1
|
Wu K, Yue Y, Zhou L, Zhang Z, Shan H, He H, Ge W. Disrupting Amh and androgen signaling reveals their distinct roles in zebrafish gonadal differentiation and gametogenesis. Commun Biol 2025; 8:371. [PMID: 40044757 PMCID: PMC11882886 DOI: 10.1038/s42003-025-07719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Sex determination and differentiation in zebrafish involve a complex interaction of male and female-promoting factors. While Dmrt1 has been established as a critical male-promoting factor, the roles of Anti-Müllerian hormone (Amh) and androgen signaling remain less clear. This study employed an estrogen-deficient zebrafish model (cyp19a1a-/-) to dissect individual and combined roles of Amh and androgen receptor (Ar) signaling in gonadal differentiation and gametogenesis. Loss of amh, but not ar, could rescue all-male phenotype of cyp19a1a-/-, leading to female or intersex, confirming the role of Amh in promoting male differentiation. This rescue was recapitulated in bmpr2a-/- but not bmpr2b-/-, supporting Bmpr2a as the type II receptor for Amh in zebrafish. Interestingly, while disruption of amh or ar had delayed spermatogenesis, the double mutant (amh-/-;ar-/-) exhibited severely impaired spermatogenesis, highlighting their compensatory roles. While Amh deficiency led to testis hypertrophy, likely involving a compensatory increase in Ar signaling, Ar deficiency resulted in reduced hypertrophy in double mutant males. Furthermore, phenotype analysis of triple mutant (amh-/-;ar-/-;cyp19a1a-/-) provided evidence that Ar participated in early follicle development. This study provides novel insights into complex interplay between Amh and androgen signaling in zebrafish sex differentiation and gametogenesis, highlighting their distinct but cooperative roles in male development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yiming Yue
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Lingling Zhou
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| |
Collapse
|
2
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
3
|
Yue H, Ye H, Ruan R, Du H, Li C. Identification of ActivinβA and Gonadotropin Regulation of the Activin System in the Ovary of Chinese Sturgeon Acipenser sinensis. Animals (Basel) 2024; 14:2314. [PMID: 39199851 PMCID: PMC11350771 DOI: 10.3390/ani14162314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Activin is a dimeric growth factor with diverse biological activities in vertebrates. This study aimed to investigate the regulatory role of the activin signaling pathway in the ovary of the endangered, cultured sturgeon species Acipenser sinensis. One activinβA subunit was identified, with a full-length complementary DNA (cDNA) sequence of 1572 base pairs. Multiple sequence alignment suggested that ActivinβA shared high sequence identities with its counterparts in four other sturgeon species. Phylogenetic analysis indicated the conserved evolution of ActivinβA among vertebrates from mammals to fish species. Transcripts of activinβA were distributed ubiquitously in the liver, kidney, intestine, ovary, midbrain, hypothalamus, and pituitary, with the highest transcription found in the pituitary. In Chinese sturgeon ovarian cells, in vitro human recombinant Activin A incubation stimulated the activin system-related gene transcriptions of activinβA, follistatin, its receptors -activinRIIA and activinRIIB, and drosophila mothers against decapentaplegic proteins (smads) smad2, smad3, and smad4. Ovary development-related mRNA levels of cyp19a1a and aromatase receptors of erα and erβ were enhanced by Activin A or human chorionic gonadotropin (hCG) incubation. Furthermore, 15 IU/mL hCG treatment increased the transcription levels of activinβA, follistatin, activinRIIA, and smad2. This suggested that the activin system was functional for the regulation of ovary development in Chinese sturgeon, possibly under the regulation of gonadotropin, by recruiting activinβA, follistatin, activinRIIA, and smad2. These results were helpful for the molecular exploration of activin signaling in fish species, as well as the ovarian maturation regulation of A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.Y.)
| |
Collapse
|
4
|
Ruan Y, Li X, Wang X, Zhai G, Lou Q, Jin X, He J, Mei J, Xiao W, Gui J, Yin Z. New insights into the all-testis differentiation in zebrafish with compromised endogenous androgen and estrogen synthesis. PLoS Genet 2024; 20:e1011170. [PMID: 38451917 PMCID: PMC10919652 DOI: 10.1371/journal.pgen.1011170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.
Collapse
Affiliation(s)
- Yonglin Ruan
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuehui Li
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Wang
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wuhan Xiao
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jianfang Gui
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
5
|
Wu K, Zhai Y, Qin M, Zhao C, Ai N, He J, Ge W. Genetic evidence for differential functions of figla and nobox in zebrafish ovarian differentiation and folliculogenesis. Commun Biol 2023; 6:1185. [PMID: 37990081 PMCID: PMC10663522 DOI: 10.1038/s42003-023-05551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
FIGLA and NOBOX are important oocyte-specific transcription factors. Both figla-/- and nobox-/- mutants showed all-male phenotype in zebrafish due to increased dominance of the male-promoting pathway. The early diversion towards males in these mutants has precluded analysis of their roles in folliculogenesis. In this study, we attenuated the male-promoting pathway by deleting dmrt1, a key male-promoting gene, in figla-/- and nobox-/- fish, which allows a sufficient display of defects in folliculogenesis. Germ cells in figla-/-;dmrt1-/- double mutant remained in cysts without forming follicles. In contrast, follicles could form well but exhibited deficient growth in nobox-/-;dmrt1-/- double mutants. Follicles in nobox-/-;dmrt1-/- ovary could progress to previtellogenic (PV) stage but failed to enter vitellogenic growth. Such arrest at PV stage suggested a possible deficiency in estrogen signaling. This was supported by lines of evidence in nobox-/-;dmrt1-/-, including reduced expression of ovarian aromatase (cyp19a1a) and level of serum estradiol (E2), regressed genital papilla (female secondary sex characteristics), and more importantly the resumption of vitellogenic growth by E2 treatment. Expression analysis suggested Nobox might regulate cyp19a1a by controlling Gdf9 and/or Bmp15. Our discoveries indicate that Figla is essential for ovarian differentiation and follicle formation whereas Nobox is important for driving subsequent follicle development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Mingming Qin
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China.
| |
Collapse
|
6
|
Lau ESW, Zhu B, Sun MA, Ngai SM, Ge W. Proteomic analysis of zebrafish folliculogenesis identifies YB-1 (Ybx1/ybx1) as a potential gatekeeping molecule controlling early ovarian folliculogenesis. Biol Reprod 2023; 109:482-497. [PMID: 37471641 DOI: 10.1093/biolre/ioad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
As in mammals, ovarian folliculogenesis in teleosts also consists of two phases: the primary growth (PG) and secondary growth (SG) phases, which are analogous to the preantral and antral phases respectively in mammals. In this study, we performed a proteomic analysis on zebrafish follicles undergoing the PG-SG transition aiming to identify factors involved in the event. Numerous proteins showed significant changes, and the most prominent one was Y-box binding protein 1 (YB-1; Ybx1/ybx1), a transcription factor and mRNA-binding protein. YB-1 belongs to the Y-box binding protein family, which also includes the gonad-specific YB-2. Interestingly, phylogenetic analysis showed no YB-2 homolog in zebrafish. Although ybx1 mRNA was expressed in various tissues, its protein Ybx1 was primarily produced in the gonads, similar to YB-2 in other species. In the ovary, Ybx1 protein started to appear in early follicles newly emerged from the germ cell cysts, reached the highest level in late PG oocytes, but decreased precipitously when the follicles entered the SG phase. In PG follicles, Ybx1 might function as a key component of the messenger ribonucleoprotein particles (mRNPs) in association with other RNA-binding proteins. Similar to mammalian YB-1, zebrafish Ybx1 also contains functional signals that determine its intracellular localization. In conclusion, Ybx1 may play dual roles of YB-1 and YB-2 in zebrafish. In the ovary, Ybx1 binds mRNAs to stabilize them while preventing their translation. At PG-SG transition, Ybx1 is removed to release the masked mRNAs for translation into functional proteins, leading to follicle activation.
Collapse
Affiliation(s)
- Esther Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
7
|
Huang Y, Yang H, Li Y, Guo Y, Li G, Chen H. Comparative Transcriptome Analysis Reveals the Effect of Aurantiochytrium sp. on Gonadal Development in Zebrafish. Animals (Basel) 2023; 13:2482. [PMID: 37570291 PMCID: PMC10417364 DOI: 10.3390/ani13152482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Aurantiochytrium sp. has received much attention as a potential resource for mass production of omega-3 fatty acids, which contribute to improved growth and reproduction in aquatic animals. In this study, we evaluated the gonadal index changes in zebrafish supplemented with 1-3% Aurantiochytrium sp. crude extract (TE) and the effects of ex vivo environmental Aurantiochytrium sp. on oocytes. 1% TE group showed significant improvement in the gonadal index, and both in vitro incubation and intraperitoneal injection promoted the maturation of zebrafish oocytes. In contrast, the transcriptome revealed 576 genes that were differentially expressed between the 1% TE group and the control group, including 456 up-regulated genes and 120 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis of differentially expressed genes indicated that Aurantiochytrium sp. potentially affects pathways such as lipid metabolism, immune regulation, and oocyte development in zebrafish. The results of this study enriched the knowledge of Aurantiochytrium sp. in regulating gonadal development in zebrafish and provided a theoretical basis for its application in aquaculture.
