1
|
Jeng SR, Wu GC, Yueh WS, Liu PH, Kuo SF, Dufour S, Chang CF. The expression profiles of cyp19a1, sf-1, esrs and gths in the brain-pituitary during gonadal sex differentiation in juvenile Japanese eels. Gen Comp Endocrinol 2024; 353:114512. [PMID: 38582176 DOI: 10.1016/j.ygcen.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17β (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Pei-Hua Liu
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
2
|
Tseng PW, Lin CJ, Tsao YH, Kuo WL, Chen HC, Dufour S, Wu GC, Chang CF. The effect of gonadal hormones on the gene expression of brain-pituitary in protandrous black porgy, Acanthopagrus schlegelii. Gen Comp Endocrinol 2024; 351:114482. [PMID: 38432348 DOI: 10.1016/j.ygcen.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17β (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yuan-Han Tsao
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsin-Chih Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Sylvie Dufour
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan; Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
3
|
Tseng PW, Wu GC, Kuo WL, Tseng YC, Chang CF. The Ovarian Transcriptome at the Early Stage of Testis Removal-Induced Male-To-Female Sex Change in the Protandrous Black Porgy Acanthopagrus schlegelii. Front Genet 2022; 13:816955. [PMID: 35401660 PMCID: PMC8986339 DOI: 10.3389/fgene.2022.816955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike gonochoristic fishes, sex is fixed after gonadal differentiation (primary sex determination), and sex can be altered in adults (secondary sex determination) of hermaphroditic fish species. The secondary sex determination of hermaphroditic fish has focused on the differences between testicular tissue and ovarian tissue during the sex change process. However, comprehensive studies analyzing ovarian tissue or testicular tissue independently have not been performed. Hermaphroditic black porgy shows a digonic gonad (ovarian tissue with testicular tissue separated by connective tissue). Protandrous black porgy has stable maleness during the first two reproductive cycles (<2 years old), and approximately 50% enter femaleness (natural sex change) during the third reproductive cycle. Precocious femaleness is rarely observed in the estradiol-17β (E2)-induced female phase (oocytes maintained at the primary oocyte stage), and a reversible female-to-male sex change is found after E2 is withdrawn in <2-year-old fish. However, precocious femaleness (oocytes entering the vitellogenic oocyte stage) is observed in testis-removed fish in <2-year-old fish. We used this characteristic to study secondary sex determination (femaleness) in ovarian tissue via transcriptomic analysis. Cell proliferation analysis showed that BrdU (5-bromo-2′-deoxyuridine)-incorporated germline cells were significantly increased in the testis-removed fish (female) compared to the control (sham) fish (male) during the nonspawning season (2 months after surgery). qPCR analysis showed that there were no differences in pituitary-releasing hormones (lhb and gtha) in pituitary and ovarian steroidogenesis-related factors (star, cyp11a1, hsd3b1, and cyp19a1a) or female-related genes (wnt4a, bmp15, gdf9, figla, and foxl2) in ovarian tissues between intact and testis-removed fish (2 months after surgery). Low expression of pituitary fshb and ovarian cyp17a1 was found after 2 months of surgery. However, we did find small numbers of genes (289 genes) showing sexual fate dimorphic expression in both groups by transcriptomic analysis (1 month after surgery). The expression profiles of these differentially expressed genes were further examined by qPCR. Our present work identified several candidate genes in ovarian tissue that may be involved in the early period of secondary sex determination (femaleness) in black porgy. The data confirmed our previous suggestion that testicular tissue plays an important role in secondary sex determination in protandrous black porgy.
