1
|
Méar LO, Tseng IS, Lin KS, Hsu CL, Chen SH, Tsai PS. Transcriptomic Characterization of Male Formosan Pangolin ( Manis pentadactyla pentadactyla) Reproductive Tract and Evaluation of Domestic Cat ( Felis catus) as a Potential Model Species. Animals (Basel) 2024; 14:2592. [PMID: 39272377 PMCID: PMC11394312 DOI: 10.3390/ani14172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The Formosan pangolin (Manis pentadactyla pentadactyla) is an endemic animal of Taiwan. Due to their reduced population and behavior, very little is known about this enigmatic species. To unravel male pangolin reproduction, in the present study, we built a complete genomic database of the male Formosan pangolin reproductive tract and revealed highly expressing genes as well as critical signaling pathways and their associated biological processes in both the testis and the epididymis. Moreover, we evaluated the domestic cat (Felis catus) as a potential model species for male pangolin reproduction by comparing their testicular transcriptomes. We demonstrated a clear tissue-specific gene expression supporting the unique biological signature of each reproductive tissue and identified critical genes of the different reproductive organs. Pathway enrichment analysis revealed unique pathways in the testis as well as a clear epididymal transition. Furthermore, domestic cats, despite being the closest domestic species to pangolin, demonstrated their unfitness as a male reproduction model species as clear differences in spermatid differentiation and metabolism were observed. These results enable a better understanding of male pangolin reproduction characteristics and may inspire improvements in in Formosan pangolin conservation strategies.
Collapse
Affiliation(s)
- Laura Orama Méar
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Reproduction Biology, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke Rd., No. 17, 10315 Berlin, Germany
| | - IShin Tseng
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Kuei-Shien Lin
- Taiwan Biodiversity Research Institute, Nantou 552005, Taiwan
| | - Chia-Lin Hsu
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Hua Chen
- Taiwan Biodiversity Research Institute, Nantou 552005, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Cichowska AW, Wisniewski J, Bromke MA, Olejnik B, Mogielnicka-Brzozowska M. Proteome Profiling of Canine Epididymal Fluid: In Search of Protein Markers of Epididymal Sperm Motility. Int J Mol Sci 2023; 24:14790. [PMID: 37834239 PMCID: PMC10573609 DOI: 10.3390/ijms241914790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.
Collapse
Affiliation(s)
- Aleksandra W. Cichowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
5
|
Ali W, Deng K, Bian Y, Liu Z, Zou H. Spectacular role of epididymis and bio-active cargo of nano-scale exosome in sperm maturation: A review. Biomed Pharmacother 2023; 164:114889. [PMID: 37209627 DOI: 10.1016/j.biopha.2023.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
The epididymis is responsible for post-testicular sperm maturation as it provides a favorable environment for spermatozoa to gain the ability for movement and fertilization. The recent evidence has shown that, the spermatozoa are vulnerable to dynamic variations driven by various cellular exposure mechanisms mediated by epididymosomes. Exosomes provide new insight into a mechanism of intercellular communication because they provide direct evidence for the transfer of several important bio-active cargo elements (proteins, lipid, DNA, mRNA, microRNA, circular RNA, long noncoding RNA) between epididymis and spermatozoa. In broad sense, proteomic analysis of exosomes from epididymis indicates number of proteins that are involved in sperm motility, acrosomal reaction, prevent pre-mature sperm capacitation and male infertility. Pinpointing, how reproductive disorders are associated with bio-active cargo elements of nano-scale exosome in the male reproductive tract. Therefore, the current review presents evidence regarding the distinctive characteristics and functions of nano-scale exosome in the male reproductive tract in both pathological and physiological developments, and argue that these vesicles serve as an important regulator of male reproduction, fertility, and disease susceptibility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
6
|
Fernandez-Fuertes B. Review: The role of male reproductive tract secretions in ruminant fertility. Animal 2023; 17 Suppl 1:100773. [PMID: 37567680 DOI: 10.1016/j.animal.2023.100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 08/13/2023] Open
Abstract
Male fertility largely depends on the ability to produce sperm that can transmit the paternal information onto the next generation. However, the factors that are critical for sperm function and the subsequent development of healthy offspring are still not completely understood in ruminants. Importantly, sperm function is not completely encoded by germ cell DNA, but rather, depends on sequential acquisition, loss, and modification of elements through interaction with secretions from the testes, epididymides, and accessory glands (collectively termed seminal plasma). In addition, these secretions can play a role in the inheritance of paternal environmental effects by progeny. This is likely achieved directly, by the regulation of sperm epigenetic effectors, and indirectly, by altering the female environment in which the individual develops. This review will provide an overview of the different organs that contribute to seminal plasma in ruminants, and summarise how their secretions shape sperm function and modulate the female reproductive tract. Finally, some consideration will be given to the potential of paternal factors to affect embryo development and offspring health in ruminants.
Collapse
Affiliation(s)
- B Fernandez-Fuertes
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Liu J, Sun W, Liu C, Na Q. Umbilical Cord Blood-Derived Exosomes in Maternal-Fetal Disease: a Review. Reprod Sci 2023; 30:54-61. [PMID: 35157260 DOI: 10.1007/s43032-022-00879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
Abstract
The nutrients and other factors transported by umbilical cord blood, which is vital for fetal survival, play crucial roles in fetal development. There are various communication modes between the fetal-placental system and the maternal-placental system, and these communication modes are all mediated by umbilical cord blood. During the process of umbilical cord blood transportation, the changes of some nutrients and factors may play a key role in fetal development. Exosomes, which are members of the extracellular vesicle family, are present in the umbilical cord blood and play roles in information transmission as a result of their efficient cellular communication activity. The study of umbilical cord blood-derived exosomes provides a new approach for research on the etiology of maternal-fetal diseases and they may be useful for the development of intrauterine treatments. This review summarizes specific functions and research directions regarding umbilical cord blood-derived exosomes, and their potential associations with pregnancy complications.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Belleannée C, Viana AGDA, Lavoie-Ouellet C. Intra and intercellular signals governing sperm maturation. Reprod Fertil Dev 2022; 35:27-38. [PMID: 36592975 DOI: 10.1071/rd22226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
After their production in the testis, spermatozoa do not have the capacity to move progressively and are unable to fertilise an oocyte. They sequentially acquire these abilities following their maturation in the epididymis and their capacitation/hyperactivation in the female reproductive system. As gene transcription is silenced in spermatozoa, extracellular factors released from the epididymal epithelium and from secretory glands allow spermatozoa to acquire bioactive molecules and to undergo intrinsic modifications. These modifications include epigenetic changes and post-translational modifications of endogenous proteins, which are important processes in sperm maturation. This article emphasises the roles played by extracellular factors secreted by the epididymis and accessory glands in the control of sperm intercellular signallings and fertilising abilities.