Collapse
Affiliation(s)
- Yanlin Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Hao Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Yikai Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Yuwen Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (H.Y.); (Y.L.); (Y.G.); (G.L.)
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
8
|
The Expression Pattern of Insulin-Like Growth Factor Subtype 3 (igf3) in the Orange-Spotted Grouper Epinephelus coioides and Its Function on Ovary Maturation. Int J Mol Sci 2023; 24:ijms24032868. [PMID: 36769198 PMCID: PMC9918221 DOI: 10.3390/ijms24032868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
A new insulin-like growth factor (Igf) subtype 3 (igf3) has recently been found in the bony fish orange-spotted grouper (Epinephelus coioides). However, the role of igf3 in the maturation of the ovary and sex differentiation in E. coioides is currently unknown. We examined the ovarian localization and receptor binding of the novel ortholog Igf3 using qRT-PCR, and Western blotting, combined with in situ hybridization and immunohistochemistry methods. Results demonstrated the presence of igf3 mRNA and protein in mature oocytes. Furthermore, Igf3 protein expression was not detected in testis, brain, kidney and liver homogenates. The calculated molecular weight of Igf3 was 22 kDa, which was consistent with the deduced amino acid sequence from the full-length open reading frame. The immunoreactivity showed that Igf3 was strongly present in the follicle staining fully-grown stage. The igf3 mRNA expression level was significantly positively correlated with ovarian follicular maturation. Meanwhile, Igf3 increased germinal-vesicle breakdown in a time- and dose-dependent manner. In vitro, treatment of primary ovarian cells with Igf3 up-regulated significantly the mRNA expression level of genes related to sex determination and reproduction such as forkhead boxl2 (foxl2), dosage-sensitive sex reversal adrenal hypoplasia critical region on chromosome x gene 1 (dax1), cytochrome P450 family 19 subfamily member 1 a (cyp19a1a), cytochrome P450 family 11 subfamily a member 1 a (cyp11a1a) and luteinizing hormone receptor 1 (lhr1). Overall, our results demonstrated that igf3 promotes the maturation of the ovary and plays an important role in sex differentiation in E. coioides.
Collapse
|
9
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
10
|
Chen W, Zhai Y, Zhu B, Wu K, Fan Y, Zhou X, Liu L, Ge W. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-A novel insight into its action mechanism. PLoS Genet 2022; 18:e1010318. [PMID: 36520929 PMCID: PMC9799306 DOI: 10.1371/journal.pgen.1010318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage. These follicles eventually degenerated, and all mutant females gradually changed to males through sex reversal, which could be prevented by mutation of the male-promoting gene dmrt1. Interestingly, the phenotypes of gdf9-/- could be rescued by simultaneous mutation of inhibin α (inha-/-) but not estradiol treatment, suggesting a potential role for the activin-inhibin system or its signaling pathway in Gdf9 actions. In gdf9-null follicles, the expression of activin βAa (inhbaa), but not βAb (inhbab) and βB (inhbb), decreased dramatically; however, its expression rebounded in the double mutant (gdf9-/-;inha-/-). These results indicate clearly that the activation of PG follicles to enter the secondary growth (SG) requires intrinsic factors from the oocyte, such as Gdf9, which in turn works on the neighboring follicle cells to trigger follicle activation, probably involving activins. In addition, our data also support the view that estrogens are not involved in follicle activation as recently reported.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Liu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
11
|
Genetic analysis of activin/inhibin β subunits in zebrafish development and reproduction. PLoS Genet 2022; 18:e1010523. [DOI: 10.1371/journal.pgen.1010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/15/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Activin and inhibin are both dimeric proteins sharing the same β subunits that belong to the TGF-β superfamily. They are well known for stimulating and inhibiting pituitary FSH secretion, respectively, in mammals. In addition, activin also acts as a mesoderm-inducing factor in frogs. However, their functions in development and reproduction of other species are poorly defined. In this study, we disrupted all three activin/inhibin β subunits (βAa, inhbaa; βAb, inhbab; and βB, inhbb) in zebrafish using CRISPR/Cas9. The loss of βAa/b but not βB led to a high mortality rate in the post-hatching stage. Surprisingly, the expression of fshb but not lhb in the pituitary increased in the female βA mutant together with aromatase (cyp19a1a) in the ovary. The single mutant of βAa/b showed normal folliculogenesis in young females; however, their double mutant (inhbaa-/-;inhbab-/-) showed delayed follicle activation, granulosa cell hypertrophy, stromal cell accumulation and tissue fibrosis. The ovary of inhbaa-/- deteriorated progressively after 180 dpf with reduced fecundity and the folliculogenesis ceased completely around 540 dpf. In addition, tumor- or cyst-like tissues started to appear in the inhbaa-/- ovary after about one year. In contrast to females, activin βAa/b mutant males showed normal spermatogenesis and fertility. As for activin βB subunit, the inhbb-/- mutant exhibited normal folliculogenesis, spermatogenesis and fertility in both sexes; however, the fecundity of mutant females decreased dramatically at 270 dpf with accumulation of early follicles. In summary, the activin-inhibin system plays an indispensable role in fish reproduction, in particular folliculogenesis and ovarian homeostasis.
Collapse
|
12
|
Tang L, Li J, Sun B, Bai Y, Zhou X, Chen L. Transcriptomic Interaction between Young Fecal Transplantation and Perfluorobutanesulfonate in Aged Zebrafish Gonads. TOXICS 2022; 10:631. [PMID: 36355923 PMCID: PMC9692687 DOI: 10.3390/toxics10110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The transfer of young fecal microbiota has been found to significantly refresh the reproductive endocrine system and effectively ameliorate the toxicity of perfluorobutanesulfonate (PFBS) in aged zebrafish recipients. However, the mechanisms underlying the antagonistic action of young fecal microbiota against the reproductive endocrine toxicity of PFBS remain largely unknown. In this study, the aged zebrafish were transplanted with feces from young donors and then exposed to PFBS for 14 days. After exposure, the shift in the transcriptomic fingerprint of the gonads was profiled by using high-throughput sequencing, aiming to provide mechanistic clues into the interactive mode of action between young fecal transplantation and PFBS's innate toxicity. The results showed that the gene transcription pattern associated with protein and lipid synthesis in the gonads of the aged individuals was quite different from the young counterparts. It was intriguing that the transplantation of young feces established a youth-like transcriptomic phenotype in the elderly recipients, thus attenuating the functional decline and maintaining a healthy aging state of the gonads. A sex specificity response was clearly observed. Compared to the aged females, more metabolic pathways (e.g., glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism; pyrimidine metabolism) were significantly enriched in aged males receiving young feces transplants. PFBS dramatically altered the transcriptome of aged testes, while a much milder effect was observable in aged ovaries. Accordingly, a suite of biological processes related to germ cell proliferation were disrupted by PFBS in aged males, including the ECM-receptor interaction, retinol metabolism, and folate biosynthesis. In aged ovaries exposed to PFBS, mainly the fatty acid and arginine biosynthesis pathway was significantly affected. However, these transcriptomic disorders caused by PFBS were largely mitigated in aged gonads by transferring young feces. Overall, the present findings highlighted the potential of young fecal transplantation to prevent the functional compromise of gonads resulting from aging and PFBS.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Hu C, Liu M, Sun B, Tang L, Zhou X, Chen L. Young fecal transplantation mitigates the toxicity of perfluorobutanesulfonate and potently refreshes the reproductive endocrine system in aged recipients. ENVIRONMENT INTERNATIONAL 2022; 167:107418. [PMID: 35868075 DOI: 10.1016/j.envint.2022.107418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The aging process leads to the gradual impairment of physiological functions in the elderly, making them more susceptible to the toxicity of environmental pollutants. In this study, aged zebrafish were first transplanted with the feces from young donors and subsequently exposed to perfluorobutanesulfonate (PFBS), an emerging persistent toxic pollutant. The interaction between young fecal transplant and PFBS inherent toxicity was investigated, focusing on reproductive performance and the underlying endocrine mechanism. The results showed that PFBS single exposure increased the percentage of primary oocytes in aged ovaries, implying a blockage of oogenesis. However, transplantation of young feces completely abolished the effects of PFBS and promoted oocyte growth, as inferred by the obviously lower percentage of primary oocytes, accompanied by a higher percentage of cortical-alveolar oocytes. Measurement of sex hormones found that PFBS significantly increased the blood concentration of estradiol and disrupted the balance of sex hormones in the elderly, which were, however, efficiently ameliorated by young fecal transplantation. Based on gene transcription along the hypothalamic-pituitary-gonadal axis, hierarchical clustering analysis showed similar profiles of the reproductive endocrine system between young zebrafish and their aged counterparts transplanted with young feces, implying that young fecal transplantation might refresh the endocrine system of aged recipients, regardless of PFBS exposure. The increased transcription levels of mRNAs encoding vitellogenin, activinBA, and membrane bound progestin receptors would cooperatively enhance the growth and maturation of oocytes in the ovaries of aged zebrafish receiving young fecal transplantation. Overall, the findings highlighted the potent efficacy of young fecal transplantation to improve the reproductive function of the elderly and to mitigate the endocrine disruption of an environmental pollutant. These findings are expected to broaden our understanding of the efficacy, mechanisms, and application of fecal transplantation.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
14
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
15
|
Deng Y, Wang L, Wei T, Chen Y, Wu X, Guo Y, Lin H, Tang H, Liu X. Inhibition of oocyte maturation by nitric oxide synthase 1 (NOS1) in zebrafish. Gen Comp Endocrinol 2022; 321-322:114012. [PMID: 35231489 DOI: 10.1016/j.ygcen.2022.114012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
It is well-documented that nitric oxide (NO) is an important regulator of oocyte maturation in mammals. Conversely, the function of NO during oocyte maturation has received little attention in nonmammalian vertebrates. NO is produced from L-arginine through the action of the enzyme NO synthase (NOS). Herein, we examined the expression, hormonal regulation, and involvement of NOS in meiotic signaling in zebrafish oocyte maturation. Three types of nos genes, nos1, nos2a, and nos2b, have been identified in zebrafish. We found that the expression of nos1 was highest in the ovary among the three nos genes, with maximal expression in full-grown (FG)-stage follicles during folliculogenesis. In addition, the concentration of NO was reduced during oocyte maturation and this corresponded with the decreased expression of nos1 in the follicular cell layers, suggesting that NOS1-derived NO may be one of the inhibitors of oocyte maturation in zebrafish. This is the first description of nos1 involvement in oocyte maturation in vertebrates. Moreover, the NO donor SNAP (S-nitroso-l-acetyl penicillamine) partially attenuates human chorionic gonadotropin (hCG)- and 17,20β-P-induced GVBD (germinal vesicle breakdown), perhaps by increasing cGMP levels during oocyte maturation. Finally, our results showed that SNAP and the cGMP analog 8-Br-cGMP inhibited hCG-induced mitogen-activated protein kinase (MAPK) activation, further indicating that NO and cGMP block oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Yanhong Deng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tengyu Wei
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510030, China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China.