Collapse
Affiliation(s)
- Peng-Wei Tseng
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Wei-Lun Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organism Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Guan-Chung Wu, ; Yung-Che Tseng, ; Ching-Fong Chang,
| |
Collapse
|
4
|
Effect of Fishmeal Content in the Diet on the Growth and Sexual Maturation of Olive Flounder ( Paralichthysolivaceus) at a Typical Fish Farm. Animals (Basel) 2021; 11:ani11072055. [PMID: 34359181 PMCID: PMC8300409 DOI: 10.3390/ani11072055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Increasing demand for an efficient and economic fishmeal feed for sustainable aquaculture has urged the aquafeed sector to seek an optimum fish-feed formulation. This study investigated the physiological response in olive flounder fed various fishmeal diets in a typical fish farm. The fish were farmed for 20 weeks, using the following experimental feeds: a control feed (CON), a replacement by 20% (F20), and 30% (F30) of the fish meal content of the CON. All groups showed no significant difference in growth and survival rates. However, due to investigating hormone expression associated with maturation, high expression of PSS-I and low expression of FSH-β, ER-α, and ER-β in FM30 compared to other experimental groups were observed. Therefore, up to 30% fishmeal replacement does not affect growth, but it appears to have a slight effect on the sexual development of olive flounder. Abstract Olive flounder (Paralichthys olivaceus) is a commercially important and valuable species for aquaculture in Korea. Due to the unstable supply of fishmeal for farmed fish, an optimum fish-feed formulation should be researched to ensure the sustainability of P. olivaceus aquaculture. This study investigated the effect of three experimental diets: Con (basal diet); FM20 (20% fishmeal replacement of CON); and FM30 (30% fishmeal replacement of CON) on P. olivaceus over 20 weeks at a typical farm by monitoring the growth and factors relating to sexual maturation. The results showed that no differences in growth were observed between the CON and diet-replacement groups. Gonadal oocyte development was similar between the CON and diet-replacement groups. Moreover, sbGnRH and GH expression did not differ between the CON and diet-replacement groups. The levels of Erβ and Vtg expression were significantly higher in the FM20 group than in the CON and FM30 groups after the experimental period. The expression of PSS-I was significantly higher in the FM30 group than in the CON and FM20 groups. Therefore, although growth occurred when 30% of the fishmeal was replaced, such high dietary protein replacement may be ill-advised during the maturation of olive flounder at the commercial fish farm.
Collapse
|
5
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
6
|
Wu GC, Dufour S, Chang CF. Molecular and cellular regulation on sex change in hermaphroditic fish, with a special focus on protandrous black porgy, Acanthopagrus schlegelii. Mol Cell Endocrinol 2021; 520:111069. [PMID: 33127483 DOI: 10.1016/j.mce.2020.111069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
In teleost fish, sex can be determined by genetic factors, environmental factors, or both. Unlike in gonochoristic fish, in which sex is fixed in adults, sex can change in adults of hermaphroditic fish species. Thus, sex is generated during the initial gonadal differentiation stage (primary sex differentiation) and later during sexual fate alternation (secondary sex differentiation) in hermaphroditic fish species. Depending on the species, sex phase alternation can be induced by endogenous cues (such as individual age and body size) or by social cues (such as sex ratio or relative body size within the population). In general, the fluctuation in plasma estradiol-17β (E2) levels is correlated with the sexual fate alternation in hermaphroditic fish. Hormonal treatments can artificially induce sexual phase alternation in sequential hermaphroditic fishes, but in a transient and reversible manner. This is the case for the E2-induced female phase in protandrous black porgy and the methyltestosterone (MT)- or aromatase inhibitor (AI)-induced male phase in protogynous grouper. Recent reviews have focused on the different forms of sex change in fish who undergo sequential sex change, especially in terms of gene expression and the role of hormones. In this review, we use the protandrous black porgy, a nonsocial cue-influenced hermaphroditic species, with digonic gonads (ovarian and testis separated by a connective tissue), as a model to describe our findings and discuss the molecular and cellular regulation of sexual fate determination in hermaphroditic fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
7
|
García Hernández MP, Cabas I, Rodenas MC, Arizcun M, Chaves-Pozo E, Power DM, García Ayala A. 17α-ethynylestradiol prevents the natural male-to-female sex change in gilthead seabream (Sparus aurata L.). Sci Rep 2020; 10:20067. [PMID: 33208754 PMCID: PMC7676269 DOI: 10.1038/s41598-020-76902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Exposure to 17α-ethynylestradiol (EE2, 5 μg/g food) impairs some reproductive events in the protandrous gilthead seabream and a short recovery period does not allow full recovery. In this study, spermiating seabream males in the second reproductive cycle (RC) were fed a diet containing 5 or 2.5 μg EE2/g food for 28 days and then a commercial diet without EE2 for the remaining RC. Individuals were sampled at the end of the EE2 treatment and then at the end of the RC and at the beginning of the third RC, 146 and 333 days after the cessation of treatment, respectively. Increased hepatic transcript levels of the gene coding for vitellogenin (vtg) and plasma levels of Vtg indicated both concentrations of EE2 caused endocrine disruption. Modifications in the histological organization of the testis, germ cell proliferation, plasma levels of the sex steroids and pituitary expression levels of the genes coding for the gonadotropin β-subunits, fshβ and lhβ were detected. The plasma levels of Vtg and most of the reproductive parameters were restored 146 days after treatments. However, although 50% of the control fish underwent sex reversal as expected at the third RC, male-to female sex change was prevented by both EE2 concentrations.