Collapse
Affiliation(s)
- Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | | | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
9
|
Roca J, Rodriguez-Martinez H, Padilla L, Lucas X, Barranco I. Extracellular vesicles in seminal fluid and effects on male reproduction. An overview in farm animals and pets. Anim Reprod Sci 2022; 246:106853. [PMID: 34556398 DOI: 10.1016/j.anireprosci.2021.106853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released by most functional cells to body fluids, containing bioactive molecules, mainly proteins, lipids, and nucleic acids having actions at target cells. The EVs have essential functions in cell-to-cell communication by regulating different biological processes in target cells. Fluids from the male reproductive tract, including seminal plasma, contain many extracellular vesicles (sEVs), which have been evaluated to a lesser extent than those of other body fluids, particularly in farm animals and pets. Results from the few studies that have been conducted indicated epithelial cells of the testis, epididymis, ampulla of ductus deferens and many accessory sex glands release sEVs mainly via apocrine mechanisms. The sEVs are morphologically heterogeneous and bind to functional cells of the male reproductive tract, spermatozoa, and cells of the functional tissues of the female reproductive tract after mating or insemination. The sEVs encapsulate proteins and miRNAs that modulate sperm functions and male fertility. The sEVs, therefore, could be important as reproductive biomarkers in breeding sires. Many of the current findings regarding sEV functions, however, need experimental confirmation. Further studies are particularly needed to characterize both membranes and contents of sEVs, as well as the interaction between sEVs and target cells (spermatozoa and functional cells of the internal female reproductive tract). A priority for conducting these studies is development of methods that can be standardized and that are scalable, cost-effective and time-saving for isolation of different subtypes of EVs present in the entire population of sEVs.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, IT-40064 Bologna, Italy
| |
Collapse
|
10
|
Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes in the visual system: New avenues in ocular diseases. Tumour Biol 2022; 44:129-152. [PMID: 35964221 DOI: 10.3233/tub-211543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exosomes are a subgroup of membrane-bound extracellular vesicles secreted by all cell types and present virtually in all biological fluids. The composition of exosomes in the same cell type varies in healthy and disease conditions. Hence, exosomes research is a prime focus area for clinical research in cancer and numerous age-related metabolic syndromes. Functions of exosomes include crucial cell-to-cell communication that mediates complex cellular processes, such as antigen presentation, stem cell differentiation, and angiogenesis. However, very few studies reported the presence and role of exosomes in normal physiological and pathological conditions of specialized ocular tissues of the eye and ocular cancers. The eye being a protected sense organ with unique connectivity with the rest of the body through the blood and natural passages, we believe that the role of exosomes in ocular tissues will significantly improve our understanding of ocular diseases and their interactions with the rest of the body. We present a review that highlights the existence and function of exosomes in various ocular tissues, their role in the progression of some of the neoplastic and non-neoplastic conditions of the eyes.
Collapse
Affiliation(s)
- Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jyothi Attem
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
11
|
Nikonorova IA, Wang J, Cope AL, Tilton PE, Power KM, Walsh JD, Akella JS, Krauchunas AR, Shah P, Barr MM. Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Curr Biol 2022; 32:1924-1936.e6. [PMID: 35334227 PMCID: PMC9491618 DOI: 10.1016/j.cub.2022.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Juan Wang
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Alexander L Cope
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jonathon D Walsh
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Amber R Krauchunas
- University of Delaware, Department of Biological Sciences, 105 The Green, Newark, DE 19716, USA
| | - Premal Shah
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Chen H, Alves MBR, Belleannée C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum Reprod Update 2021; 28:51-66. [PMID: 34618012 DOI: 10.1093/humupd/dmab029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their motility and fertilizing abilities during their maturation through the epididymis. This process is controlled by epididymal epithelial cells that possess features adapted to sense and respond to their surrounding environment and to communicate with spermatozoa. During the past decade, new intercellular communication processes have been discovered, including the secretion and transport of molecules from the epithelium to spermatozoa via extracellular vesicles (EVs), as well as sensing of the intraluminal milieu by cellular extensions. OBJECTIVE AND RATIONALE This review addresses recent findings regarding epididymal epithelial cell features and interactions between spermatozoa and the epididymal epithelium as well as epigenetic modifications undergone by spermatozoa during transit through the epididymal microenvironment. SEARCH METHODS A systematic search was conducted in Pubmed with the keyword 'epididymis'. Results were filtered on original research articles published from 2009 to 2021 and written in the English language. One hundred fifteen original articles presenting recent advancements on the epididymis contribution to sperm maturation were selected. Some additional papers cited in the primary reference were also included. A special focus was given to higher mammalian species, particularly rodents, bovines and humans, that are the most studied in this field. OUTCOMES This review provides novel insights into the contribution of epididymal epithelium and EVs to post-testicular sperm maturation. First, new immune cell populations have been described in the epididymis, where they are proposed to play a role in protecting the environment surrounding sperm against infections or autoimmune responses. Second, novel epididymal cell extensions, including dendrites, axopodia and primary cilia, have been identified as sensors of the environment surrounding sperm. Third, new functions have been outlined for epididymal EVs, which modify the sperm epigenetic profile and participate in transgenerational epigenetic inheritance of paternal traits. WIDER IMPLICATIONS Although the majority of these findings result from studies in rodents, this fundamental research will ultimately improve our knowledge of human reproductive physiopathologies. Recent discoveries linking sperm epigenetic modifications with paternal environmental exposure and progeny outcome further stress the importance of advancing fundamental research on the epididymis. From this, new therapeutic options for infertile couples and better counseling strategies may arise to increase positive health outcomes in children conceived either naturally or with ART.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| | | | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| |
Collapse
|
14
|
Thakur A, Ke X, Chen YW, Motallebnejad P, Zhang K, Lian Q, Chen HJ. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell 2021; 13:631-654. [PMID: 34374936 PMCID: PMC9233731 DOI: 10.1007/s13238-021-00863-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Xiaoshan Ke
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Ya-Wen Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Stem Cell Biology and Regenerative Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pedram Motallebnejad
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. .,HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA. .,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
15
|
Regimbeau M, Abrey J, Vautrot V, Causse S, Gobbo J, Garrido C. Heat shock proteins and exosomes in cancer theranostics. Semin Cancer Biol 2021; 86:46-57. [PMID: 34343652 DOI: 10.1016/j.semcancer.2021.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) are a superfamily of molecular chaperones that were discovered through their ability to be induced by different stresses including heat shock. Other than their function as chaperones in proteins homeostasis, HSPs have been shown to inhibit different forms of cell death and to participate in cell proliferation and differentiation processes. Because cancer cells have to rewire their metabolism, they require a high amount of these stress-inducible chaperones for their survival. Therefore, HSPs are unusually abundant in cancer cells where they have oncogene-like functions. In cancer, HSPs have been involved in the regulation of apoptosis, immune responses, angiogenesis, metastasis and treatment resistance. Recently, HSPs have been shown to be secreted through exosomes by cancer cells. These tumor-derived exosomes can be used as circulating markers: HSP-exosomes have been reported as biomarkers of cancer dissemination, response to therapy and/or patient outcome. A new range of functions, mostly in modulation of anticancer immune responses, have been described for these extracellular HSPs. In this review, we will describe those recently reported functions of HSP-exosomes that makes them both targets for anticancer therapeutics and biomarkers for the monitoring of the disease. We will also discuss their emerging interest in cancer vaccines.
Collapse
Affiliation(s)
- Mathilde Regimbeau
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jimena Abrey
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Valentin Vautrot
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France
| | - Sebastien Causse
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jessica Gobbo
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France; Early Phase Unit INCa CLIP², Department of Oncology, Georges-François Leclerc Centre, Dijon, France; Centre d'investigation Clinique INSERM 1432, CHU Dijon-Bourgogne, Dijon, France
| | - Carmen Garrido
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France.
| |
Collapse
|
16
|
Wu L, Ding Y, Han S, Wang Y. Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review. Curr Drug Metab 2021; 21:330-338. [PMID: 32433001 DOI: 10.2174/1389200221666200520091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. OBJECTIVE The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. METHODS We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. CONCLUSION This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.
Collapse
Affiliation(s)
- Luming Wu
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Ding
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Yiqing Wang
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Le Roy N, Stapane L, Gautron J, Hincke MT. Evolution of the Avian Eggshell Biomineralization Protein Toolkit - New Insights From Multi-Omics. Front Genet 2021; 12:672433. [PMID: 34046059 PMCID: PMC8144736 DOI: 10.3389/fgene.2021.672433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The avian eggshell is a remarkable biomineral, which is essential for avian reproduction; its properties permit embryonic development in the desiccating terrestrial environment, and moreover, are critically important to preserve unfertilized egg quality for human consumption. This calcium carbonate (CaCO3) bioceramic is made of 95% calcite and 3.5% organic matrix; it protects the egg contents against microbial penetration and mechanical damage, allows gaseous exchange, and provides calcium for development of the embryonic skeleton. In vertebrates, eggshell occurs in the Sauropsida and in a lesser extent in Mammalia taxa; avian eggshell calcification is one of the fastest known CaCO3 biomineralization processes, and results in a material with excellent mechanical properties. Thus, its study has triggered a strong interest from the researcher community. The investigation of eggshell biomineralization in birds over the past decades has led to detailed characterization of its protein and mineral constituents. Recently, our understanding of this process has been significantly improved using high-throughput technologies (i.e., proteomics, transcriptomics, genomics, and bioinformatics). Presently, more or less complete eggshell proteomes are available for nine birds, and therefore, key proteins that comprise the eggshell biomineralization toolkit are beginning to be identified. In this article, we review current knowledge on organic matrix components from calcified eggshell. We use these data to analyze the evolution of selected matrix proteins and underline their role in the biological toolkit required for eggshell calcification in avian species. Amongst the panel of eggshell-associated proteins, key functional domains are present such as calcium-binding, vesicle-binding and protein-binding. These technical advances, combined with progress in mineral ultrastructure analyses, have opened the way for new hypotheses of mineral nucleation and crystal growth in formation of the avian eggshell, including transfer of amorphous CaCO3 in vesicles from uterine cells to the eggshell mineralization site. The enrichment of multi-omics datasets for bird species is critical to understand the evolutionary context for development of CaCO3 biomineralization in metazoans, leading to the acquisition of the robust eggshell in birds (and formerly dinosaurs).
