1
|
Ewendt F, Janjetovic Z, Kim TK, Mobley AA, Brożyna AA, Ravichandran S, Fabisiak A, Brzeminski P, Sicinski RR, Stangl GI, Tuckey RC, Slominski AT. The vitamin D 3 hormone, 1,25(OH) 2D 3, regulates fibroblast growth factor 23 (FGF23) production in human skin cells. Am J Physiol Cell Physiol 2025; 328:C1177-C1192. [PMID: 40055144 DOI: 10.1152/ajpcell.00827.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
The bone hormone fibroblast growth factor 23 (FGF23) regulates renal phosphate reabsorption and the enzymatic production of active vitamin D3 [1,25(OH)2D3]. Therefore, FGF23 production in bone cells is closely regulated by 1,25(OH)2D3 acting via the vitamin D receptor (VDR). Skin cells can produce hydroxyvitamin D3 metabolites from its precursor D3 made through ultraviolet B light exposure. Interestingly, the expression of Fgf23 has been found in rodent skin, but its expression, regulation, and role in human skin are unclear. Therefore, we investigated whether hydroxyvitamin D3 metabolites regulate FGF23 in human skin cells. Primary adult and neonatal epidermal keratinocytes (HEKn), melanocytes (HEMn), dermal fibroblasts (HDFn), as well as human melanoma cells, HaCaT, HaCaT VDR KO, and A431 epidermoid cells, were used to assess FGF23 gene expression (quantitative reverse-transcription real-time PCR), cellular FGF23 protein (Western blot), or secreted FGF23 protein (ELISA) after treatment with hydroxyvitamin D3 metabolites. HaCaT cells treated with recombinant FGF23 were used to explore its function in skin. Human skin cells can synthesize FGF23. Treatment with 1,25(OH)2D3 significantly increased FGF23 mRNA levels in HaCaT and HDFn cells, and moderately in HEKn cells, mediated in part by the VDR. It also moderately enhanced mRNA levels of the FGF23-processing enzyme GALNT3 and stimulated secretion of hormonally active FGF23 from HaCaT cells. Treatment of HaCaT cells with FGF23 increased mRNA levels of the cholesterol- and vitamin D-metabolizing enzymes, CYP11A1 and CYP27A1. In conclusion, human skin cells express and secrete FGF23, which is regulated by 1,25(OH)2D3 acting in part by the VDR. FGF23 affects the expression of cutaneous sterol-metabolizing enzymes.NEW & NOTEWORTHY This study shows for the first time the expression and secretion of the FGF23 hormone by human skin cells. In addition, we identified the active vitamin D3 hormone, 1,25(OH)2D3, to be a potent regulator of dermal FGF23 expression and protein secretion, partly involving the vitamin D receptor. Furthermore, we provide initial evidence demonstrating that FGF23 upregulates the gene expression of CYP11A1 and CYP27A1 in keratinocytes.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alisa A Mobley
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Senthilkumar Ravichandran
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adrian Fabisiak
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- VA Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Klabnik JL, Beever JE, Payton RR, Lamour KH, Schrick FN, Edwards JL. A Step Toward Understanding Direct Impacts of a Higher Estrus-Associated Temperature (HEAT): Transcript Level Changes in Cumulus-Oocyte Complexes Directly Exposed to Acute Elevated Temperature. Animals (Basel) 2025; 15:517. [PMID: 40003000 PMCID: PMC11851612 DOI: 10.3390/ani15040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated body temperature (HEAT) in sexually receptive females is a normal part of the periovulatory microenvironment. The objective was to identify direct (first 6 h) and delayed (4 h or 18 h of recovery) effects at 41 °C exposure during in vitro maturation (IVM) on transcripts involved in steroidogenesis, oocyte maturation, or previously impacted by elevated temperature using targeted RNA-sequencing. Most transcripts (72.3%) were impacted in the first 2 to 4 hIVM. Twelve of the fifteen transcripts first impacted at 4 hIVM had a higher abundance and three had a lower abundance. Direct exposure to 41 °C impacted the transcripts related to progesterone production and signaling, germinal vesicle breakdown, oocyte meiotic progression, transcriptional activity and/or alternative splicing, cell cycle, cumulus expansion, and/or ovulation. Three transcripts demonstrated a delayed impact; changes were not seen until the COCs recovered for 4 h. The use of multidimensional scaling plots to 'visualize' samples highlights that oocytes exposed to an acute elevation in temperature are more advanced at the molecular level during the initial stages of maturation. Described efforts represent important steps towards providing a novel insight into the dynamic physiology of the COC in the estrual female bovid, during HEAT and after body temperature returns to baseline.