Collapse
Affiliation(s)
- M Pilar García Hernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - M Carmen Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Marta Arizcun
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Deborah M Power
- Centro de Ciências Do Mar, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alfonsa García Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
8
|
Lin CJ, Wu GC, Dufour S, Chang CF. Activation of the brain-pituitary-gonadotropic axis in the black porgy Acanthopagrus schlegelii during gonadal differentiation and testis development and effect of estradiol treatment. Gen Comp Endocrinol 2019; 281:17-29. [PMID: 31085192 DOI: 10.1016/j.ygcen.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Previous studies revealed an estradiol (E2)-dependent peak in brain activity, including neurosteroidogenesis and neurogenesis in the black porgy during the gonadal differentiation period. The brain-pituitary-gonadotropic axis is a key regulator of reproduction and may also be involved in gonadal differentiation, but its activity and potential role in black porgy during the gonadal differentiation period is still unknown. The present study analyzed the expression of regulatory factors involved in the gonadotropic axis at the time of gonadal differentiation (90, 120, 150 days after hatching [dah]) and subsequent testicular development (180, 210, 300 dah). In agreement with previous studies, expression of brain aromatase cyp19a1b peaked at 120 dah, and this was followed by a gradual increase during testicular development. The expression of gonadotropin subunits increased slightly but not significantly during gonadal differentiation and then increased significantly at 300 dah. In contrast, the expression of brain gnrh1 and pituitary gnrh receptor 1 (gnrhr1) exhibited a pattern with two peaks, the first at 120 dah, during the period of gonadal differentiation, and the second peak during testicular development. Gonad fshr and lhcgr increased during gonadal differentiation period with highest transcript level in prespawning season during testicular development. This suggests that the early activation of brain gnrh1, pituitary gnrhr1 and gths, and gonad gthrs might be involved in the control of gonadal differentiation. E2 treatment increased brain cyp19a1b expression at each sampling time, in agreement with previous studies in black porgy and other teleosts. E2 also significantly stimulated the expression of pituitary gonadotropin subunits at all sampling times, indicating potential E2-mediated steroid feedback. In contrast, no significant effect of E2 was observed on gnrh1. Moreover, treatment of AI or E2 had no statistically significant effect on brain gnrh1 transcription levels during gonadal differentiation. This indicated that the early peak of gnrh1 expression during the gonadal differentiation period is E2-independent and therefore not directly related to the E2-dependent peak in brain neurosteroidogenesis and neurogenesis also occurring during this period in black porgy. Both E2-independent and E2-dependent mechanisms are thus involved in the peak expression of various genes in the brain of black porgy at the time of gonadal differentiation.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
9
|
Ma XL, Yuan BL, Zhou LB. The Kiss2/GPR54 system stimulates the reproductive axis in male black porgy, Acanthopagrus schlegelii. Gen Comp Endocrinol 2019; 280:158-167. [PMID: 31026424 DOI: 10.1016/j.ygcen.2019.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/09/2023]
Abstract
Although it is well established that the Kiss1/GPR54 system stimulates the reproductive axis in mammals, its functional roles, especially in male reproduction of non-mammalian species, is less clear. In this study, we have isolated the full-length kiss2 and gpr54 cDNAs from black porgy (Acanthopagrus schlegelii). The Kiss2 precursor expressed from kiss2 comprises 124 amino acids and contains a highly conserved 10-amino acid sequence, Kiss2-10 (FNFNPFGLRF). GPR54 comprises 375 amino acid residues and contains distinct characteristics of G protein-coupled receptors. Real-time PCR analysis indicated that kiss2 and gpr54 were expressed highly in the brain regions. Moreover, intraperitoneal injection of porgy Kiss2-10 could stimulate genes expression of the gpr54, gnrh1, gnrh3, fshβ, lhβ, p450c17, star, and ar, and the serum testerone level in male black porgy. Our findings demonstrate that the Kisspeptin stimulates the male reproductive axis in black porgy.