Collapse
Affiliation(s)
| | | | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Trigg NA, Stanger SJ, Zhou W, Skerrett-Byrne DA, Sipilä P, Dun MD, Eamens AL, De Iuliis GN, Bromfield EG, Roman SD, Nixon B. A novel role for milk fat globule-EGF factor 8 protein (MFGE8) in the mediation of mouse sperm-extracellular vesicle interactions. Proteomics 2021; 21:e2000079. [PMID: 33792189 DOI: 10.1002/pmic.202000079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Spermatozoa transition to functional maturity as they are conveyed through the epididymis, a highly specialized region of the male excurrent duct system. Owing to their transcriptionally and translationally inert state, this transformation into fertilization competent cells is driven by complex mechanisms of intercellular communication with the secretory epithelium that delineates the epididymal tubule. Chief among these mechanisms are the release of extracellular vesicles (EV), which have been implicated in the exchange of varied macromolecular cargo with spermatozoa. Here, we describe the optimization of a tractable cell culture model to study the mechanistic basis of sperm-extracellular vesicle interactions. In tandem with receptor inhibition strategies, our data demonstrate the importance of milk fat globule-EGF factor 8 (MFGE8) protein in mediating the efficient exchange of macromolecular EV cargo with mouse spermatozoa; with the MFGE8 integrin-binding Arg-Gly-Asp (RGD) tripeptide motif identified as being of particular importance. Specifically, complementary strategies involving MFGE8 RGD domain ablation, competitive RGD-peptide inhibition and antibody-masking of alpha V integrin receptors, all significantly inhibited the uptake and redistribution of EV-delivered proteins into immature mouse spermatozoa. These collective data implicate the MFGE8 ligand and its cognate integrin receptor in the mediation of the EV interactions that underpin sperm maturation.
Collapse
Affiliation(s)
- Natalie A Trigg
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Wei Zhou
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Drug Development, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
19
|
Llobat L. Extracellular vesicles and domestic animal reproduction. Res Vet Sci 2021; 136:166-173. [PMID: 33647595 DOI: 10.1016/j.rvsc.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Embryo implantation is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of females and which varies depending on the embryonic, pre-implantation, or fetal stages. However, at all stages, correct maternal-embryonic communication is essential. In the last few years, a new intercellular communication tool, mediated by extracellular vesicles (EVs), has emerged. Many authors agree on the relevant role of EVs in correct communication between the mother and the embryo, as a fundamental system for the pregnancy to reach term and embryonic development to occur correctly. This review analyzes current information on known EVs, their main functions, and their role in implantation and embryonic development in domestic animals.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
20
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
21
|
Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi-Omics Data Integration in Extracellular Vesicle Biology-Utopia or Future Reality? Int J Mol Sci 2020; 21:ijms21228550. [PMID: 33202771 PMCID: PMC7697477 DOI: 10.3390/ijms21228550] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures derived from the endosomal system or generated by plasma membrane shedding. Due to their composition of DNA, RNA, proteins, and lipids, EVs have garnered a lot of attention as an essential mechanism of cell-to-cell communication, with various implications in physiological and pathological processes. EVs are not only a highly heterogeneous population by means of size and biogenesis, but they are also a source of diverse, functionally rich biomolecules. Recent advances in high-throughput processing of biological samples have facilitated the development of databases comprised of characteristic genomic, transcriptomic, proteomic, metabolomic, and lipidomic profiles for EV cargo. Despite the in-depth approach used to map functional molecules in EV-mediated cellular cross-talk, few integrative methods have been applied to analyze the molecular interplay in these targeted delivery systems. New perspectives arise from the field of systems biology, where accounting for heterogeneity may lead to finding patterns in an apparently random pool of data. In this review, we map the biological and methodological causes of heterogeneity in EV multi-omics data and present current applications or possible statistical methods for integrating such data while keeping track of the current bottlenecks in the field.
Collapse
Affiliation(s)
- Leona Chitoiu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
- Department of Cellular, Molecular Biology and Histology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
22
|
Faisal K, Akbarsha MA. Role of aposomes and epididymosomes in sperm quality control: A light and transmission electron microscopic study in an experimental rat model. Andrologia 2020; 53:e13862. [PMID: 33108830 DOI: 10.1111/and.13862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/01/2022] Open
Abstract
The epididymis responds to adverse conditions of misshapen spermatozoa resulting from pathological changes or toxic insults by secretion of a dense matrix that segregates the latter for complete disintegration and dissolution. The objective of this study was to find the source of this matrix and the role-player of disintegration and dissolution of misshapen spermatozoa. We chose Wistar strain male rat model to tackle this issue, and the rats were administered with aflatoxin B1 for 55 days so as to increase the incidence of misshapen spermatozoa. At the end of the treatment, different segments of epididymis were processed for microscopic observations. We found that parallel with abundant misshapen spermatozoa in the epididymis the principal cells of the initial segment secrete enormous membrane-bound apical blebs called aposomes, which contain epididymosomes. The aposomes were found to coalesce so as for the content to merge and form a dense matrix that entangles the misshapen spermatozoa and segregates them from viable spermatozoa. The epididymosomes associate with the misshapen spermatozoa, and the latter is processed to disintegration and total dissolution. Therefore, we assign the role of segregation of misshapen spermatozoa from viable ones to the dense matrix of aposomes and their disintegration and dissolution to the epididymosomes.
Collapse
Affiliation(s)
- Kunnathodi Faisal
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Mohammad Abdulkader Akbarsha
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India.,Department of Biotechnology, National College (Autonomous), Tiruchirappalli, India
| |
Collapse
|
23
|
Tamessar CT, Trigg NA, Nixon B, Skerrett-Byrne DA, Sharkey DJ, Robertson SA, Bromfield EG, Schjenken JE. Roles of male reproductive tract extracellular vesicles in reproduction. Am J Reprod Immunol 2020; 85:e13338. [PMID: 32885533 DOI: 10.1111/aji.13338] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted cell-derived membrane structures present in all organisms across animal, bacterial, and plant phyla. These vesicles play important roles in cell-cell communication in many processes integral to health and disease. Recent studies demonstrate that EVs and their cargo have influential and conserved roles in male reproduction. While EVs have been isolated from virtually all specialized tissues comprising the male reproductive tract, they are best characterized in the epididymis (epididymosomes) and seminal fluid (seminal fluid extracellular vesicles or prostasomes). Broadly speaking, EVs promote reproductive success through supporting sperm development and function, as well as influencing the physiology of female reproductive tract cells after mating. In this review, we present current knowledge on the composition and function of male reproductive tract EV populations in both normal physiology and pathology, and argue that their functions identify them as critical regulators of fertility and fecundity.
