivery of novel therapeutic agents to different tissues and cell types. The current therapeutic options for testicular disorders fall short in many instances due to difficulty traversing the blood-testis barrier, systemic toxicities, and complicated dosing regiments. For testicular tissue, potential targeting can be obtained either via anatomic methods or specific ligands such as luteinizing hormone or follicle-stimulating hormone analogs. Potential novel therapeutic agents include DNA, RNA, cytokines, peptide receptor antagonists, peptide receptor agonists, hormones, and enzymes. Nanotherapeutic treatment of testicular cancer, infertility, testicular torsion, orchalgia, hypogonadism, testicular infections, and cryptorchidism within the framework of potential target cells are an emerging area of research. While there are many potential applications of nanotechnology in drug delivery to the testis, this remains a relatively unexplored field. This review highlights the current status as well as potential future of nanotechnology in the development of novel therapeutics for testicular disorders.
Collapse
|
39
|
Chen H, Lam Fok K, Jiang X, Chan HC. New insights into germ cell migration and survival/apoptosis in spermatogenesis: Lessons from CD147. SPERMATOGENESIS 2014; 2:264-272. [PMID: 23248767 PMCID: PMC3521748 DOI: 10.4161/spmg.22014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CD147, also named basigin (Bsg) or extracellular matrix (ECM) metalloproteinase inducer (EMMPRIN), is a highly glycosylated protein first identified as a tumor cell surface molecule. In cancer, it is well established that CD147 promotes metastasis by stimulating the production of MMPs. Recent studies have also suggested that it may be associated with tumor growth and angiogenesis. Interestingly, CD147 is expressed in germ cells of different development stages in the testis and its knockout mice are infertile, indicating an essential role of CD147 in spermatogenesis. While the detailed involvement of CD147 in spermatogenesis remains elusive, our recent findings have revealed a dual role of CD147 in germ cell development. On the one hand, it regulates the migration of spermatogonia and spermatocytes via the induction of MMP-2 production; on the other hand, it specifically regulates the survival/apoptosis of spermatocytes but not spermatogonia through a p53-independent pathway. In this review, we aim to provide an overview on the functions of CD147, comparing its roles in cancer and the testis, thereby providing new insights into the regulatory mechanisms underlying the process of spermatogenesis.
Collapse
Affiliation(s)
- Hao Chen
- The Second People's Hospital of Shenzhen; The First Affiliated Hospital of Shenzhen University; Shenzhen, P.R. China ; Epithelial Cell Biology Research Center; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Shatin, Hong Kong
| | | | | | | |
Collapse
|
40
|
Reuter K, Schlatt S, Ehmcke J, Wistuba J. Fact or fiction: In vitro spermatogenesis. SPERMATOGENESIS 2014; 2:245-252. [PMID: 23248765 PMCID: PMC3521746 DOI: 10.4161/spmg.21983] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many previous studies have aimed at spermatogenesis of male murine germ cells in vitro, but no efficient system has been established yet that covers the entire process of mammalian spermatogenesis in a culture dish permanently. In this review, we report on the requirements of spermatogenesis and the current state of different culture methods using testicular tissue fragments, single cell suspensions or three-dimensional culture environments.
Collapse
Affiliation(s)
- Karin Reuter
- Institute of Reproductive and Regenerative Biology; Centre of Reproductive Medicine and Andrology; University of Münster; Münster, Germany
| | | | | | | |
Collapse
|
41
|
Díaz de Barboza G, Rodríguez V, Ponce R, Theiler G, Maldonado C, Tolosa de Talamoni N. Association of cellular and molecular alterations in Leydig cells with apoptotic changes in germ cells from testes of Graomys griseoflavus×Graomys centralis male hybrids. Acta Histochem 2014; 116:1037-45. [PMID: 24894511 DOI: 10.1016/j.acthis.2014.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/08/2014] [Accepted: 04/22/2014] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is disrupted in Graomys griseoflavus×Graomys centralis male hybrids. This study was aimed to determine whether morphological alterations in Leydig cells from hybrids accompany the arrest of spermatogenesis and cell death of germ cells and whether apoptotic pathways are also involved in the response of these interstitial cells. We used three groups of 1-, 2- and 3-month-old male animals: (1) G. centralis, (2) G. griseoflavus and (3) hybrids obtained by crossing G. griseoflavus females with G. centralis males. Testicular ultrastructure was analyzed by transmission electron microscopy. TUNEL was studied using an in situ cell death detection kit and the expression of apoptotic molecules by immunohistochemistry. The data confirmed arrest of spermatogenesis and intense apoptotic processes of germ cells in hybrids. These animals also showed ultrastructural alterations in the Leydig cells. Fas, FasL and calbindin D28k overexpression without an increase in DNA fragmentation was detected in the Leydig cells from hybrids. In conclusion, the sterility of Graomys hybrids occurs with ultrastructural changes in germ and Leydig cells. The enhancement of Fas and FasL is not associated with cell death in the Leydig cells. Probably the apoptosis in these interstitial cells is inhibited by the high expression of the antiapoptotic molecule calbindin D28k.