Collapse
Affiliation(s)
- Xi-Lan Ma
- Department of Life Science, Huizhou University, Huizhou 516007, PR China.
| | - Bao-Lei Yuan
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Li-Bin Zhou
- Department of Life Science, Huizhou University, Huizhou 516007, PR China
| |
Collapse
|
10
|
Wu GC, Chang CF. Primary males guide the femaleness through the regulation of testicular Dmrt1 and ovarian Cyp19a1a in protandrous black porgy. Gen Comp Endocrinol 2018; 261:198-202. [PMID: 28188743 DOI: 10.1016/j.ygcen.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
Abstract
Controlling the development of the sexes is critically important for the broodstock management in aquaculture. Sex steroids are widely used for sex control of fish. However, hermaphroditic fish have a plastic sex, and a stable sex is difficult to maintain with sex steroids. We used the black porgy (Acanthopagrus schlegelii) as a model to understand the possible mechanism of sexual fate decision. Low exogenous estradiol (E2) induced male development. In contrast, high exogenous E2 induced the regression of the testis and the development of the ovary and resulted in an unstable expression of femaleness (passive femaleness, with ovaries containing only the primary oocytes). The removal of testicular tissue by surgery resulted in the early development of vitellogenic oocytes and active femaleness. Our data also demonstrated that the male-to-female sex change is blocked by the maintenance of male function with gonadotropin-induced dmrt1 expression in the testis. Furthermore, our data also indicated that ovarian cyp19a1a expression is regulated by the testis through epigenetic modifications. Therefore, the primary male guides the femaleness in the protandrous black porgy and the transition of sexual fate from male to female is determined by the status of the testicular tissue.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
11
|
Wu GC, Li HW, Huang CH, Lin HJ, Lin CJ, Chang CF. The Testis Is a Primary Factor That Contributes to Epigenetic Modifications in the Ovaries of the Protandrous Black Porgy, Acanthopagrus schlegelii1. Biol Reprod 2016; 94:132. [DOI: 10.1095/biolreprod.115.137463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/12/2016] [Indexed: 12/31/2022] Open
|
12
|
Wu GC, Tey WG, Li HW, Chang CF. Sexual Fate Reprogramming in the Steroid-Induced Bi-Directional Sex Change in the Protogynous Orange-Spotted Grouper, Epinephelus coioides. PLoS One 2015; 10:e0145438. [PMID: 26714271 PMCID: PMC4694621 DOI: 10.1371/journal.pone.0145438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Androgen administration has been widely used for masculinization in fish. The mechanism of the sex change in sexual fate regulation is not clear. Oral administration or pellet implantation was applied. We orally applied an aromatase inhibitor (AI, to decrease estrogen levels) and 17α-methyltestosterone (MT, to increase androgen levels) to induce masculinization to clarify the mechanism of the sex change in the protogynous orange-spotted grouper. After 3 mo of AI/MT administration, male characteristics were observed in the female-to-male sex change fish. These male characteristics included increased plasma 11-ketotestosterone (11-KT), decreased estradiol (E2) levels, increased male-related gene (dmrt1, sox9, and cyp11b2) expression, and decreased female-related gene (figla, foxl2, and cyp19a1a) expression. However, the reduced male characteristics and male-to-female sex change occurred after AI/MT-termination in the AI- and MT-induced maleness. Furthermore, the MT-induced oocyte-depleted follicle cells (from MT-implantation) had increased proliferating activity, and the sexual fate in a portion of female gonadal soma cells was altered to male function during the female-to-male sex change. In contrast, the gonadal soma cells were not proliferative during the early process of the male-to-female sex change. Additionally, the male gonadal soma cells did not alter to female function during the male-to-female sex change in the AI/MT-terminated fish. After MT termination in the male-to-female sex-changed fish, the differentiated male germ cells showed increased proliferating activities together with dormancy and did not show characteristics of both sexes in the early germ cells. In conclusion, these findings indicate for the first time in a single species that the mechanism involved in the replacement of soma cells is different between the female-to-male and male-to-female sex change processes in grouper. These results also demonstrate that sexual fate determination (secondary sex determination) is regulated by endogenous sex steroid levels.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- * E-mail: (G-CW); (C-FC)