Collapse
Affiliation(s)
- Cottrell T Tamessar
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David J Sharkey
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
García-Martínez S, Gadea J, Coy P, Romar R. Addition of exogenous proteins detected in oviductal secretions to in vitro culture medium does not improve the efficiency of in vitro fertilization in pigs. Theriogenology 2020; 157:490-497. [PMID: 32898824 DOI: 10.1016/j.theriogenology.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
This work was designed to study whether HSP70-1A, HSP90α, ezrin or PDI4, proteins previously identified in porcine oviductal secretions, have a role in zona pellucida (ZP) resistance to enzymatic digestion, in vitro fertilization (IVF) and sperm viability. In vitro matured porcine cumulus oocyte complexes were denuded and i) incubated for 1 h in TALP medium supplemented or not with each exogenous oviductal protein and in presence or absence of heparin to assess ZP digestion time by pronase; and ii) inseminated with fresh ejaculated boar spermatozoa in medium supplemented or not with each exogenous oviductal protein to assess their effect on fertilization results. Finally, spermatozoa were incubated in Tyrode's medium (0, 1 and 20 h) supplemented or not with HSP-701A, HSP-90α or ezrin, to assess simultaneously sperm viability and acrosome status by means of flow cytometry. Although all proteins increased the ZP digestion time, this increase was lower than 1 min, being ezrin the protein with a stronger effect. Presence of heparin in the medium reinforced the ZP hardening effect of ezrin and HSP-701A up to one more min, but not HSP-90α nor PDI4. Sperm penetration, but not IVF efficiency, increased when gametes were cocultured in medium containing PDIA4 whereas sperm penetration and polyspermy rates decreased in presence of ezrin and HSP proteins. This reduction was not the result of a detrimental effect of proteins on sperm viability or acrosome reaction. In conclusion, addition of exogenous proteins detected in oviductal secretions to artificial media does not reproduce the effect of adding such secretions nor improve the final efficiency of the porcine IVF system.
Collapse
Affiliation(s)
- Soledad García-Martínez
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
25
|
Makeyeva Y, Nicol C, Ledger WL, Ryugo DK. Immunocytochemical Localization of Olfactory-signaling Molecules in Human and Rat Spermatozoa. J Histochem Cytochem 2020; 68:491-513. [PMID: 32603211 DOI: 10.1369/0022155420939833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expression of olfactory receptors (ORs) in non-olfactory tissues has been widely reported over the last 20 years. Olfactory marker protein (OMP) is highly expressed in mature olfactory sensory neurons (mOSNs) of the olfactory epithelium. It is involved in the olfactory signal transduction pathway, which is mediated by well-conserved components, including ORs, olfactory G protein (Golf), and adenylyl cyclase 3 (AC3). OMP is widely expressed in non-olfactory tissues with an apparent preference for motile cells. We hypothesized that OMP is expressed in compartment-specific locations and co-localize with an OR, Golf, and AC3 in rat epididymal and human-ejaculated spermatozoa. We used immunocytochemistry to examine the expression patterns of OMP and OR6B2 (human OR, served as positive olfactory control) in experimentally induced modes of activation and determine whether there are any observable differences in proteins expression during the post-ejaculatory stages of spermatozoal functional maturation. We found that OMP was expressed in compartment-specific locations in human and rat spermatozoa. OMP was co-expressed with Golf and AC3 in rat spermatozoa and with OR6B2 in all three modes of activation (control, activated, and hyperactivated), and the mode of activation changed the co-expression pattern in acrosomal-reacted human spermatozoa. These observations suggest that OMP expression is a reliable indicator of OR-mediated chemoreception, may be used to identify ectopically expressed ORs, and could participate in second messenger signaling cascades that mediate fertility.
Collapse
Affiliation(s)
- Yuliya Makeyeva
- Garvan Institute of Medical Research, Royal Hospital for Women, Sydney, NSW, Australia.,Westfield Research Laboratories, School of Women's and Children's Health, Royal Hospital for Women, Sydney, NSW, Australia
| | - Christopher Nicol
- UNSW Sydney, Sydney, NSW, Australia, and Andrology Laboratory, NSW Health Pathology, Royal Hospital for Women, Sydney, NSW, Australia
| | - William L Ledger
- Fertility & Research Centre, Royal Hospital for Women, Sydney, NSW, Australia
| | - David K Ryugo
- Garvan Institute of Medical Research, Royal Hospital for Women, Sydney, NSW, Australia.,School of Medical Sciences, UNSW, Royal Hospital for Women, Sydney, NSW, Australia.,Department of Otolaryngology, Head, Neck & Skull Base Surgery, St. Vincent's Hospital, Royal Hospital for Women, Sydney, NSW, Australia
| |
Collapse
|
26
|
Leahy T, Rickard JP, Pini T, Gadella BM, Graaf SP. Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sperm Membrane. Proteomics 2020; 20:e1900289. [DOI: 10.1002/pmic.201900289] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Tamara Leahy
- School of Life and Environmental SciencesFaculty of ScienceUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Jessica P. Rickard
- School of Life and Environmental SciencesFaculty of ScienceUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Taylor Pini
- Colorado Center for Reproductive Medicine Lone Tree Colorado 80124 USA
| | - Bart M. Gadella
- Department of Farm Animal Health and Department of Biochemistry and Cell BiologyFaculty of Veterinary MedicineUtrecht University Yalelaan 2, CM Utrecht 3584 The Netherlands
| | - Simon P. Graaf
- School of Life and Environmental SciencesFaculty of ScienceUniversity of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
27
|
Leahy T, Rickard JP, Bernecic NC, Druart X, de Graaf SP. Ram seminal plasma and its functional proteomic assessment. Reproduction 2020; 157:R243-R256. [PMID: 30844754 DOI: 10.1530/rep-18-0627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
Ejaculation results in the confluence of epididymal spermatozoa with secretions of the accessory sex glands. This interaction is not a prerequisite for fertilisation success, but seminal factors do play a crucial role in prolonging the survival of spermatozoa both in vitro and in vivo by affording protection from handling induced stress and some selective mechanisms of the female reproductive tract. Reproductive biologists have long sought to identify specific factors in seminal plasma that influence sperm function and fertility in these contexts. Many seminal plasma proteins have been identified as diagnostic predictors of sperm function and have been isolated and applied in vitro to prevent sperm damage associated with the application of artificial reproductive technologies. Proteomic assessment of the spermatozoon, and its surroundings, has provided considerable advances towards these goals and allowed for greater understanding of their physiological function. In this review, the importance of seminal plasma will be examined through a proteomic lens to provide comprehensive analysis of the ram seminal proteome and detail the use of proteomic studies that correlate seminal plasma proteins with ram sperm function and preservation ability.
Collapse
Affiliation(s)
- T Leahy
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - N C Bernecic
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - X Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| |
Collapse
|
28
|
Wang W, Liang K, Chang Y, Ran M, Zhang Y, Ali MA, Dai D, Qazi IH, Zhang M, Zhou G, Yang J, Angel C, Zeng C. miR-26a is Involved in Glycometabolism and Affects Boar Sperm Viability by Targeting PDHX. Cells 2020; 9:E146. [PMID: 31936222 PMCID: PMC7016825 DOI: 10.3390/cells9010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
miR-26a is associated with sperm metabolism and can affect sperm motility and apoptosis. However, how miR-26a affects sperm motility remains largely unknown. Our previous study indicated that the PDHX gene is predicted to be a potential target of miR-26a, which is responsible for pyruvate oxidative decarboxylation which is considered as a key step for connecting glycolysis with oxidative phosphorylation. In this study, we first reported a potential relationship between miR-26a and PDHX and their expressions in fresh, frozen-thawed, and epididymal boar sperm. Then, sperm viability and survival were determined after transfection of miR-26a. mRNA and protein expression level of PDHX in the liquid-preserved boar sperm after transfection were also determined by RT-qPCR and Western Blot (WB). Our results showed that expression level of PDHX was significantly increased during sperm transit from epididymal caput to corpus and cauda. Similarly, expression of PDHX was significantly higher (P < 0.05) in fresh sperm as compared to epididymal cauda and frozen-thawed sperm. However, the expression of miR-26a in epididymal corpus sperm was significantly higher (P < 0.05) than that of caput and cauda sperm. Furthermore, after transfection of boar sperm with miR-26a mimic and inhibitor under liquid storage, the lowest and highest sperm viability was observed in miR-26a mimic and inhibitor treatment (P < 0.05), respectively. The protein levels of PDHX, after 24 and 48 h of transfection of miR-26a mimics and inhibitor, were notably decreased and increased (P < 0.05), respectively, as compared to negative control (NC) group. In conclusion, the novel and enticing findings of our study provide a reasonable evidence that miR-26a via PDHX, a link between glycolysis and oxidative phosphorylation, could regulate the glycometabolic pathway which eventually affect boar sperm viability and survival.