Collapse
|
42
|
Li MWM, Cheng CY, Mruk DD. Sertolin mediates blood-testis barrier restructuring. Endocrinology 2014; 155:1520-31. [PMID: 24467744 PMCID: PMC3959606 DOI: 10.1210/en.2013-1850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/14/2014] [Indexed: 01/12/2023]
Abstract
Two important events that occur during mammalian spermatogenesis are the release of elongated spermatids at late stage VIII of the seminiferous epithelial cycle and the restructuring of the blood-testis barrier (BTB) during stages VIII-XI. Still, it is not completely understood how these cellular events are accomplished within the seminiferous epithelium. In the present study, we investigate how sertolin, a protein that was initially identified, cloned, and partially characterized by our laboratory, functions in these critical events. Sertolin was found at the BTB, as well as at the apical ectoplasmic specialization and apical tubulobulbar complex, where it colocalized with epidermal growth factor receptor kinase substrate 8 and actin-related protein 3, two actin-regulatory proteins. Knockdown of sertolin by RNA interference showed Sertoli cell barrier function to be enhanced when assessed by transepithelial electrical resistance measurements and immunolocalization experiments. By contrast, the integrity of the BTB was disrupted when sertolin was overexpressed in vitro and in vivo. Sertolin overexpression also prompted germ cell loss from the seminiferous epithelium. Taken collectively, these results suggest that sertolin may be involved in coordinating spermatid release and BTB restructuring during spermatogenesis in the rat.
Collapse
Affiliation(s)
- Michelle W M Li
- Center for Biomedical Research, Population Council, New York, New York 10065
| | | | | |
Collapse
|
43
|
Novel regulators of spermatogenesis. Semin Cell Dev Biol 2014; 29:31-42. [PMID: 24594193 DOI: 10.1016/j.semcdb.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.
Collapse
|
44
|
Misiakiewicz K, Kolasa A, Kondarewicz A, Marchlewicz M, Wiszniewska B. Expression of the c-Kit receptor in germ cells of the seminiferous epithelium in rats with hormonal imbalance. Reprod Biol 2013; 13:333-40. [DOI: 10.1016/j.repbio.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022]
|
45
|
Erkanlı Şentürk G, Ersoy Canillioĝlu Y, Umay C, Demiralp-Eksioglu E, Ercan F. Distribution of Zonula Occludens-1 and Occludin and alterations of testicular morphology after in utero radiation and postnatal hyperthermia in rats. Int J Exp Pathol 2013; 93:438-49. [PMID: 23136996 DOI: 10.1111/j.1365-2613.2012.00844.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In utero irradiation (IR) and postnatal hyperthermia (HT) exposure cause infertility by decreasing spermatogenic colony growth and the number of sperm in rats. Four groups were used: (i) Control group, (ii) HT group (rats exposed to hyperthermia on the 10th postnatal day), (iii) IR group (rats exposed to IR on the 17th gestational day) and (iv) IR + HT group. Three and six months after the procedures testes were examined by light and electron microscopy. Some degenerated tubules in the HT group, many vacuoles in spermatogenic cells and degenerated tight junctions in the IR group, atrophic tubules and severe degeneration of tight junctions in the IR + HT group were observed. ZO-1 and occludin immunoreactivity were decreased and disorganized in the HT and IR groups and absent in the IR + HT group. The increase in the number of apoptotic cells was accompanied by a time-dependent decrease in haploid, diploid and tetraploid cells in all groups. Degenerative findings were severe after 6 months in all groups. The double-hit model may represent a Sertoli cell only model of infertility due to a decrease in spermatogenic cell and alterated blood-testis barrier proteins in rat.