| |
Collapse
|
16
|
Tsakoumis E, Ahi EP, Schmitz M. Impaired leptin signaling causes subfertility in female zebrafish. Mol Cell Endocrinol 2022; 546:111595. [PMID: 35139421 DOI: 10.1016/j.mce.2022.111595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Reproduction is an energetically costly event across vertebrates and tightly linked to nutritional status and energy reserves. In mammals, the hormone leptin is considered as a link between energy homeostasis and reproduction. However, its role in fish reproduction is still unclear. In this study, we investigated the possible role of leptin in the regulation of reproduction in zebrafish, using a loss of function leptin receptor (lepr) strain. Impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. lepr mutant females laid significantly fewer eggs, with low fertilization rates compared to wild-type females. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutants. Interestingly, the expression of luteinizing hormone beta (lhb) in the pituitary was significantly lower in mutant females. Analysis of candidate genes in the ovaries and isolated fully grown follicles revealed differential expression of genes involved in steroidogenesis, oocyte maturation and ovulation in the mutants, which are known to be regulated by LH signaling. Moreover, subfertility in lepr mutants could be partially restored by administration of human chorionic gonadotropin. In conclusion, our results show that leptin deficiency does not affect early stages of follicular development, but leptin might be essential in later steps, such as in oocyte maturation and ovulation. To our knowledge, this is the first time that leptin is associated to reproductive deficiencies in zebrafish.
Collapse
Affiliation(s)
- Emmanouil Tsakoumis
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.
| | - Monika Schmitz
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Hu Z, Ai N, Chen W, Wong QWL, Ge W. Leptin and Its Signaling Are Not Involved in Zebrafish Puberty Onset. Biol Reprod 2022; 106:928-942. [DOI: 10.1093/biolre/ioac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Leptin is a peptide hormone secreted from the adipose tissues and its signaling plays a central role in metabolic regulation of growth, especially on fat mass. In addition, leptin is also involved in regulating reproduction in mammals. In teleosts, there are two leptin ligands (lepa and lepb) and one cognate leptin receptor (lepr); however, their functions are still elusive. In this study, we created null-function mutants for lepa, lepb and lepr in zebrafish using CRISPR/Cas9 method and analyzed their phenotypes with emphasis on puberty onset, one major function widely reported for leptin in mammals. We demonstrated that the loss of leptin ligands or their receptor resulted in no obesity from prepubertal stage to adulthood. We then focused on leptin involvement in controlling puberty onset. We first confirmed the somatic threshold for puberty onset in females and proposed a criterion and somatic threshold for male puberty onset. We examined gonadal development and sex maturation in different genotypic combinations including single mutants (lepa−/−, lepb−/− and lepr−/−), double mutants (lepa−/−;lepb−/−) and triple mutants (lepa−/−;lepb−/−;lepr−/−). Our results showed that once the fish reached the thresholds, the siblings of all genotypes displayed comparable gonadal development in both sexes without obvious signs of changed puberty onset. In conclusion, this comprehensive genetic study on the lep-lepr system demonstrated that in contrast to its counterpart in mammals, leptin system plays little role in controlling growth and reproduction especially puberty onset in zebrafish.
Collapse
|
19
|
Song Y, Chen W, Zhu B, Ge W. Disruption of Epidermal Growth Factor Receptor but Not EGF Blocks Follicle Activation in Zebrafish Ovary. Front Cell Dev Biol 2022; 9:750888. [PMID: 35111746 PMCID: PMC8802807 DOI: 10.3389/fcell.2021.750888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Folliculogenesis is controlled by intimate communications between oocytes and surrounding follicle cells. Epidermal growth factor (EGF/Egf) is an important paracrine/autocrine factor in vertebrate ovary, and it is well known for its stimulation of oocyte maturation. However, the role of EGF signaling through its receptor (EGFR/Egfr) in ovarian folliculogenesis is poorly understood, especially at early stages of follicle development. In this study, we created zebrafish mutants for Egf (egf−/−) and Egfr (egfra−/− and egfrb−/−) by CRISPR/Cas9 technique. Surprisingly, these mutants all survived well with little abnormality in growth and development. Spermatogenesis and folliculogenesis were both normal in egf−/− males and females. Their fecundity was comparable to that of the wildtype fish at 4 months post-fertilization (mpf); however, the fertilization rate of mutant eggs (egf−/−) decreased significantly at 7 mpf. Interestingly, disruption of egfra (egfra−/−) led to failed follicle activation with folliculogenesis being blocked at primary–secondary growth transition (PG-SG transition), leading to female infertility, whereas the mutant males remained fertile. The mutant ovary (egfra−/−) showed abnormal expression of a substantial number of genes involved in oxidative metabolism, gene transcription, cytomembrane transport, steroid hormone biosynthesis, and immune response. The stunted PG oocytes in egfra−/− ovary eventually underwent degeneration after 6 months followed by sex reversal to males with functional testes. No abnormal phenotypes were found in the mutant of truncated form of EGFR (egfrb). In summary, our data revealed critical roles for EGFR signaling in early folliculogenesis, especially at the PG-SG transition or follicle activation.
Collapse
Affiliation(s)
| | | | | | - Wei Ge
- *Correspondence: Wei Ge, ,
| |
Collapse
|
20
|
Baker SJC, Corrigan E, Melnyk N, Hilker R, Van Der Kraak G. Nuclear progesterone receptor regulates ptger4b and PLA2G4A expression in zebrafish (Danio rerio) ovulation. Gen Comp Endocrinol 2021; 311:113842. [PMID: 34252451 DOI: 10.1016/j.ygcen.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20β-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20β-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20β-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20β-P.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Emily Corrigan
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Nicholas Melnyk
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Renee Hilker
- Department of Animal Biosciences, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
21
|
Detection of the Polar Body After Fertilization. Methods Mol Biol 2021. [PMID: 33606230 DOI: 10.1007/978-1-0716-0970-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The polar body, with haploid DNA, is a small cell produced during the meiosis of an oocyte. Here, we describe the detailed procedures for the detection of the second polar body in zebrafish (Danio rerio) embryos after 10 min post fertilization. A polar body can be easily distinguished as a small dot with a DAPI-stained nucleus surrounded by Phalloidin-labeled F-actin in each fertilized zebrafish embryo.