Collapse
Affiliation(s)
- Wencan Wang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Kai Liang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Yu Chang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Mingxia Ran
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Yan Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Malik Ahsan Ali
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore 54000, Pakistan
| | - Dinghui Dai
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Guangbin Zhou
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Jiandong Yang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| | - Christiana Angel
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Changjun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (K.L.); (Y.C.); (M.R.); (Y.Z.); (M.A.A.); (D.D.); (I.H.Q.); (M.Z.); (G.Z.); (J.Y.)
| |
Collapse
|
29
|
Sharma U. Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information. Front Cell Dev Biol 2019; 7:215. [PMID: 31681757 PMCID: PMC6803970 DOI: 10.3389/fcell.2019.00215] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
The most fundamental process for the perpetuation of a species is the transfer of information from parent to offspring. Although genomic DNA contributes to the majority of the inheritance, it is now clear that epigenetic information −information beyond the underlying DNA sequence − is also passed on to future generations. However, the mechanism and extent of such inheritance are not well-understood. Here, I review some of the concepts, evidence, and mechanisms of intergenerational epigenetic inheritance via sperm small RNAs. Recent studies provide evidence that mature sperm are highly abundant in small non-coding RNAs. These RNAs are modulated by paternal environmental conditions and potentially delivered to the zygote at fertilization, where they can regulate early embryonic development. Intriguingly, sperm small RNA payload undergoes dramatic changes during testicular and post-testicular maturation, making the mature sperm epigenome highly unique and distinct from testicular germ cells. I explore the mechanism of sperm small RNA remodeling during post-testicular maturation in the epididymis, and the potential role of this reprograming in intergenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
30
|
Stapane L, Le Roy N, Hincke MT, Gautron J. The glycoproteins EDIL3 and MFGE8 regulate vesicle-mediated eggshell calcification in a new model for avian biomineralization. J Biol Chem 2019; 294:14526-14545. [PMID: 31358619 DOI: 10.1074/jbc.ra119.009799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Indexed: 11/06/2022] Open
Abstract
The avian eggshell is a critical physical barrier, which permits extra-uterine development of the embryo. Its formation involves the fastest known biomineralization process in vertebrates. The eggshell consists of proteins and proteoglycans that interact with the mineral phase to impart its specific microstructure and mechanical properties. In this study, we investigated the role of epidermal growth factor (EGF)-like repeats and discoidin-like domains 3 (EDIL3) and milk fat globule-EGF factor 8 (MFGE8), two glycoproteins that are consistently detected in eggshell proteomes. We verified their common evolutionary history and identified the timing of the duplication event giving rise to these two distinct proteins. Edil3/mfge8 chromosomal locations revealed a nested syntenous relationship with other genes (hapln1/hapln3 and vcan/acan) that are also involved in vertebrate calcification. EDIL3 and MFGE8 proteins possess EGF-like and coagulation factor 5/8 (F5/8C) domains, and their 3D structures predicted that they bind calcium and extracellular vesicles. In chicken, we confirmed the presence of EDIL3 and MFGE8 proteins in eggshell, uterine fluid, and uterus. We observed that only edil3 is overexpressed in tissues in which eggshell mineralization takes place and that this overexpression occurs only at the onset of shell calcification. We therefore propose a model in which EDIL3 and, to a lesser extent, MFGE8 proteins guide vesicles containing amorphous calcium carbonate to the mineralization site. This model was supported by the observation that extracellular vesicles accumulate in uterine fluid during eggshell calcification and that they contain high levels of calcium, carbon, and oxygen that correspond to calcium carbonate.
Collapse
Affiliation(s)
| | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Joël Gautron
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
31
|
Trigg NA, Eamens AL, Nixon B. The contribution of epididymosomes to the sperm small RNA profile. Reproduction 2019; 157:R209-R223. [DOI: 10.1530/rep-18-0480] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
It is now well established that mature spermatozoa harbour a rich and diverse profile of small non-protein-coding regulatory RNAs (sRNAs). There is also growing appreciation that this sRNA profile displays considerable plasticity, being altered in response to paternal exposure to a variety of environmental stressors. Coupled with evidence that upon delivery to the oocyte at the moment of fertilisation, sperm-borne sRNAs are able to influence both early embryonic development and the subsequent health of the offspring, there is now interest in both the timing and degree of change in the composition of the sRNA cargo of sperm. Models in which such epigenetic changes are linked to the spermatogenic cycle are seemingly incompatible with the lack of overt phenotypic changes in the spermatozoa of affected males. Rather, there is mounting consensus that such changes are imposed on sperm during their transit and storage within the epididymis, a protracted developmental window that takes place over several weeks. Notably, since spermatozoa are rendered transcriptionally and translationally silent during their development in the testes, it is most likely that the epididymis-documented alterations to the sperm sRNA profile are driven extrinsically, with a leading candidate being epididymosomes: small membrane enclosed extracellular vesicles that encapsulate a complex macromolecular cargo of proteins and RNAs, including the sRNAs. Here, we review the role of epididymosome–sperm communication in contributing to the establishment of the sperm sRNA profile during their epididymal transit.
Collapse
|
32
|
Tani Y, Kaneta T. Enhancement of optical force acting on vesicles via the binding of gold nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190293. [PMID: 31218066 PMCID: PMC6549964 DOI: 10.1098/rsos.190293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Here we found that gold nanoparticles (AuNPs) enhance the optical force acting on vesicles prepared from phospholipids via hydrophobic and electrostatic interactions. A laser beam was introduced into a cuvette filled with a suspension of vesicles and it accelerated them in its propagation direction via a scattering force. The addition of the AuNPs exponentially increased the velocity of the vesicles as their concentration increased, but polystyrene particles had no significant impact on velocity in the presence of AuNPs. To elucidate the mechanism of the increased velocity, the surface charges in the vesicles and the AuNPs were controlled; the surface charges of the vesicles were varied via the use of anionic, cationic and neutral phospholipids, whereas AuNPs with positive and negative charges were synthesized by coating with citrate ion and 4-dimethylaminopyridine, respectively. All vesicles increased the velocity at different degrees depending on the surface charge. The vesicles were accelerated more efficiently when their charges were opposite those of the AuNPs. These results suggested that hydrophobic and electrostatic interactions between the vesicles and the AuNPs enhanced the optical force. By accounting for the binding constant between the vesicles and the AuNPs, we proposed a model for the relationship between the concentration of the AuNPs and the velocity of the vesicles. Consequently, the increased velocity of the vesicles was attributed to the light scattering that was enhanced when AuNPs were adsorbed onto the vesicles.