| |
Collapse
|
13
|
Reyes-Tomassini J, Wong TT, Zohar Y. GnRH isoforms expression in relation to the gonadal cycle and to dominance rank in the gilthead seabream, Sparus aurata. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:993-1005. [PMID: 23248050 DOI: 10.1007/s10695-012-9757-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The manner in which behavior influences the gonadotropin-releasing hormone (GnRH) axis in hermaphroditic fishes is not understood. The Gilthead seabream, Sparus aurata, is a protandrous hermaphrodite with a complex gonadal cycle consisting of a quiescent, pre-spawning, spawning, and post-spawning stage. On two separate experiments, I used real-time quantitative PCR to measure the mRNA expression of three GnRH isoforms in homogenized seabream whole-brain extracts. In the first experiment, I measured the levels of GnRH-1, GnRH-2, and GnRH-3 mRNA throughout the gonad cycle. All three GnRH mRNAs increase around the peak of the spawning season (December). GnRH-3 mRNA expression is also elevated in August, which coincides with the beginning of gonad differentiation. All three GnRH mRNAs have the lowest expression levels in the month of September. There was no difference between males and females in the expression levels of any of the three GnRH mRNA. In the second experiment, I measured individual dominance ranks in six groups of fish, three during quiescence and three during spawning. GnRH-1 mRNA expression was positively correlated with dominance rank only during the quiescent period. The more dominant fish tended to have higher GnRH-1 mRNA expression. The existence of a quiescent-only correlation between GnRH-1 mRNA and dominance rank suggests a mechanism by which activation of gonad maturation could occur first in the most dominant ambisexual fish.
Collapse
Affiliation(s)
- José Reyes-Tomassini
- NOAA Northwest Fisheries Science Center, Manchester Research Station, PO Box 130, Manchester, WA 98353, USA.
| | | | | |
Collapse
|
14
|
Wu GC, Chang CF. The switch of secondary sex determination in protandrous black porgy, Acanthopagrus schlegeli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:33-38. [PMID: 22411079 DOI: 10.1007/s10695-012-9618-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
Hermaphrodites have both sexes during their life, including an initial primary sex determination and in later stage maintenance one of the sexual fates (secondary sex determination). Sex change (secondary sex determination) occurs in animals, but it is lost in amphibians through, mammals in vertebrates. Teleosts have various strategies and mechanisms of sex determination including genetic and environmental cues. However, the mechanisms by which the cues guide sex change are complicated in fish. This manuscript reviews our understanding of these processes in protandrous black porgy at the gonadal and neuroendocrine levels. Our studies addressed the process of sex change through brain-pituitary-gonad axis, and then secondary sex determination was switched by the fate of testis.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | | |
Collapse
|
15
|
Wu GC, Chiu PC, Lin CJ, Lyu YS, Lan DS, Chang CF. Testicular dmrt1 Is Involved in the Sexual Fate of the Ovotestis in the Protandrous Black Porgy1. Biol Reprod 2012; 86:41. [DOI: 10.1095/biolreprod.111.095695] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Lin CJ, Wu GC, Lee MF, Lau EL, Dufour S, Chang CF. Regulation of two forms of gonadotropin-releasing hormone receptor gene expression in the protandrous black porgy fish, Acanthopagrus schlegeli. Mol Cell Endocrinol 2010; 323:137-46. [PMID: 20398731 DOI: 10.1016/j.mce.2010.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 02/08/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