Collapse
|
22
|
Holloway N, Riley B, MacKenzie DS. Expression of the sodium iodide symporter (NIS) in reproductive and neural tissues of teleost fish. Gen Comp Endocrinol 2021; 300:113632. [PMID: 33002449 DOI: 10.1016/j.ygcen.2020.113632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/30/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022]
Abstract
Iodine, an essential component of thyroid hormones, can only be obtained through the diet. The sodium iodide symporter (NIS) transports iodide across mammalian intestinal and thyroid epithelia to deliver iodide for thyroid hormone production. Using reverse transcription-polymerase chain reaction (RT-PCR) we confirmed that mRNA for a homolog of mammalian NIS is expressed in comparable locations, both sub-pharyngeal thyroid tissue and intestine, in multiple teleost fish species, supporting a conserved mechanism for intestinal-thyroid iodine transport across vertebrates. To determine when in embryogenesis NIS expression is initiated we utilized in situ hybridization (ISH) during development of zebrafish (Danio rerio) embryos. This revealed expression of nis as early as 2 days post fertilization (dpf) along the dorsal surface of the yolk sac, suggesting a function to import iodine from yolk. To evaluate the potential for maternal deposition of iodine in yolk, RT-PCR and further in situ staining of ovarian tissue in gravid female zebrafish confirmed NIS mRNA presence in the ooplasm and granulosa layer of early stage follicles. This further suggests that maternally-deposited NIS mRNA may be available for early embryogenesis. Unexpectedly, ISH in embryos revealed robust nis expression in the central nervous system throughout days 2-5 days post fertilization, with adult whole brain ISH localizing expression in the hypothalamus, cerebellum, and optic tectum. RT-PCR on whole brain tissue from five species of adult fish representing three taxonomic orders likewise revealed robust CNS expression. These unexpected locations of nis expression suggest novel, as yet undescribed reproductive and neural functions of NIS in teleost species.
Collapse
Affiliation(s)
- Nicholas Holloway
- Department of Biology, 3258 TAMU, Texas A&M University, College Station, TX 77843, USA.
| | - Bruce Riley
- Department of Biology, 3258 TAMU, Texas A&M University, College Station, TX 77843, USA
| | - Duncan S MacKenzie
- Department of Biology, 3258 TAMU, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Xie Y, Huang D, Chu L, Liu Y, Sun X, Li J, Cheng CHK. Igf3 is essential for ovary differentiation in zebrafish†. Biol Reprod 2020; 104:589-601. [PMID: 33276384 DOI: 10.1093/biolre/ioaa218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
Zebrafish gonadal sexual differentiation is an important but poorly understood subject. Previously, we have identified a novel insulin-like growth factor (Igf) named insulin-like growth factor 3 (Igf3) in teleosts. The importance of Igf3 in oocyte maturation and ovulation has been recently demonstrated by us in zebrafish. In this study, we have further found the essential role of Igf3 in gonadal sexual differentiation of zebrafish. A differential expression pattern of igf3 between ovary and testis during sex differentiation (higher level in ovary than in testis) was found in zebrafish. An igf3 knockout zebrafish line was established using TALENs-mediated gene knockout technique. Intriguingly, all igf3 homozygous mutants were males due to the female-to-male sex reversal occurred during sex differentiation. Further analysis showed that Igf3 did not seem to affect the formation of so-called juvenile ovary and oocyte-like germ cells. Oocyte development was arrested at primary growth stage, and the ovary was gradually sex-reversed to testis before 60 day post fertilization (dpf). Such sex reversal was likely due to decreased germ cell proliferation by suppressing PI3K/Akt pathway in early ovaries of igf3 mutants. Estrogen is considered as a master regulator in fish sex differentiation. Here, we found that igf3 expression could be upregulated by estrogen in early stages of ovarian follicles as evidenced in in vitro treatment assays and cyp19a1a mutant zebrafish, and E2 failed to rescue the defects of igf3 mutants in ovarian development, suggesting that Igf3 may serve as a downstream factor of estrogen signaling in sex differentiation. Taken together, we demonstrated that Igf3 is essential for ovary differentiation in zebrafish.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Duo Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lianhe Chu
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yun Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao Sun
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
24
|
Fallah HP, Habibi HR. Role of GnRH and GnIH in paracrine/autocrine control of final oocyte maturation. Gen Comp Endocrinol 2020; 299:113619. [PMID: 32956700 DOI: 10.1016/j.ygcen.2020.113619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/28/2022]
Abstract
The control of oocyte growth and its final maturation is multifactorial and involves a number of hypothalamic, hypophyseal, and peripheral hormones. In this study, we investigated the direct actions of the gonadotropin-releasing hormone (GnRH) and the gonadotropin-inhibitory hormone (GnIH), which are expressed in the ovarian follicles, on final oocyte maturation in zebrafish, in vitro. Our study demonstrates the expression of GnRH and GnIH in the ovarian follicles of zebrafish (Danio rerio) at different stages of development and provides information on the direct action of these hormones on final oocyte maturation. Treatment with both GnRH and GnIH peptides stimulated the germinal vesicle breakdown (GVBD) of the late-vitellogenic oocyte. Both the GnRH and GnIH treatments showed no significant change in the caspase-3 activity of pre-vitellogenic and mid-vitellogenic oocytes, while they displayed different responses in the late-vitellogenic follicles. The GnRH treatment increased caspase-3 activity, whereas the GnIH reduced caspase-3 activity in the late-vitellogenic follicles. We also investigated the effects of GnRH and GnIH on the hCG-induced resumption of meiosis and caspase activity in vitro. GnRH and GnIH were found to have a similar effect on the hCG-induced resumption of meiosis, while they showed the opposite effect on caspase-3 activity. Furthermore, we investigated the effects of concomitant treatment of GnRH and GnIH peptides with hCG. The results demonstrated that the presence of both GnRH3 and GnIH are necessary for the normal induction of final oocyte maturation by gonadotropins. The findings support the hypothesis that GnIH and GnRH peptides produced in the ovary are part of a complex multifactorial regulatory system that controls zebrafish final oocyte maturation in paracrine/autocrine manner working in concert with gonadotropin hormones.
Collapse
Affiliation(s)
- Hamideh P Fallah
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
25
|
Lu H, Zhao C, Zhu B, Zhang Z, Ge W. Loss of Inhibin Advances Follicle Activation and Female Puberty Onset but Blocks Oocyte Maturation in Zebrafish. Endocrinology 2020; 161:5921142. [PMID: 33045050 DOI: 10.1210/endocr/bqaa184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Inhibin was first characterized in mammals as a gonadal dimeric protein that inhibited pituitary follicle-stimulating hormone (FSH) secretion. As in mammals, the inhibin-specific α subunit (INHA/Inha/inha) has also been characterized in teleosts; however, its functions and physiological importance in fish reproduction remain unknown. Using CRISPR/Cas9 method, we generated an inha-deficient zebrafish line and analyzed its reproductive performance. As expected, pituitary expression of fshb increased significantly in both the young and the adult inha mutant. The expression of lhb also increased in the mutant, but only in sexually mature adults. Interestingly, the expression of activin βA (inhbaa) increased significantly in both the ovary and the testis of inha mutant, and the expression of ovarian aromatase (cyp19a1a) also increased dramatically in the mutant ovary. The juvenile female mutant showed clear signs of early follicle activation or precocious puberty onset. However, the adult female mutant was infertile with follicles arrested at the full-grown stage without final oocyte maturation and ovulation. Although follicle growth was normal overall in the mutant, the size and distribution of yolk granules in oocytes were distinct and some follicles showed granulosa cell hypertrophy. In contrast to females, inha-null males showed normal spermatogenesis and fertility. As reported in mammals, we also found sporadic tumor formation in inha mutants. Taken together, our study not only confirmed some conserved roles of inhibin across vertebrates, such as inhibition of FSH biosynthesis and tumor formation, but also revealed novel aspects of inhibin functions such as disruption of folliculogenesis and female infertility but no obvious involvement in spermatogenesis in fish.
Collapse
Affiliation(s)
- Huijie Lu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Zhao
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
26
|
Maradonna F, Gioacchini G, Notarstefano V, Fontana CM, Citton F, Dalla Valle L, Giorgini E, Carnevali O. Knockout of the Glucocorticoid Receptor Impairs Reproduction in Female Zebrafish. Int J Mol Sci 2020; 21:E9073. [PMID: 33260663 PMCID: PMC7729492 DOI: 10.3390/ijms21239073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
The pleiotropic effects of glucocorticoids in metabolic, developmental, immune and stress response processes have been extensively investigated; conversely, their roles in reproduction are still less documented. It is well known that stress or long-lasting therapies can cause a strong increase in these hormones, negatively affecting reproduction. Moreover, the need of glucocorticoid (GC) homeostatic levels is highlighted by the reduced fertility reported in the zebrafish glucocorticoid receptor mutant (nr3c1ia30/ia30) line (hereafter named gr-/-). Starting from such evidence, in this study, we have investigated the role of glucocorticoid receptor (Gr) in the reproduction of female zebrafish. Key signals orchestrating the reproductive process at the brain, liver, and ovarian levels were analyzed using a multidisciplinary approach. An impairment of the kiss-GnRH system was observed at the central level in (gr-/-) mutants as compared to wild-type (wt) females while, in the liver, vitellogenin (vtg) mRNA transcription was not affected. Changes were instead observed in the ovary, particularly in maturing and fully grown follicles (classes III and IV), as documented by the mRNA levels of signals involved in oocyte maturation and ovulation. Follicles isolated from gr-/- females displayed a decreased level of signals involved in the acquisition of competence and maturation, causing a reduction in ovulation with respect to wt females. Fourier transform infrared imaging (FTIRI) analysis of gr-/- follicle cytoplasm showed major changes in macromolecule abundance and distribution with a clear alteration of oocyte composition. Finally, differences in the molecular structure of the zona radiata layer of gr-/- follicles are likely to contribute to the reduced fertilization rate observed in mutants.