Collapse
Affiliation(s)
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, McCluskey A, McLaughlin EA, Dun MD, Nixon B. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol 2019; 17:35. [PMID: 30999907 PMCID: PMC6474069 DOI: 10.1186/s12915-019-0653-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The mammalian epididymis is responsible for the provision of a highly specialized environment in which spermatozoa acquire functional maturity and are subsequently stored in preparation for ejaculation. Making important contributions to both processes are epididymosomes, small extracellular vesicles released from the epididymal soma via an apocrine secretory pathway. While considerable effort has been focused on defining the cargo transferred between epididymosomes and spermatozoa, comparatively less is known about the mechanistic basis of these interactions. To investigate this phenomenon, we have utilized an in vitro co-culture system to track the transfer of biotinylated protein cargo between mouse epididymosomes and recipient spermatozoa isolated from the caput epididymis; an epididymal segment that is of critical importance for promoting sperm maturation. RESULTS Our data indicate that epididymosome-sperm interactions are initiated via tethering of the epididymosome to receptors restricted to the post-acrosomal domain of the sperm head. Thereafter, epididymosomes mediate the transfer of protein cargo to spermatozoa via a process that is dependent on dynamin, a family of mechanoenzymes that direct intercellular vesicle trafficking. Notably, upon co-culture of sperm with epididymosomes, dynamin 1 undergoes a pronounced relocation between the peri- and post-acrosomal domains of the sperm head. This repositioning of dynamin 1 is potentially mediated via its association with membrane rafts and ideally locates the enzyme to facilitate the uptake of epididymosome-borne proteins. Accordingly, disruption of membrane raft integrity or pharmacological inhibition of dynamin both potently suppress the transfer of biotinylated epididymosome proteins to spermatozoa. CONCLUSION Together, these data provide new mechanistic insight into epididymosome-sperm interactions with potential implications extending to the manipulation of sperm maturation for the purpose of fertility regulation.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Priority Research Centre for Chemical Biology, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand.,Faculty of Science and Technology, University of Canberra, Bruce, ACT, 2617, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
34
|
Nixon B, De Iuliis GN, Hart HM, Zhou W, Mathe A, Bernstein IR, Anderson AL, Stanger SJ, Skerrett-Byrne DA, Jamaluddin MFB, Almazi JG, Bromfield EG, Larsen MR, Dun MD. Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation. Mol Cell Proteomics 2019; 18:S91-S108. [PMID: 30213844 PMCID: PMC6427233 DOI: 10.1074/mcp.ra118.000946] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/28/2018] [Indexed: 01/31/2023] Open
Abstract
The functional maturation of spermatozoa that is necessary to achieve fertilization occurs as these cells transit through the epididymis, a highly specialized region of the male reproductive tract. A defining feature of this maturation process is that it occurs in the complete absence of nuclear gene transcription or de novo, protein translation in the spermatozoa. Rather, it is driven by sequential interactions between spermatozoa and the complex external milieu in which they are bathed within lumen of the epididymal tubule. A feature of this dynamic microenvironment are epididymosomes, small membrane encapsulated vesicles that are secreted from the epididymal soma. Herein, we report comparative proteomic profiling of epididymosomes isolated from different segments of the mouse epididymis using multiplexed tandem mass tag (TMT) based quantification coupled with high resolution LC-MS/MS. A total of 1640 epididymosome proteins were identified and quantified via this proteomic method. Notably, this analysis revealed pronounced segment-to-segment variation in the encapsulated epididymosome proteome. Thus, 146 proteins were identified as being differentially accumulated between caput and corpus epididymosomes, and a further 344 were differentially accumulated between corpus and cauda epididymosomes (i.e., fold change of ≤ -1.5 or ≥ 1.5; p, < 0.05). Application of gene ontology annotation revealed a substantial portion of the epididymosome proteins mapped to the cellular component of extracellular exosome and to the biological processes of transport, oxidation-reduction, and metabolism. Additional annotation of the subset of epididymosome proteins that have not previously been identified in exosomes revealed enrichment of categories associated with the acquisition of sperm function (e.g., fertilization and binding to the zona pellucida). In tandem with our demonstration that epididymosomes are able to convey protein cargo to the head of maturing spermatozoa, these data emphasize the fundamental importance of epididymosomes as key elements of the epididymal microenvironment responsible for coordinating post-testicular sperm maturation.
Collapse
Affiliation(s)
- Brett Nixon
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Geoffry N De Iuliis
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Hanah M Hart
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Wei Zhou
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Andrea Mathe
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia;; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ilana R Bernstein
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Amanda L Anderson
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Simone J Stanger
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - David A Skerrett-Byrne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia
| | - Juhura G Almazi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia
| | - Elizabeth G Bromfield
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
35
|
Jia M, Yan X, Jiang X, Wu Y, Xu J, Meng Y, Yang Y, Shan X, Zhang X, Mao S, Gu W, Pavlidis S, Barnes PJ, Adcock IM, Huang M, Yao X. Ezrin, a Membrane Cytoskeleton Cross-Linker Protein, as a Marker of Epithelial Damage in Asthma. Am J Respir Crit Care Med 2019; 199:496-507. [PMID: 30290132 PMCID: PMC6376623 DOI: 10.1164/rccm.201802-0373oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Bronchial epithelial cell damage occurs in patients with bronchial asthma. Ezrin, a membrane-cytoskeleton protein, maintains cellular morphology and intercellular adhesion and protects the barrier function of epithelial cells. OBJECTIVES To study the role of ezrin in bronchial epithelial cells injury and correlate its expression with asthma severity. METHODS Levels of ezrin were measured in exhaled breath condensate (EBC) and serum in patients with asthma and BAL fluid (BALF) from a mouse model of asthma by ELISA. The regulation of IL-13 on ezrin protein levels was studied in primary bronchial epithelial cells. Ezrin knockdown using shRNA was studied in human bronchial epithelial 16HBE cells. MEASUREMENTS AND MAIN RESULTS Ezrin levels were decreased in asthmatic EBC (92.7 ± 34.99 vs. 150.5 ± 10.22 pg/ml, P < 0.0001) and serum (700.7 ± 55.59 vs. 279.2 ± 25.83 pg/ml, P < 0.0001) compared with normal subjects. Levels were much lower in uncontrolled (P < 0.001) and partly controlled patients (P < 0.01) compared with well-controlled subjects. EBC and serum ezrin levels correlated with lung function in patients with asthma and serum ezrin levels were negatively correlated with serum IL-13 and periostin. IL-13-induced downregulation of ezrin expression in primary bronchial epithelial cells was significantly attenuated by the Janus tyrosine kinase 2 inhibitor, TG101348. Ezrin knockdown changed 16HBE cell morphology, enlarged intercellular spaces, and increased their permeability. Ezrin expression was decreased in the lung tissue and BALF of "asthmatic" mice and negatively correlated with BALF IL-13 level. CONCLUSIONS Ezrin downregulation is associated with IL-13-induced epithelial damage and might be a potential biomarker of asthma control.
Collapse
Affiliation(s)
- Man Jia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyi Yan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, Nanjing Jiangning Hospital, Nanjing, China
| | - Xinyu Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayan Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqi Meng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Shan
- Department of Respiratory Medicine, Nanjing Jiangning Hospital, Nanjing, China
| | - Xiuwedi Zhang
- Department of Respiratory Medicine, Nanjing Jiangning Hospital, Nanjing, China
| | - Shan Mao
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, China
| | - Stelios Pavlidis
- Data Science Institute, Imperial College London, London, United Kingdom; and
| | - Peter J. Barnes
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Bezerra MJB, Arruda-Alencar JM, Martins JAM, Viana AGA, Viana Neto AM, Rêgo JPA, Oliveira RV, Lobo M, Moreira ACO, Moreira RA, Moura AA. Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology 2019; 128:156-166. [PMID: 30772659 DOI: 10.1016/j.theriogenology.2019.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
The present study was conducted to describe the major seminal plasma proteome of rabbits and potential associations between seminal proteins and semen criteria. Semen samples were collected from 18 New Zealand adult rabbits, and seminal plasma proteins were analyzed by 2-D SDS-PAGE and tandem mass spectrometry. Sperm motility, vigor, concentration, morphology and membrane sperm viability were evaluated. Rabbits ejaculated 364 ± 70 million sperm/ml, with 81 ± 6.1% motile cells, 3.8 ± 0.2 vigor and 66.7 ± 2.5% sperm with normal morphology. Based on the viability and acrosome integrity assay, there were 65.8 ± 2.5% live sperm with intact acrosome and most spermatozoa had both intact acrosome and functional membrane. On average, 2-D gels of rabbit seminal plasma had 232 ± 69.5 spots, as determined by PDQuest software (Bio Rad, USA). Mass spectrometry allowed the identification of 137 different proteins. The most abundant proteins in rabbit seminal plasma were hemoglobin subunit zeta-like, annexins, lipocalin, FAM115 protein and albumin. The intensity of the spots associated with these five proteins represented 71.5% of the intensity of all spots detected in the master gel. Multiple regression models were estimated using sperm traits as dependent variables and seminal plasma proteins as independent ones. Also, sperm motility had positive association with beta-nerve growth factor and cysteine-rich secretory protein 1-like and a negative one with galectin-1. The percentage of rabbit sperm with intact membrane was related to seminal plasma protein FAM115 complex and tropomyosin. Then, the population of morphologically normal sperm in rabbit semen was positively linked to carcinoembryonic antigen-related cell adhesion molecule 6-like and down regulated by seminal plasma isocitrate dehydrogenase. Based on another regression model, the variation in the percentage of live sperm with intact acrosome was partially explained by the amount of leukocyte elastase inhibitor and the peptidyl-prolyl cis-trans isomerase A in the rabbit seminal fluid. The current study reports the identification of 137 proteins of rabbit seminal plasma. Major proteins of seminal secretion relate primarily to prevention of damages caused by lipid peroxide radicals and oxidative stress, membrane functionality, transport of lipids to the sperm membrane and temperature regulation. Moreover, finding seminal plasma proteins as indicators of semen parameters will improve assisted reproductive technologies.