Two GnRH receptors (GnRH-R I and GnRH-R II) were obtained in protandrous black porgy (Acanthopagrus schlegeli). We investigated their tissue distribution, developmental/seasonal changes and regulation of expression using in vivo and in vitro (primary cultures of dispersed pituitary cells) approaches. The relative expressions of GnRH-Rs in the pituitary and gonad were as follows: pituitary: GnRH-R I > GnRH-R II; testicular tissue: GnRH-R I > GnRH-R II; ovarian tissue: GnRH-R I = GnRH-R II. GnRH-R I but not GnRH-R II expression was higher in the pituitary during the spawning period as compared to the prespawning. The expression profiles of both forms of GnRH-R were variable in the gonads according to the gonadal stage and season. In vivo, hCG stimulated GnRH-R I and GnRH-R II expression in testis and ovary. The LHRH analog also up-regulated both receptors in testis and but increased only GnRH-R II in the ovary. Sex steroids (estradiol, E2 and testosterone, T) increased the expression of both receptors in the testis and ovary. In the pituitary, sex steroids (E2 and T) increased the expression of GnRH-R I, but not GnRH-II, both in vivo and in vitro. The LHRH analog also specifically up-regulated the expression of GnRH-R I, but not GnRH-R II, by pituitary cells in vitro. All these data suggest that GnRH-R I rather than GnRH-R II may play a major physiological role in the pituitary. In contrast, both GnRH-R I and GnRH-R II may participate in the regulation of gonadal functions, including a possible role during sex change.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Wu GC, Tomy S, Lee MF, Lee YH, Yueh WS, Lin CJ, Lau EL, Chang CF. Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol 2010; 167:417-21. [PMID: 19917286 DOI: 10.1016/j.ygcen.2009.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/02/2009] [Accepted: 11/10/2009] [Indexed: 11/19/2022]
Abstract
Protandrous black porgy fish, Acanthopagrus schlegeli, have a striking life cycle with a male sex differentiation at the juvenile stage and male-to-female sex change at 3 years of age. We had characterized the sex differentiation and sex change in this species by the integrative approaches of histology, endocrine and molecular genetics. The fish differentiated in gonad at the age around 4-months and the gonad further developed with a bisexual gonad for almost for 3 years and sex change at 3 year of age. An antagonistic relationship in the testicular and ovarian tissues was found during the development of the gonadal tissue. Male- (such as sf-1, dmrt1, dax-1 and amh) and female- (such as wnt4, foxl2 and cyp19a1a) promoting genes were associated with testicular and ovarian development, respectively. During gonadal sex differentiation, steroidogenic pathway and estrogen signaling were also highly expressed in the brain. The increased expression of sf-1 and wnt4, cyp19a1a in ovarian tissue and decreased expression of dax-1 in the ovarian tissue may play important roles in sex change from a male-to-female. Endocrine factors such as estradiol and luteinizing hormone may also involve in the natural sex change. Estradiol induced the expression of female-promoting genes and resulted in the precocious sex change in black porgy. Our series of studies shed light on the sex differentiation and sex change in protandrous black porgy and other animals.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu GC, Chang CF. wnt4 Is Associated with the Development of Ovarian Tissue in the Protandrous Black Porgy, Acanthopagrus schlegeli1. Biol Reprod 2009; 81:1073-82. [DOI: 10.1095/biolreprod.109.077362] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Martyniuk CJ, Kroll KJ, Porak WF, Steward C, Grier HJ, Denslow ND. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass. Gen Comp Endocrinol 2009; 163:306-17. [PMID: 19416730 PMCID: PMC4188826 DOI: 10.1016/j.ygcen.2009.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 04/05/2009] [Accepted: 04/27/2009] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611 USA
| | - Kevin J. Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611 USA
| | - Wesley F. Porak
- Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Eustis, FL 32726 USA
| | - Cheree Steward
- Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Eustis, FL 32726 USA
| | - Harry J. Grier
- Florida Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611 USA
| |
Collapse
|
20
|
Molecular characterization of gonadotropin subunits and gonadotropin receptors in black porgy, Acanthopagrus schlegeli: Effects of estradiol-17β on mRNA expression profiles. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:177-88. [DOI: 10.1016/j.cbpb.2008.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 11/22/2022]
|
21
|