Collapse
Affiliation(s)
- Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Camilla Maria Fontana
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Filippo Citton
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Luisa Dalla Valle
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| |
Collapse
|
27
|
Zhang Z, Zhu B, Chen W, Ge W. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish. Mol Cell Endocrinol 2020; 517:110963. [PMID: 32745576 DOI: 10.1016/j.mce.2020.110963] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
Anti-Müllerian hormone (AMH/Amh) plays a role in gonadal differentiation and function across vertebrates. In zebrafish we demonstrated that Amh deficiency caused severe gonadal dysgenesis and dysfunction. The mutant gonads showed extreme hypertrophy with accumulation of early germ cells in both sexes, namely spermatogonia in the testis and primary growth oocytes in the ovary. In amh mutant females, the folliculogenesis was normal in young fish but receded progressively in adults, which was accompanied by progressive decrease in follicle-stimulating hormone (fshb) expression. Interestingly the expression of fshb increased in the pituitary of juvenile amh mutant males but decreased in adults. The upregulation of fshb in mutant male juveniles was likely one of the mechanisms for triggering gonadal hypergrowth, whereas the downregulation of fshb in adults might involve a negative feedback by gonadal inhibin. Further analysis using mutants of fshb and growth differentiation factor 9 (gdf9) provided evidence for a role of FSH in triggering ovarian hypertrophy in young female amh mutant as well. In summary, the present study provided comprehensive genetic evidence for dual roles of Amh in controlling zebrafish gonadal homeostasis and gametogenesis in both sexes. Amh suppresses proliferation or accumulation of early germ cells (spermatogonia in testis and primary growth oocytes in ovary) while promoting their exit to advanced stages, and its action may involve both endocrine and paracrine pathways.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
28
|
Randazzo B, Zarantoniello M, Gioacchini G, Giorgini E, Truzzi C, Notarstefano V, Cardinaletti G, Huyen KT, Carnevali O, Olivotto I. Can Insect-Based Diets Affect Zebrafish ( Danio rerio) Reproduction? A Multidisciplinary Study. Zebrafish 2020; 17:287-304. [PMID: 32857683 DOI: 10.1089/zeb.2020.1891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Black Soldier Fly (BSF) meal is considered an alternative, emerging, and sustainable ingredient for aquafeed formulation. However, results on fish physiological responses are still fragmentary and often controversial, and no data are available on the effect of insect meal-based diets on fish reproduction. On this regard, zebrafish, with its relatively short life cycle, represents an ideal experimental model to explore this topic. In this study, female zebrafish were fed for 12 months on a control diet based on fish meal (FM) and fish oil and two experimental diets with full-fat BSF (Hermetia illucens) prepupae meal inclusion, to replace 25% and 50% of FM (BSF25 and BSF50). All diets were isonitrogenous, isolipidic, and isoenergetic. The effects of these two experimental diets on female's reproduction were investigated through a multidisciplinary approach, including the evaluation of growth, gonadosomatic index, spawned/fertilized eggs and hatching rate, adult female carcass and fertilized egg fatty acid composition, histological analysis of the ovary, spectroscopic macromolecular composition of class IV oocytes, and expression of genes involved in fish lipid metabolism in the liver. Results showed that while fish were perfectly able to cope with a 25% insect meal dietary inclusion, a 50% inclusion level caused the overexpression of genes involved in lipid metabolism, a general reduction in the number of spawned eggs, and differences in the frequency rate of previtellogenic oocytes, class III, IV, oocytes and postovulatory follicles and atretic oocytes, in the macromolecular composition of class IV oocytes, and in the fatty acid composition of the fertilized eggs, respect to control and 25% group.
Collapse
Affiliation(s)
- Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Truzzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Gloriana Cardinaletti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali (Di4A), Università di Udine, Udine, Italy
| | - Kieu Thi Huyen
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
29
|
Kulus M, Kranc W, Jeseta M, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Celichowski P, Moncrieff L, Kocherova I, Józkowiak M, Kulus J, Wieczorkiewicz M, Piotrowska-Kempisty H, Skowroński MT, Bukowska D, Machatkova M, Hanulakova S, Mozdziak P, Jaśkowski JM, Kempisty B, Antosik P. Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental Competence and Maturational Capacity In Vivo and In Vitro. Genes (Basel) 2020; 11:genes11070815. [PMID: 32708880 PMCID: PMC7397037 DOI: 10.3390/genes11070815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Polyspermia is an adverse phenomenon during mammalian fertilization when more than one sperm fuses with a single oocyte. The egg cell is prepared to prevent polyspermia by, among other ways, producing cortical granules (CGs), which are specialized intracellular structures containing enzymes that aim to harden the zona pellucida and block the fusion of subsequent sperm. This work focused on exploring the expression profile of genes that may be associated with cortical reactions, and evaluated the distribution of CGs in immature oocytes and the peripheral density of CGs in mature oocytes. Oocytes were isolated and then processed for in vitro maturation (IVM). Transcriptomic analysis of genes belonging to five ontological groups has been conducted. Six genes showed increased expression after IVM (ARHGEF2, MAP1B, CXCL12, FN1, DAB2, and SOX9), while the majority of genes decreased expression after IVM. Using CG distribution analysis in immature oocytes, movement towards the cortical zone of the oocyte during meiotic competence acquisition was observed. CGs peripheral density decreased with the rise in meiotic competence during the IVM process. The current results reveal important new insights into the in vitro maturation of oocytes. Our results may serve as a basis for further studies to investigate the cortical reaction of oocytes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Marie Machatkova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Sarka Hanulakova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Correspondence: ; Tel.: +48-61-854-6418
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| |
Collapse
|
30
|
Zhu Z, Liu Y, Xu W, Liu T, Xie Y, Sham KWY, Sha O, Cheng CHK. Functional Characterization and Expression Analyses Show Differential Roles of Maternal and Zygotic Dgcr8 in Early Embryonic Development. Front Genet 2020; 11:299. [PMID: 32296464 PMCID: PMC7136893 DOI: 10.3389/fgene.2020.00299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/13/2020] [Indexed: 12/25/2022] Open
Abstract
Dgcr8 is involved in the biogenesis of canonical miRNAs to process pri-miRNA into pre-miRNA. Previous studies have provided evidence that Dgcr8 plays an essential role in different biological processes. However, the function of maternal and zygotic Dgcr8 in early embryonic development remains largely unknown. Recently, we have reported a novel approach for generating germline-specific deletions in zebrafish. This germline knockout model offers an opportunity to investigate into the differential roles of maternal or zygotic Dgcr8. Although germline specific dgcr8 deletion has no influence on gonad development, maternal or zygotic dgcr8 is essential for embryonic development in the offspring. Both maternal dgcr8 (Mdgcr8) and maternal zygotic dgcr8 (MZdgcr8) mutants display multiple developmental defects and die within 1 week. Moreover, MZdcgr8 mutant displays more severe morphogenesis defects. However, when a miR-430 duplex (the most abundantly expressed miRNA in early embryonic stage) is used to rescue the maternal mutant phenotype, the Mdgcr8 embryos could be rescued successfully and grow into adulthood and achieve sexual maturation, whereas the MZdgcr8 embryos are only partially rescued and they all die within 1 week. The differential phenotypes between the Mdgcr8 and MZdgcr8 embryos provide us with an opportunity to study the roles of individual miRNAs during early development.
Collapse
Affiliation(s)
- Zeyao Zhu
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Taian Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuxin Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy W Y Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Wu K, Song W, Zhang Z, Ge W. Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish - a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development 2020; 147:dev.182758. [PMID: 32001440 DOI: 10.1242/dev.182758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
Sex determination and differentiation are complex processes controlled by many different factors; however, the relationships among these factors are poorly understood. Zebrafish gonadal differentiation exhibits high plasticity involving multiple factors and pathways, which provides an excellent model for investigating the interactions between them. Ovarian aromatase (cyp19a1a) and dmrt1 are key factors in directing vertebrate ovary and testis differentiation, respectively. Knockout of zebrafish cyp19a1a leads to all-male offspring, whereas the loss of dmrt1 results in a female-biased sex ratio. In the present study, we established dmrt1-/- ;cyp19a1a-/- double mutant zebrafish and discovered that the introduction of the dmrt1 mutation into the cyp19a1a mutant could rescue the all-male phenotype of the latter. Interestingly, despite the lack of aromatase/estrogens, the follicles in the ovary of the rescued cyp19a1a mutant could develop normally up to the previtellogenic stage. Further evidence suggested the ovarian aromatase directed ovarian differentiation by suppressing dmrt1 expression via nuclear estrogen receptors (nERs). Our results provide solid evidence for an interaction between cyp19a1a and dmrt1 in zebrafish gonadal differentiation, and for the dispensability of estrogens in controlling early folliculogenesis.