Collapse
Affiliation(s)
- M J B Bezerra
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J M Arruda-Alencar
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J A M Martins
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A G A Viana
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A M Viana Neto
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J P A Rêgo
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - R V Oliveira
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - M Lobo
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - A C O Moreira
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - R A Moreira
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - A A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
37
|
Dendritic cell extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:213-249. [DOI: 10.1016/bs.ircmb.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Kalishwaralal K, Kwon WY, Park KS. Exosomes for Non-Invasive Cancer Monitoring. Biotechnol J 2018; 14:e1800430. [PMID: 30358137 DOI: 10.1002/biot.201800430] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Exosomes, membrane-bound phospholipid vesicles having diameters of 50-200 nm, are secreted by all cell types and circulate in human body fluids. These vesicles are known to carry cellular constituents that are specific to the originating cells (e.g., cytoplasmic/membrane proteins, RNA, and DNA). Thus, exosomes, which are both structurally stable and abundant, are robust indicators of cancers and, as a result, they have been utilized to monitor this disease in a manner that is less invasive than gold standard tissue biopsies. In this review, the history of exosomes and the specific biomarkers present in exosomes that enable accurate monitoring of various diseases are described. In addition, methods for analysis of exosomes and identification of biomarkers are presented with special emphasis being given to isolation and signaling strategies. Lastly, integrated, microfluidic systems developed for exosome-based cancer diagnosis are described and future directions that research in this area will likely take are presented.
Collapse
Affiliation(s)
- Kalimuthu Kalishwaralal
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
39
|
Cai M, He H, Jia X, Chen S, Wang J, Shi Y, Liu B, Xiao W, Lai S. Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress Chaperones 2018; 23:663-672. [PMID: 29383581 PMCID: PMC6045547 DOI: 10.1007/s12192-018-0876-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bovine milk is rich in exosomes, which contain abundant miRNAs and play important roles in the regulation of neonatal growth and development of adaptive immunity. Here, we analyzed miRNA expression profiles of bovine milk exosomes from three healthy and three mastitic cows, and then six miRNA libraries were constructed. Interestingly, we detected no scRNAs and few snRNAs in milk exosomes; this result indicated a potential preference for RNA packaging in milk exosomes. A total of 492 known and 980 novel exosomal miRNAs were detected, and the 10 most expressed miRNAs in the six samples accounted for 80-90% of total miRNA-associated reads. Expression analyses identified 18 miRNAs with significantly different expression between healthy and infected animals; the predicted target genes of differentially expressed miRNAs were significantly enriched in immune system process, response to stimulus, growth, etc. Moreover, target genes were significantly enriched in several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including inflammatory, immune, and cancer pathways. Our survey provided comprehensive information about milk exosomes and exosomal miRNAs involved in mastitis. Moreover, the differentially expressed miRNAs, especially miR-223 and miR-142-5p, could be considered as potential candidates for mastitis.
Collapse
Affiliation(s)
- Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongbing He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Buwei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wudian Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
40
|
Oliveira GP, Porto WF, Palu CC, Pereira LM, Petriz B, Almeida JA, Viana J, Filho NNA, Franco OL, Pereira RW. Effects of Acute Aerobic Exercise on Rats Serum Extracellular Vesicles Diameter, Concentration and Small RNAs Content. Front Physiol 2018; 9:532. [PMID: 29881354 PMCID: PMC5976735 DOI: 10.3389/fphys.2018.00532] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.
Collapse
Affiliation(s)
- Getúlio P Oliveira
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - William F Porto
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cintia C Palu
- Bioinformatics, NSilico Life Science Ltd., Cork, Ireland.,University College Cork, Cork, Ireland
| | - Lydyane M Pereira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bernardo Petriz
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Centro Universitário UDF, Brasília, Brazil
| | - Jeeser A Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliane Viana
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nezio N A Filho
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil
| | - Rinaldo W Pereira
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
41
|
Ma J, Fan Y, Zhang J, Feng S, Hu Z, Qiu W, Long K, Jin L, Tang Q, Wang X, Zhou Q, Gu Y, Xiao W, Liu L, Li X, Li M. Testosterone-Dependent miR-26a-5p and let-7g-5p Act as Signaling Mediators to Regulate Sperm Apoptosis via Targeting PTEN and PMAIP1. Int J Mol Sci 2018; 19:E1233. [PMID: 29670053 PMCID: PMC5979296 DOI: 10.3390/ijms19041233] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that testosterone deficiency can dramatically decrease the quality of sperm. MicroRNAs (miRNAs) are conserved mediators of post-transcriptional gene regulation in eukaryotes. However, the systemic regulation and function of miRNAs in sperm quality decline induced by testosterone deficiency has not been investigated. Here, we found that the sperm apoptosis was significantly enhanced and the sperm motility was dramatically decreased in hemicastrated pigs. We then used small RNA sequencing to detect miRNA profiles of sperm from pigs with prepubertal hemicastration (HC) and compared them with control libraries. We identified 16 differentially expressed (DE) miRNAs between the sperm of prepubertal HC and control (CT) pigs. Functional enrichment analysis indicated that the target genes of these DE miRNAs were mainly enriched in apoptosis-related pathways including the p53, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. Furthermore, gain- and loss-of-function analyses demonstrated potential anti-apoptotic effects of the DE miRNAs miR-26a-5p and let-7g-5p on sperm cells. The luciferase reporter assay confirmed that PTEN and PMAIP1 are targets of miR-26a-5p and let-7g-5p, respectively. Spearman’s correlation analysis revealed significantly positive correlations between the sperm and its corresponding seminal plasma exosomes regarding the miRNA expression levels. In conclusion, testosterone deficiency-induced changes in the miRNA components of seminal plasma exosomes secreted by the genital tract may partially elucidate sperm miRNAome alterations, which are further responsible for the decline of sperm motility.
Collapse
Affiliation(s)
- Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yu Fan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jinwei Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Siyuan Feng
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zihui Hu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wanling Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xun Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qi Zhou
- Chengdu Polytechnic, Chengdu 610041, China.