Collapse
Affiliation(s)
- Gozde Erkanlı Şentürk
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
46
|
Sánchez-Cárdenas C, Guerrero A, Treviño CL, Hernández-Cruz A, Darszon A. Acute slices of mice testis seminiferous tubules unveil spontaneous and synchronous Ca2+ oscillations in germ cell clusters. Biol Reprod 2012; 87:92. [PMID: 22914313 DOI: 10.1095/biolreprod.112.100255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca(2+) imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca(2+)]i changes of living germ cells in situ within the SST preparation. Ca(2+) imaging revealed that a subpopulation of male germ cells display spontaneous [Ca(2+)]i fluctuations resulting from Ca(2+) entry possibly throughout Ca(V)3 channels. These [Ca(2+)]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca(2+) fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca(2+) oscillations for at least 10 min. Synchronous Ca(2+) oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca(2+)]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca(2+) signaling phenomena, functional cell-cell communication, and multicellular functional arrangements.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
47
|
Ahmad S, Xiao Y, Han L, Hua H, Riaz H, Liang A, Yang LG. Isolation, Identification and Enrichment of Type A Spermatogonia from the Testis of Chinese Cross-Bred Buffaloes (Swamp × River). Reprod Domest Anim 2012; 48:373-81. [DOI: 10.1111/j.1439-0531.2012.02159.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Nascimento AR, Pimenta MT, Lucas TFG, Royer C, Porto CS, Lazari MFM. Intracellular signaling pathways involved in the relaxin-induced proliferation of rat Sertoli cells. Eur J Pharmacol 2012; 691:283-91. [PMID: 22819701 DOI: 10.1016/j.ejphar.2012.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/01/2023]
Abstract
Regulation of Sertoli cell number is a key event to determine normal spermatogenesis. We have previously shown that relaxin and its G-protein coupled receptor RXFP1 are expressed in rat Sertoli cells, and that relaxin stimulates Sertoli cell proliferation. This study examined the mechanisms underlying the mitogenic effect of relaxin in a primary culture of Sertoli cells removed from testes of immature rats. Stimulation with exogenous relaxin increased Sertoli cell number and the expression of the proliferating cell nuclear antigen (PCNA), but did not affect the mRNA level of the differentiation markers cadherins 1 and 2. Relaxin-induced Sertoli cell proliferation was blocked by inhibition of MEK/ERK1/2 or PI3K/AKT pathways, but not by inhibition of PKC or EGFR activity. Relaxin induced a rapid and transient activation of ERK1/2 phosphorylation, which was MEK and SRC-dependent, and involved upstream activation of G(i). AKT activation could be detected 5 min after relaxin stimulation, and was still detected after 24h of stimulation with relaxin. Relaxin-induced AKT phosphorylation was G(i)- but not PKA-dependent, and it was blocked by both PI3K and MEK inhibitors. In conclusion, the mitogenic effect of relaxin in Sertoli cell involves coupling to G(i) and activation of both MEK/ERK1/2 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Aline Rosa Nascimento
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Mohammadnejad D, Abedelahi A, Soleimani-Rad J, Mohammadi-Roshandeh A, Rashtbar M, Azami A. Degenerative effect of Cisplatin on testicular germinal epithelium. Adv Pharm Bull 2012; 2:173-7. [PMID: 24312789 DOI: 10.5681/apb.2012.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 06/25/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The present study was designed to explore the effect of intraperitoneal administration of cisplatin in germinal epithelium of mice. There are few reports on the side effect of cisplatin on spermatogenesis when are used as anticancer drug. Therefore, in the present study the effect of cisplatin on spermatogenesis was evaluated by electron microscopy. METHODS Twenty balb/c mice aging 6-8 weeks was used in this study. The mice were divided into two groups, control and cysplatin treated. cysplatin was injected for five days as 2.5 mg /kg. The mice were sacrificed after 5 weeks and testicular specimens were removed, fixed in boueins, formaldeyd fixative and 2.5% Glutaraldehide then prepared for light and electron microscopic study. RESULTS Observation with optic microscope in treated group thickness of germinal epithelium was reduced a lot and increased the number of apoptotic cells. In some seminiferous tubules only sertoli cells were observed and nucleus of spermatogony cells was hetrochromatin. The electron microscopic observations showed some irregularity waviness and thickening in basal layer. Also myoid cells of this group were thick and contracted. In this group many apoptotic cells and damaged organelles were seen. CONCLUSION It was indicated that cisplatin affected testicular germinal epithelium by both cytotoxic effect and induction of apoptosis.
Collapse
|
50
|
Brennan KM, Pierce JL, Cantor AH, Pescatore AJ, Xiao R, Power RF. Source of selenium supplementation influences testis selenium content and gene expression profiles in Single Comb White Leghorn roosters. Biol Trace Elem Res 2012; 145:330-7. [PMID: 21932044 DOI: 10.1007/s12011-011-9205-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is a tightly regulated, selenium-dependent process. Nutritional deficiencies, including Se, have been associated with decreased fertility. During Se depletion, testes preferentially retain Se while other tissues are depleted. This study was aimed at evaluating the effect of Se source (inorganic or organic yeast derived) on testes weight, Se content, and gene expression. At 17 weeks of age, roosters were randomly assigned to one of three treatments: basal diet (control), basal diet + 0.3 mg organic Se/kg organic yeast-derived Se (YS; Sel-Plex®, Alltech Inc.), or basal diet + 0.3 mg inorganic Se /kg inorganic Se as sodium selenite (SS). At 40 weeks of age, seven roosters from each treatment were euthanized and testes removed. Testes weight did not differ between treatments, but Se content was greater (P ≤ 0.01) in YS than SS and control. Testicular differential gene expression profiling was accomplished using the Affymetrix Genechip® chicken genome array. Ingenuity® pathway analysis revealed that Se supplementation, regardless of source, results in the up-regulation of genes governing cell structure/morphology. The enrichment of such pathways was greater with YS than SS. These expression patterns suggest that aside from playing a role in antioxidant defense, Se, especially in the organic YS form, is useful for maintaining testicular cell structure.
Collapse
Affiliation(s)
- Kristen M Brennan
- Center for Animal Nutrigenomics and Applied Animal Nutrition, Alltech Inc, Nicholasville, KY 40356, USA.
| | | | | | | | | | | |
Collapse
|