Collapse
Affiliation(s)
- Kun Wu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Weiyi Song
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
32
|
Ożegowska K, Dyszkiewicz-Konwińska M, Celichowski P, Nawrocki MJ, Bryja A, Jankowski M, Kranc W, Brązert M, Knap S, Jeseta M, Skowroński MT, Bukowska D, Antosik P, Brüssow KP, Bręborowicz A, Bruska M, Nowicki M, Pawelczyk L, Zabel M, Kempisty B. Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs. Theriogenology 2018; 121:122-133. [PMID: 30145542 DOI: 10.1016/j.theriogenology.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
The processes underlying maturation of mammalian oocytes are considered crucial for the oocytes ability to undergo monospermic fertilization. The same factors of influence are suggested to impact the development of sex associated characteristics, allowing sex differentiation to progress during embryonic growth. The primary aim of the study was to analyze the gene ontology groups involved in regulation of porcine oocytes' response to endogenous stimuli. The results obtained would indicate potential genes influencing sex differentiation. Additionally, they could help to determine new genetic markers, expression profile of which is substantially regulated during porcine oocytes' in vitro maturation. To achieve that, porcine oocytes were collected for analysis before and after in vitro maturation. Pigs were used as they are a readily available model that presents significant similarity to humans in terms of physiology and anatomy. Microarray analysis of oocytes, before and after in vitro maturation was performed and later validated by RT-qPCR. We have particularly detected and analyzed genes belonging to gene ontology groups associated with hormonal stimulation during maturation of the oocytes, that exhibited significant change in expression (fold change ≥ |2|; p < 0.05) namely "Female sex differentiation" (CCND2, MMP14, VEGFA, FST, INHBA, NR5A1), "Response to endogenous stimulus" (INSR, ESR1, CCND2, TXNIP, TACR3, MMP14, FOS, AR, EGR2, IGFBP7, TGFBR3, BTG2, PLD1, PHIP, UBE2B) and "Response to estrogen stimulus" (INSR, ESR1, CCND2, IHH, TXNIP, TACR3, MMP14). Some of them were characteristic for just one of the described ontologies, while some belonged into multiple ontological terms. The genes were analyzed, with their relation to the processes of interest explained. Overall, the study provides us with a range of genes that might serve as molecular markers of in vitro maturation associated processes of the oocytes. This knowledge might serve as a reference for further studies and, after further validation, as a potentially useful knowledge in assessment of the oocytes during assisted reproduction processes.
Collapse
Affiliation(s)
- Katarzyna Ożegowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Biomaterials and Experimental Dentistry, Poznań University of Medical Sciences, Poznań, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mariusz J Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sandra Knap
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Czech Republic
| | - Mariusz T Skowroński
- Department of Animal Physiology University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Bukowska
- Veterinary Center, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paweł Antosik
- Veterinary Center, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Klaus P Brüssow
- Veterinary Center, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznan, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Czech Republic.
| |
Collapse
|
33
|
Chen W, Liu L, Ge W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio. Biol Reprod 2018; 96:401-413. [PMID: 28203731 DOI: 10.1095/biolreprod.116.144964] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 11/01/2022] Open
Abstract
In the zebrafish, no sex-determining gene has been identified, while some sex-related genes, such as cyp19a1a and amh, show sexually dimorphic expression. Interestingly, most of these genes are expressed in the somatic cells. With increasing evidence suggesting roles of germ cells in gonadal differentiation, there is an increasing interest in the factors released by the germ cells for the bidirectional communication between the two compartments. We have reported that Gdf9/gdf9 is an oocyte-specific factor in the zebrafish, similar to that of mammals. Whether and how Gdf9 is involved in gonadal differentiation is unknown. In this study, we compared the expression levels of gdf9, cyp19a1a, and amh among several other sex-related genes in the gonads before, during, and after sex differentiation. The expression of gdf9 started in the gonads before sex differentiation, and its level surged in the differentiated ovary. Its expression pattern was similar to that of cyp19a1a, but reciprocal to amh expression. Using recombinant zebrafish Gdf9 (rzfGdf9), we further showed that Gdf9 significantly suppressed the expression of amh while increased that of activin beta subunits (inhbaa and inhbb) in vitro. Although gdf9 and cyp19a1a showed co-expression during gonadal differentiation, we only observed a slight but not significant response of cyp19a1a to rzfGdf9. Knocking down the expression of gdf9 and cyp19a1a with vivo-morpholinos caused a male-skewed sex ratio. Our data suggested that Gdf9 is likely involved in promoting oocyte/ovary differentiation in the zebrafish and it may act by suppressing amh expression, at least partly, in the somatic cells.
Collapse
Affiliation(s)
- Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lin Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
34
|
Zhu B, Pardeshi L, Chen Y, Ge W. Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish. Front Endocrinol (Lausanne) 2018; 9:593. [PMID: 30364302 PMCID: PMC6193065 DOI: 10.3389/fendo.2018.00593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
In teleosts, the onset of puberty in females is marked by the appearance of the first wave of pre-vitellogenic (PV) follicles from the pool of primary growth (PG) follicles (follicle activation) in the ovary during sexual maturation. To understand the mechanisms underlying follicle activation and therefore puberty onset, we undertook this transcriptomic study to investigate gene expression profiles in the event. Our analysis revealed a total of 2,027 up-regulated and 859 down-regulated genes during the PG-PV transition. Gene Ontology (GO) analysis showed that in addition to basic cellular functions such as gene transcription, cell differentiation, and cell migration, other biological processes such as steroidogenesis, cell signaling and angiogenesis were also enriched in up-regulated genes; by comparison, some processes were down-regulated including piRNA metabolism, gene silencing and proteolysis. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified a variety of signaling pathways that might play pivotal roles in PG-PV transition, including MAPK, TGF-β, Hedgehog, FoxO, VEGF, Jak-STAT, and phosphatidylinositol signaling pathways. Other pathways of particular interest included endocytosis and glycosaminoglycan biosynthesis. We also analyzed expression changes of genes expressed in different compartments viz. oocytes and follicle cells. Interestingly, most oocyte-specific genes remained unchanged in expression during follicle activation whereas a great number of genes specifically expressed in the follicle cells showed significant changes in expression. Overall, this study reported a comprehensive analysis for genes, biological processes and pathways involved in follicle activation, which also marks female puberty onset in the zebrafish when occurring for the first time in sexual maturation.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
- *Correspondence: Wei Ge ;
| |
Collapse
|
35
|
Corchuelo S, Martinez ERM, Butzge AJ, Doretto LB, Ricci JMB, Valentin FN, Nakaghi LSO, Somoza GM, Nóbrega RH. Characterization of Gnrh/Gnih elements in the olfacto-retinal system and ovary during zebrafish ovarian maturation. Mol Cell Endocrinol 2017; 450:1-13. [PMID: 28400274 DOI: 10.1016/j.mce.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is one of the key players of brain-pituitary-gonad axis, exerting overall control over vertebrate reproduction. In zebrafish, two variants were characterized and named as Gnrh2 and Gnrh3. In this species, Gnrh3, the hypohysiotropic form, is expressed by neurons of the olfactory-retinal system, where it is related with food detection, intra/interspecific recognition, visual acuity and retinal processing modulation. Previous studies have reported the presence of Gnrh receptors in the zebrafish retina, but not yet in the zebrafish olfactory epithelium. The current study analyzed the presence of gnrh2 and gnrh3, their receptors (gnrhr 1,2,3 and 4) and gnih (gonadotropin inhibitory hormone) transcripts, as well as the Gnrh3 protein in the olfactory epithelium (OE), olfactory bulb (OB), retina and ovary during zebrafish ovarian maturation. We found an increase of gnrh receptors transcripts in the OE at the final stages of ovarian maturation. In the OE, Gnrh3 protein was detected in the olfactory receptor neurons cilia and in the olfactory nerve fibers. Interestingly, in the OB, we found an inverse expression pattern between gnih and gnrh3. In the retina, gnrhr4 mRNA was found in the nuclei of amacrine, bipolar, and ganglion cells next to Gnrh3 positive fibers. In the ovary, gnrh3, gnrhr2 and gnrhr4 transcripts were found in perinucleolar oocytes, while gnih in oocytes at the cortical alveolus stage. Our results suggested that Gnrh/Gnih elements are involved in the neuromodulation of the sensorial system particularly at the final stages of maturation, playing also a paracrine role in the ovary.
Collapse
Affiliation(s)
- Sheryll Corchuelo
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Emanuel R M Martinez
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Fernanda N Valentin
- Aquaculture Center of São Paulo State University (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - Laura S O Nakaghi
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
36
|
Lu H, Cui Y, Jiang L, Ge W. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach. Endocrinology 2017; 158:2292-2308. [PMID: 28398516 DOI: 10.1210/en.2017-00215] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction.