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Pig Science Institute, Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Weihang Xiao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lingyan Liu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
A preliminary origin-tracking study of different densities urinary exosomes. Electrophoresis 2018; 39:2316-2320. [DOI: 10.1002/elps.201700388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/23/2018] [Accepted: 03/03/2018] [Indexed: 12/31/2022]
|
43
|
Kuboi M, Takeyasu N, Kaneta T. Enhanced Optical Collection of Micro- and Nanovesicles in the Presence of Gold Nanoparticles. ACS OMEGA 2018; 3:2527-2531. [PMID: 30023838 PMCID: PMC6044840 DOI: 10.1021/acsomega.8b00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 05/29/2023]
Abstract
We describe a process for collecting micro- and nanovesicles on a glass substrate using the optical pressure of a laser beam. The laser beam was focused on a glass substrate that sandwiched a solution containing vesicles prepared using a phospholipid. The optical pressure generated at the surface of the vesicles pulled them into the center of the beam where they formed an aggregate on the glass surface. The vesicles prepared with a buffer solution were successfully collected via adsorption onto the glass surface, whereas the vesicles prepared with pure water exhibited no such tendency. The time required to collect a certain amount of vesicles was inversely proportional to their concentration. To enhance the collection efficiency, we added gold nanoparticles to the vesicle solution. The addition of gold nanoparticles into the solution reduced the collection time to one-tenth of that without it, and this was attributed to thermal mixing promoted by the heat generated by the absorption from the gold nanoparticles in the solution, as well as to an enhancement of light scattering induced by the gold nanoparticles. The optical collection of vesicles coupled with gold nanoparticles shows a promise for the collection of trace amounts of extracellular vesicles in biological fluids.
Collapse
Affiliation(s)
| | | | - Takashi Kaneta
- E-mail: . Phone: +81-86-251-7847. Fax: +81-86-251-7847 (T.K.)
| |
Collapse
|
44
|
Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 2018; 7:58832-58847. [PMID: 27542209 PMCID: PMC5312279 DOI: 10.18632/oncotarget.11315] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022] Open
Abstract
Seminal plasma ingredients are important for maintenance of sperm viability. This study focuses on the effect of boar seminal plasma exosomes on sperm function during long-term liquid storage. Boar seminal plasma exosomes had typical nano-structure morphology as measured by scanning electron microscopy (SEM) and molecular markers such as AWN, CD9 and CD63 by western blot analysis. The effect on sperm parameters of adding different ratio of boar seminal plasma exosomes to boar sperm preparations was analyzed. Compared to the diluent without exosomes, the diluent with four times or sixteen times exosomes compared to original semen had higher sperm motility, prolonged effective survival time, improved sperm plasma membrane integrity (p < 0.05), increased total antioxidant capacity (T-AOC) activity and decreased malondialdehyde (MDA) content. The diluent containing four times concentration of exosomes compared to original semen was determined to inhibit premature capacitation, but not to influence capacitation induced in vitro. Inhibition of premature capacitation is likely related to the concentration of exosomes which had been demonstrated to transfer proteins including AWN and PSP-1 into sperm. In addition, using fluorescence microscopy and scanning electron microscopy analysis, it was demonstrated that exosomes in diluent were directly binding to the membrane of sperm head which could improve sperm plasma membrane integrity.
Collapse
|
45
|
Zhou W, De Iuliis GN, Dun MD, Nixon B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front Endocrinol (Lausanne) 2018; 9:59. [PMID: 29541061 PMCID: PMC5835514 DOI: 10.3389/fendo.2018.00059] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The testicular spermatozoa of all mammalian species are considered functionally immature owing to their inability to swim in a progressive manner and engage in productive interactions with the cumulus-oocyte complex. The ability to express these key functional attributes develops progressively during the cells' descent through the epididymis, a highly specialized ductal system that forms an integral part of the male reproductive tract. The functional maturation of the spermatozoon is achieved via continuous interactions with the epididymal luminal microenvironment and remarkably, occurs in the complete absence of de novo gene transcription or protein translation. Compositional analysis of the luminal fluids collected from the epididymis of a variety of species has revealed the complexity of this milieu, with a diversity of inorganic ions, proteins, and small non-coding RNA transcripts having been identified to date. Notably, both the quantitative and qualitative profile of each of these different luminal elements display substantial segment-to-segment variation, which in turn contribute to the regionalized functionality of this long tubule. Thus, spermatozoa acquire functional maturity in the proximal segments before being stored in a quiescent state in the distal segment in preparation for ejaculation. Such marked division of labor is achieved via the combined secretory and absorptive activity of the epithelial cells lining each segment. Here, we review our current understanding of the molecular mechanisms that exert influence over the unique intraluminal environment of the epididymis, with a particular focus on vesicle-dependent mechanisms that facilitate intercellular communication between the epididymal soma and maturing sperm cell population.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Brett Nixon,
| |
Collapse
|
46
|
Jin J, Menon R. Placental exosomes: A proxy to understand pregnancy complications. Am J Reprod Immunol 2017; 79:e12788. [PMID: 29193463 DOI: 10.1111/aji.12788] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes (30- to 150-nm particles), originating from multivesicular bodies by the invagination of the endosomal membrane, are communication channels between cells. Exosomes are released by various cell types and cargo proteins, lipids, and nucleic acids reflecting the physiologic status of their cells of origin and cause functional changes in recipient cells, which are likely dependent on their quantity and/or cargo contents. Recently, placental exosomes, produced by various placental cell types, have been isolated from maternal blood using the placental protein-specific marker, placental alkaline phosphatase (PLAP). PLAP-positive exosomes are seen in maternal blood as early as the first trimester of pregnancy and increase as gestation progresses, with maximum numbers seen at term. Although the functional relevance of placental exosomes is still under investigation, several studies have linked placental exosomes changes (quantity and cargo) reflecting placental dysfunctions associated with adverse pregnancy events. As placental exosomes can be isolated from maternal blood, they are liquid biopsies reflecting placental functions. Hence, they are useful as biomarkers of placental functions and dysfunctions obtainable through non-invasive approaches. This review summarizes the biogenesis, release, and functions of exosomes and specifically expounds the role of placental-specific exosomes and their significance associated with pregnancy complications.
Collapse
Affiliation(s)
- Jin Jin
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Gynaecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
47
|
Bai R, Latifi Z, Kusama K, Nakamura K, Shimada M, Imakawa K. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium. Biochem Biophys Res Commun 2017; 495:1094-1101. [PMID: 29155178 DOI: 10.1016/j.bbrc.2017.11.100] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
Seminal plasma (SP) is considered as a vehicle to carry sperm into female reproductive tract, of which functions have not been completely understood. This study aimed to identify the function of seminal exosomes on porcine endometrium. Exosomes were isolated from the sperm-rich fraction of boar semen and were confirmed by the expression of exosome marker HSP70 and size distribution using nano-sight tracking analysis. Porcine endometrial epithelial cells (EECs) were then treated with seminal exosomes, and RNA extracted were subjected to global expression analysis. Transcripts related to "immune response", "inflammatory response" and their associated signaling pathways were up-regulated in EECs treated with seminal exosome, whereas those associated with "steroid biosynthesis", "metabolic pathways" and "T cell differentiation" were down-regulated. The decrease in PMVK, SC5D, INSIG1, HSD17B7, NSDHL, HMGCR, SQLE and FDFT1, and increase in CCL20, TNFSF15, AMCFII, CXCL2 and CXCL8 were also found in the endometrium from the naturally mated pigs. Moreover, changes in exosome-induced CYP24A1, EBP, CCL20, AMCFII and IL1A expression were not regulated by the exosome removed SP. These observations indicated that exosomes present in SP are involved in the immune-related gene regulation in the uterus, which could pave the passage for sperm and possibly fertilized eggs.
Collapse
Affiliation(s)
- Rulan Bai
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Zeinab Latifi
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Kazuya Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Keigo Nakamura
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan
| | - Masayuki Shimada
- Department of Applied Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Science, The University of Tokyo, Kasama, Ibaraki 319-2606, Japan.
| |
Collapse
|
48
|
Shimoda M, Khokha R. Metalloproteinases in extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1989-2000. [DOI: 10.1016/j.bbamcr.2017.05.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
|
49
|
MicroRNA Signaling in Embryo Development. BIOLOGY 2017; 6:biology6030034. [PMID: 28906477 PMCID: PMC5617922 DOI: 10.3390/biology6030034] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/03/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Abstract
Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation.
Collapse
|
50
|
Ooishi T, Nadano D, Matsuda T, Oshima K. Extracellular vesicle-mediated MFG-E8 localization in the extracellular matrix is required for its integrin-dependent function in mouse mammary epithelial cells. Genes Cells 2017; 22:885-899. [DOI: 10.1111/gtc.12521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/04/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Takuya Ooishi
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| |
Collapse
|