Ohta K, Mine T, Yamaguchi A, Matsuyama M. Sexually dimorphic expression of pituitary glycoprotein hormones in a sex-changing fish (Pseudolabrus sieboldi). ACTA ACUST UNITED AC 2008; 309:534-41. [PMID: 18646193 DOI: 10.1002/jez.485] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is widely accepted that the hypothalamic-pituitary-gonadal axis is involved in gonadal sex change in socially controlled sex-changing fish. However, the specific secretion profiles of pituitary gonadotropins (GtHs) in this type of fish are not known. To address this fundamental question, we demonstrated that the diurnal secretion patterns of GtHs differ distinctly between males and females in a socially controlled sex-changing fish. We analyzed the pituitary mRNA levels of glycoprotein hormone subunits (i.e., the common alpha-subunit and specific beta-subunits follicle-stimulating hormone beta, luteinizing hormone beta, and thyroid-stimulating hormone beta) in the wrasse Pseudolabrus sieboldi, which is a model fish that exhibits accurate diurnal rhythms of gametogenesis in both males and females. Northern blots clearly showed that each subunit gene exhibits a diurnal rhythm of expression in the pituitary and that the expression patterns differ distinctly between the sexes. Our results suggest that oogenesis and spermatogenesis in this hermaphroditic fish are regulated differentially through the distinct secretion patterns of pituitary glycoprotein hormones. This study also provides direct evidence of the sexual plasticity of pituitary GtH secretion in a socially controlled sex-changing fish.
Collapse
Affiliation(s)
- Kohei Ohta
- Laboratory of Marine Biology, Faculty of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
22
|
Swapna I, Sudhakumari CC, Sakai F, Sreenivasulu G, Kobayashi T, Kagawa H, Nagahama Y, Senthilkumaran B. Seabream GnRH immunoreactivity in brain and pituitary of XX and XY Nile tilapia,Oreochromis niloticusduring early development. ACTA ACUST UNITED AC 2008; 309:419-26. [DOI: 10.1002/jez.467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
|
24
|
Soverchia L, Carotti M, Andreu-Vieyra C, Mosconi G, Cannella N, Habibi H, Polzonetti-Magni AM. Role of gonadotropin-releasing hormone (GnRH) in the regulation of gonadal differentiation in the gilthead seabream (Sparus aurata). Mol Reprod Dev 2007; 74:57-67. [PMID: 16929534 DOI: 10.1002/mrd.20484] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been proposed that gonadotropin-releasing hormone (GnRH) plays an autocrine/paracrine regulatory role in mammalian and fish ovaries. The marine teleost gilthead seabream is an interesting model since, during the life span of the fish, gonadal tissues develop first as testes, which then regress allowing the development of ovarian follicles. Recent studies carried out in ovaries of the gilthead seabream have demonstrated that various GnRH transcripts as well as GnRH splicing variants are expressed. The mRNA level of several GnRH forms in the female and male areas of the switching gonad, and their possible role in this process, were further investigated. The results here reported show that sGnRH, cGnRH-II, and sbGnRH transcripts are locally expressed during gilthead seabream gonadal differentiation; the expression of the three GnRH forms was found to differ among the morphologically defined areas of the switching gonad, as demonstrated by applying reverse transcription-polymerase chain reaction (RT-PCR), together with in situ hybridization, and semiquantitative PCR analyses. Moreover, the hypothesis that GnRH forms may regulate testicular regression via an apoptotic mechanism was investigated by analyzing the different areas of switching gonads for caspase-3 activity as a measure of apoptosis. Our results showed a marked increase of caspase-3 activity in the area corresponding to the regressing testes in which a significant decrease of testosterone production was also found. The present findings demonstrate that the changes in the endogenous GnRH transcripts could be related with the gonadal differentiation in gilthead seabream, and that exogenous GnRH plays a role by stimulating apoptosis in the degenerating testis.
Collapse
Affiliation(s)
- L Soverchia
- Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università degli Studi di Camerino, via Scalzino 3, Camerino (MC), Italia
| | | | | | | | | | | | | |
Collapse
|
25
|
Maruska KP, Mizobe MH, Tricas TC. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:129-44. [PMID: 17276115 DOI: 10.1016/j.cbpa.2006.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|