Collapse
Affiliation(s)
- Huijie Lu
- Centre of Reproduction, Development, and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yong Cui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- Centre of Reproduction, Development, and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
37
|
Liu KC, Lau SW, Ge W. Spatiotemporal expression analysis of nuclear estrogen receptors in the zebrafish ovary and their regulation in vitro by endocrine hormones and paracrine factors. Gen Comp Endocrinol 2017; 246:218-225. [PMID: 28013034 DOI: 10.1016/j.ygcen.2016.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Estradiol (E2) stimulates luteinizing hormone receptor (lhcgr) expression via nuclear estrogen receptors (nERs) in the zebrafish ovary. We have demonstrated that endocrine hormones such as gonadotropin (hCG) and paracrine factors such as epidermal growth factor (EGF) and pituitary adenylate cyclase-activating peptide (PACAP) can modulate E2-induced lhcgr expression in vitro. These observations raised a question on whether these hormones and factors exert their effects via regulating the expression of nERs. In this study, we first characterized the spatiotemporal expression profiles of three nER subtypes in the zebrafish ovary, including esr1 (ERα), esr2a (ERβ2) and esr2b (ERβ1). All three nERs increased their expression at the pre-vitellogenic stage and peaked at mid- (esr1 and esr2a) or late vitellogenic (esr2b) stage, followed by a significant decline at the full-grown stage. RT-PCR analysis showed that esr1 and esr2b were exclusively expressed in the follicle layer while esr2a was expressed in both compartments. We then examined how E2, hCG, PACAP and EGF regulated the expression of nERs in cultured zebrafish follicle cells. E2 quickly increased esr1 but reduced esr2a and esr2b expression from 1.5 to 12h of treatment. Similarly, EGF down-regulated esr2a significantly at 1.5h and this effect was further intensified at 24h. hCG decreased the expression of all three nER subtypes with similar potency throughout the 24-h time-course. Interestingly, PACAP exerted a biphasic regulation on esr2a. Our present study suggests that nERs, especially esr2a, provide potential target points for other hormones and factors to modulate E2 activity during folliculogenesis in the zebrafish.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
38
|
Das D, Nath P, Pal S, Hajra S, Ghosh P, Maitra S. Expression of two insulin receptor subtypes, insra and insrb, in zebrafish (Danio rerio) ovary and involvement of insulin action in ovarian function. Gen Comp Endocrinol 2016; 239:21-31. [PMID: 26853486 DOI: 10.1016/j.ygcen.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/25/2023]
Abstract
Present study reports differential expression of the two insulin receptor (IR) subtypes in zebrafish ovary at various stages of follicular growth and potential involvement of IR in insulin-induced oocyte maturation. The results showed that mRNA expression for IR subtypes, insra and insrb, exhibited higher levels in mid-vitellogenic (MV) and full-grown (FG) rather than pre-vitellogenic (PV) oocytes. Interestingly, compared to the levels in denuded oocytes, mRNAs for both insra and insrb were expressed at much higher level in the follicle layer harvested from FG oocytes. Immunoprecipitation using IRβ antibody could detect a protein band of desired size (∼95kDa) in FG oocyte lysates. Further, IRβ immunoreactivity was detected in ovarian tissue sections, especially at the follicle layer and oocyte membrane of MV and FG, but not PV stage oocytes. While hCG (10IU/ml) stimulation was without effect, priming with insulin (5μM) could promote oocyte maturation of MV oocytes in a manner sensitive to de novo protein and steroid biosynthesis. Compared to hCG, in insulin pre-incubated MV oocytes, stimulation with maturation inducing steroid (MIS), 17α,20β-dihydroxy-4-pregnen-3-one (DHP) elicited higher maturational response. Potential involvement of insulin-mediated action on acquisition of maturational competence and regulation of oocyte maturation was further manifested through up regulation of 20β-hydroxysteroid dehydrogenase (20β-hsd), MIS receptor (mPRα), insulin-like growth factor 3 (igf3) and IGF1 receptor (igf1rb), but not cyp19a expression in MV oocytes. Moreover, priming with anti-IRβ attenuated insulin action on meiotic G2-M1 transition indicating the specificity of insulin action and physiological relevance of IR in zebrafish ovary.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudip Hajra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Pritha Ghosh
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
39
|
Di Rosa V, López-Olmeda JF, Burguillo A, Frigato E, Bertolucci C, Piferrer F, Sánchez-Vázquez FJ. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish. PLoS One 2016; 11:e0157716. [PMID: 27322588 PMCID: PMC4913968 DOI: 10.1371/journal.pone.0157716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/05/2016] [Indexed: 11/19/2022] Open
Abstract
Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase) and the antimüllerian hormone (amh, testis) was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase) and ZT 15:39 h (at night), respectively. The expression of foxl2 (forkhead box L2) was also rhythmic in the ovary (acrophase located at ZT 5:02 h) and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1) was rhythmic in testes (acrophase at ZT 18:36 h). In the brain, cyp19a1b (brain aromatase) and cyp11b (11beta-hydroxylase) presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish.
Collapse
Affiliation(s)
- Viviana Di Rosa
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Ana Burguillo
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
40
|
Zhang Z, Zhu B, Ge W. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 2016; 29:76-98. [PMID: 25396299 DOI: 10.1210/me.2014-1256] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vertebrate reproduction is controlled by two gonadotropins (FSH and LH) from the pituitary. Despite numerous studies on FSH and LH in fish species, their functions in reproduction still remain poorly defined. This is partly due to the lack of powerful genetic approaches for functional studies in adult fish. This situation is now changing with the emergence of genome-editing technologies, especially Transcription Activator-Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). In this study, we deleted the hormone-specific β-genes of both FSH and LH in the zebrafish using TALEN. This was followed by a phenotype analysis for key reproductive events, including gonadal differentiation, puberty onset, gametogenesis, final maturation, and fertility. FSH-deficient zebrafish (fshb(-/-)) were surprisingly fertile in both sexes; however, the development of both the ovary and testis was significantly delayed. In contrast, LH-deficient zebrafish (lhb(-/-)) showed normal gonadal growth, but the females failed to spawn and were therefore infertile. Using previtellogenic follicles as the marker, we observed a significant delay of puberty onset in the fshb mutant but not the lhb mutant females. Interestingly, FSH seemed to play a role in maintaining the female status because we repeatedly observed sexual reversal in the fshb mutant. Neither the fshb nor lhb mutation alone seemed to affect gonadal differentiation; however, the double mutation of the two genes led to all males, although the development of the testis was significantly delayed. In summary, our data confirmed some well-known functions of FSH and LH in fish while also providing evidence for novel functions, which would be difficult to reveal using traditional biochemical and physiological approaches.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Life Sciences (Z.Z., B.Z., W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; and Faculty of Health Sciences (Z.Z., W.G.), University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
41
|
Faught E, Best C, Vijayan MM. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160032. [PMID: 26998341 PMCID: PMC4785992 DOI: 10.1098/rsos.160032] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 05/16/2023]
Abstract
Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress.
Collapse
|
42
|
Xie L, Tang Q, Yang L, Chen L. Insulin-like growth factor I promotes oocyte maturation through increasing the expression and phosphorylation of epidermal growth factor receptor in the zebrafish ovary. Mol Cell Endocrinol 2016; 419:198-207. [PMID: 26599586 DOI: 10.1016/j.mce.2015.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 11/15/2022]
Abstract
The resumption of oocyte meiosis is a critical step for the progression of oocyte development, which requires an intimate collaboration of a variety of hormones and growth factors. Insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) family are well recognized to promote oocyte maturation. However, the mechanism by which they coordinate this process remains unknown. The present study demonstrated that IGF-I can increase egfr mRNA and protein levels in follicle cell culture or intact follicles. This stimulation can be significantly inhibited by IGF-IR specific inhibitor, NVP-ADW742. The inhibitors against phosphatidylinositol-3-kinase (PI3K), phosphoinositide-dependent protein kinase 1 (PDK1) and Akt also dramatically abolished IGF-I-induced egfr expression, suggesting that the classical PI3K/Akt pathway mediated the action of IGF-I in this regulation. We further found that not only was the protein level of Egfr increased, but also the phosphorylation level was enhanced by IGF-I. Unlike egfr, IGF-I failed to stimulate the expression of Egf-like ligands whereas decreased the level of protein-tyrosine phosphatase, receptor type, kappa (ptprk), a protein tyrosine phosphatase. The oocyte maturation assay further confirmed that IGF-I initiates this regulation through its cognate receptor in the follicle cells. Taken together, IGF-I promoted oocyte maturation, in part at least, through Egf-like ligands/Egfr pathway. This study sheds light on the cross-talk between two important growth factors in the zebrafish ovary and the mechanism underlying the IGF-I induction on oocyte maturation.
Collapse
Affiliation(s)
- Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.
| | | | - Ling Yang
- The Department of Infectious Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lianyi Chen
- Hubei Medical Association, Wuhan 430071, China
| |
Collapse
|
43
|
Abstract
Oogenesis is an essential cellular and developmental process to prepare the oocyte for propagation of a species after fertilization. Oocytes of oviparous animals are enormous cells endowed with many, big cellular compartments, which are interconnected through active intracellular transport. The dynamic transport pathways and the big organelles of the oocyte provide the opportunity to study cellular trafficking with outstanding resolution. Hence, oocytes were classically used to investigate cellular compartments. Though many novel regulators of vesicle trafficking have been discovered in yeast, tissue culture cells and invertebrates, recent forward genetic screens in invertebrate and vertebrate oocytes isolated novel control proteins specific to multicellular organisms. Zebrafish is a widely used vertebrate model to study cellular and developmental processes in an entire animal. The transparency of zebrafish embryos allows following cellular events during early development with in vivo imaging. Unfortunately, the active endocytosis of the oocyte also represents a drawback for imaging. The massive amounts of yolk globules prevent the penetration of light-beams and currently make in vivo microscopy a challenge. As a consequence, electron microscopy (EM) still provides the highest resolution to analyze the ultra-structural details of compartments and organelles and the mechanisms controlling many cellular pathways of the oocyte. Among different fixation approaches for EM, High Pressure Freezing (HPF) in combination with freeze substitution significantly improves the samples preservation closest to their natural status. Here, we describe the HPF with freeze substitution embedding method for analyzing cellular processes in zebrafish oocytes using electron microscopy.
Collapse
Affiliation(s)
- Palsamy Kanagaraj
- Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Dietmar Riedel
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Roland Dosch
- Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
44
|
Effects of 11-ketotestosterone and temperature on inhibin subunit mRNA levels in the ovary of the shortfinned eel, Anguilla australis. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:14-21. [DOI: 10.1016/j.cbpb.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/16/2022]
|
45
|
Cosme MM, Lister AL, Van Der Kraak G. Inhibition of spawning in zebrafish (Danio rerio): Adverse outcome pathways of quinacrine and ethinylestradiol. Gen Comp Endocrinol 2015; 219:89-101. [PMID: 25644209 DOI: 10.1016/j.ygcen.2015.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
Abstract
This study determined the effects of the estrogen receptor agonist ethinylestradiol (EE2) and the phospholipase A2 inhibitor quinacrine (QUIN) on the pathways controlling follicular development, steroidogenesis, oocyte maturation, ovulation and spawning success in adult zebrafish. Both EE2 and QUIN inhibited spawning but did so through different mechanisms. EE2 affected follicular development (reduced ovarian size and reduction in the proportion of cortical alveolus, vitellogenic and mature follicle stages), steroidogenesis (reduced expression of aromatase), maturation (reduced luteinizing hormone receptor expression) and ovulation (reduced expression of cytosolic phospholipase A2 and the nuclear progesterone receptor). Although EE2 alters the proportion of follicle stages within the ovary, the downregulation of gene expression as a consequence of EE2 exposure was primarily due to a decline in expression of the genes of interest in vitellogenic and mature ovarian follicles. QUIN targeted ovulation via a reduction of the steroid 17α,20β dihydroxy-4-prenen-3-one (17α,20β-P) and decreased expression of the prostaglandin metabolizing enzyme cyclooxygenase 2. This study demonstrates the usefulness in defining the impacts of toxicants at the molecular and cellular, organ and whole organism level and how connections between these impacts can be used to describe the adverse outcome pathways (AOPs) that mediate toxicant action. Histological analysis and gene expression were effective tools in defining the AOPs of QUIN and EE2 while the measurement of reproductive hormones level did not provide much valuable information regarding the toxicant's mode of action.
Collapse
Affiliation(s)
- Madelyne M Cosme
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Andrea L Lister
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
46
|
Yao K, Ge W. Differential regulation of kit ligand A (kitlga) expression in the zebrafish ovarian follicle cells--evidence for the existence of a cyclic adenosine 3', 5' monophosphate-mediated binary regulatory system during folliculogenesis. Mol Cell Endocrinol 2015; 402:21-31. [PMID: 25542847 DOI: 10.1016/j.mce.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/29/2023]
Abstract
Kit ligand (Kitl) is an important paracrine factor involved in the activation of primordial follicles from the quiescent pool and in the maintenance of meiotic arrest before germinal vesicle breakdown (GVBD). It has been reported that follicle-stimulating hormone (FSH) stimulates but luteinizing hormone (LH) suppresses the expression of Kitl in the granulosa cells in mammals. Considering that both gonadotropins signal in the follicle cells mainly by activating cyclic adenosine 3', 5'-monophosphate (cAMP) pathway, we are intrigued by how cAMP differentially regulates Kitl expression. In the present study, we demonstrated that both human chorionic gonadotropin (hCG) and pituitary adenylate cyclase activating polypeptide (PACAP) inhibited insulin-like growth factor I (IGF-I)-induced Akt phosphorylation and kitlga expression in the zebrafish follicle cells. Further experiments showed that cAMP was involved in regulating the expression of kitlga. However, two cAMP-activated effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), had converse effects. PKA promoted whereas Epac inhibited the expression of kitlga, as demonstrated by the respective activators. Interestingly, cAMP also appeared to exert differential effects on kitlga expression at different stages of follicle development during folliculogenesis, significantly stimulating kitlga expression at the early growth stage but suppressing it at the full-grown stage before final oocyte maturation, implying a potential mechanism for differential effects of the same pathway at different stages. The inhibitory effect of forskolin (activator of adenylate cyclase) and H89 (inhibitor of PKA) on IGF-I-induced expression of kitlga suggested cross-talk between the cAMP and IGF-I-activated PI3K-Akt pathways. This study, together with our previous findings on IGF-I regulation of kitlga expression, provides important clues to the underlying mechanism that regulates Kit ligand expression during folliculogenesis in the ovary.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
47
|
Li J, Chu L, Sun X, Liu Y, Cheng CHK. IGFs mediate the action of LH on oocyte maturation in zebrafish. Mol Endocrinol 2015; 29:373-83. [PMID: 25584412 DOI: 10.1210/me.2014-1218] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LH signaling is required for oocyte maturation in fish and other vertebrates. However, the downstream factors mediating LH signaling are largely unexplored in fish. In this study, we investigated whether IGFs could mediate LH action on oocyte maturation in zebrafish. Our results show that all igfs, including igf1, igf2a, igf2b, and igf3, are dynamically expressed during folliculogenesis, with the expression of igf3 reaching its maximal level in full grown stage follicles. The expression of igfs is regulated by LH through a cAMP pathway in intact follicles as well as in primary cultured follicular cells, with igf3 expression being the most sensitive to human chorionic gonadotropin (hCG) treatment. Moreover, recombinant zebrafish IGF-2a, IGF-2b, and IGF-3 proteins significantly enhanced oocyte maturation via IGF-1 receptors (IGF-1rs), with IGF-3 exhibiting the most potent stimulatory action on oocyte maturation. Furthermore, we have demonstrated that IGF-3 or hCG treatment could stimulate IGF-1rs phosphorylation, and hCG-induced oocyte maturation could be attenuated by IGF-1r inhibitors as well as by an anti-IGF-3 antiserum in vitro and in vivo, indicating that the IGF system especially IGF-3 plays a crucial role in mediating LH action on oocyte maturation. In addition, igf3 expression is significantly attenuated in LH β-subunit (lhb) mutant zebrafish and treatment with recombinant IGF-3 could partially rescue the oocyte maturation defects of the lhb mutants in vitro and in vivo. Collectively, our results clearly demonstrated that IGFs, particularly the gonad-specific IGF-3, act as important mediators of LH action on oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences (J.L.), Northwest Normal University, Lanzhou, 730070 China; and School of Biomedical Sciences (J.L., L.C., X.S., Y.L., C.H.K.C.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
48
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chu L, Li J, Liu Y, Hu W, Cheng CHK. Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction. Mol Endocrinol 2014; 28:1785-95. [PMID: 25238195 DOI: 10.1210/me.2014-1061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pivotal role of gonadotropin signaling in regulating gonadal development and functions has attracted much research attention in the past 2 decades. However, the precise physiological role of gonadotropin signaling is still largely unknown in fish. In this study, we have established both LH β-subunit (lhb) and LH receptor (lhr) knockout zebrafish lines by transcription activator-like effector nucleases. Intriguingly, both homozygous lhb and lhr mutant male fish are fertile. The fertilization rate, sperm motility, and histological structure of the testis were not affected in either lhb or lhr mutant males. On the contrary, homozygous lhb mutant females are infertile, whereas homozygous lhr mutant females are fertile. Folliculogenesis was not affected in either lhb or lhr mutants, but oocyte maturation and ovulation were disrupted in lhb mutant, whereas only ovulation was affected in lhr mutant. Differential expression of genes in the ovary involved in steroidogenesis, oocyte maturation, and ovulation was found between the lhb and lhr mutants. These data demonstrate the essential role of LH signaling in oocyte maturation and ovulation, and support the notion that LH acts through the FSH receptor in the absence of LH receptor. Moreover, the defects of lhb mutant could be partially restored by administration of human chorionic gonadotropin. This in vivo evidence in the present study demonstrates, for the first time in any vertebrate species, that LH signaling is indispensable in female reproduction but not in male reproduction. LH signaling is demonstrated to control oocyte maturation and ovulation in the ovary.
Collapse
Affiliation(s)
- Lianhe Chu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; College of Life Sciences (J.L.), Northwest Normal University, Lanzhou, China; and State Key Laboratory of Freshwater Ecology and Biotechnology (W.H.), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
50
|
Giorgini E, Gioacchini G, Sabbatini S, Conti C, Vaccari L, Borini A, Carnevali O, Tosi G. Vibrational characterization of female gametes: a comparative study. Analyst 2014; 139:5049-60. [DOI: 10.1039/c4an00684d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|