Collapse
Affiliation(s)
- Jessica L. Klabnik
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - Jonathan E. Beever
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
- Department of Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Rebecca R. Payton
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA;
| | - F. Neal Schrick
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - J. Lannett Edwards
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| |
Collapse
|
3
|
Luo H, Chen J, Li C, Wu T, Yin S, Yang G, Wang Y, Guo Z, Hu S, He Y, Wang Y, Chen Y, Su Y, Miao C, Qian Y, Feng R. Pathogenic variants of TUBB8 cause oocyte spindle defects by disrupting with EB1/CAKP5 interactions and potential treatment targeting microtubule acetylation through HDAC6 inhibition. Clin Transl Med 2025; 15:e70193. [PMID: 39834092 PMCID: PMC11746963 DOI: 10.1002/ctm2.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained. METHODS Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis. Live-cell imaging and immunofluorescence were utilised to track the dynamic expression of microtubule plus end-tracking proteins in vivo and analysed microtubule nucleation or spindle assembly in vitro, respectively. Immunoprecipitation-mass spectrometry and ultramicro-quantitative proteomics were performed to identify the differential abundance proteins and affected interactome of TUBB8 protein. RESULTS First, we observed a significant depletion of the EB1 signal upon microinjection of mutated TUBB8 mRNA (including R262Q, M300I, and D417N missense variants), indicating disruption of microtubule nucleation caused by these introduced TUBB8 missense variants. Mechanically, we demonstrated that the in vivo TUBB8-D417N missense variant diminished the affinity of EB1 and microtubules. It also harmed the interaction between microtubules and CKAP5/TACC3, which are crucial for initiating microtubule nucleation. Attenuated Ran-GTP pathway was also found in TUBB8-D417N oocytes, leading to disrupted spindle assembly. Stable microtubule was largely abolished on the spindle of TUBB8-D417N oocytes, reflected by reduced tubulin acetylation and accumulated HDAC6. More importantly, selective inhibition of HDAC6 by culturing TUBB8-D417N oocytes with Tubacin or Tubastatin A showed morphologically normal spindle and drastically recovered polar-body extrusion rate. These rescue results shed light on the strategy to treat meiotic defects in a certain group of TUBB8 mutated patients. CONCLUSION Our study provides a comprehensive mechanism elucidating how TUBB8 missense variants cause oocyte maturation arrest and offers new therapeutic avenues for treating female infertility in the clinic.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Jianhua Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Cao Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Tian Wu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Siyue Yin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Guangping Yang
- Yangzhou Maternal and Child Health Care Hospital Affiliated to Yangzhou UniversityYangzhouChina
| | - Yipin Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Zhihan Guo
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Saifei Hu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yanni He
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yingnan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yao Chen
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoChina
| | - Congxiu Miao
- Department of Reproductive GeneticsHeping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health CommitteeChangzhiChina
| | - Yun Qian
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Reproductive GeneticsHeping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health CommitteeChangzhiChina
- Innovation Center of Suzhou Nanjing Medical UniversityNanjing Medical UniversitySuzhouChina
| |
Collapse
|
4
|
Mantri M, Zhang HH, Spanos E, Ren YA, De Vlaminck I. A spatiotemporal molecular atlas of the ovulating mouse ovary. Proc Natl Acad Sci U S A 2024; 121:e2317418121. [PMID: 38252830 PMCID: PMC10835069 DOI: 10.1073/pnas.2317418121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell type- and ovulation stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14850
| | | | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14850
| | - Yi A. Ren
- Department of Animal Science, Cornell University, Ithaca, NY14850
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14850
| |
Collapse
|
5
|
Mantri M, Zhang HH, Spanos E, Ren YA, Vlaminck ID. A Spatiotemporal Molecular Atlas of the Ovulating Mouse Ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554210. [PMID: 37662215 PMCID: PMC10473623 DOI: 10.1101/2023.08.21.554210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell-type- and ovulation-stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified new molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Yi A Ren
- Department of Animal Science, Cornell University, Ithaca, New York
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
6
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
7
|
Sun P, Wang H, Liu L, Guo K, Li X, Cao Y, Ko C, Lan ZJ, Lei Z. Aberrant activation of KRAS in mouse theca-interstitial cells results in female infertility. Front Physiol 2022; 13:991719. [PMID: 36060690 PMCID: PMC9437434 DOI: 10.3389/fphys.2022.991719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active KrasG12D in these cells. KrasG12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. KrasG12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.
Collapse
Affiliation(s)
- Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Chemyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zi-Jian Lan
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| |
Collapse
|
8
|
Molecular characterization of TRIB1 gene and its role in regulation of steroidogenesis in bos grunniens granulosa cells. Theriogenology 2022; 191:1-9. [DOI: 10.1016/j.theriogenology.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
|
9
|
P450 Side-Chain Cleavage Enzyme (P450-SCC) Is an Ovarian Autoantigen in a Mouse Model for Autoimmune Oophoritis. Reprod Sci 2022; 29:2391-2400. [PMID: 35585293 DOI: 10.1007/s43032-022-00970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Steroid-producing cells contain key cytochrome P450 enzymes, such as side-chain cleavage (P450-SCC) and 17α-hydroxylase (17α-OH). They are required for steroid hormone synthesis and considered antigens associated with Addison's disease and autoimmune primary ovarian insufficiency (POI). We studied an animal model for human autoimmune POI in mice with autoimmune oophoritis induced by neonatal thymectomy performed at day 3 (TX3). We previously identified an oocyte-specific protein as a major antigen inciting autoimmune oophoritis in mice. In this study, we characterized ovarian steroid-producing cell antigens. Using indirect immunofluorescence staining, we tested immune reactions in mouse ovarian and adrenal tissue sections with sera from TX3 female mice. More than half of the TX3 mice (8 of 15) produced antibodies reacting with both ovarian and adrenal steroid-producing cells, including some that reacted to oocytes as well. We produced recombinant proteins for the three key steroidogenic enzymes 17α-OH, P450-SSC, and 3β-hydroxysteroid dehydrogenase (3β-HSD) and tested their immune reactions with individual mouse sera. By immunoblotting, all mouse sera that reacted with the steroid-producing cells (n = 8) were shown to react with the P450-SCC, but not with the 17α-OH or 3β-HSD recombinant proteins. The sham-operated mouse sera and TX3 mouse sera negative for steroid-producing cells did not react with the P450-SCC recombinant protein. Our findings indicate that the P450-SCC is a specific and unique major antigen within the ovarian steroid-producing cells. Given their similarity of predicted antigenicity, we assume that P450-SCC acts in human autoimmune POI as it does in mouse autoimmune oophoritis.
Collapse
|
10
|
Gonadal function in Noonan syndrome. ANNALES D'ENDOCRINOLOGIE 2022; 83:203-206. [PMID: 35489412 DOI: 10.1016/j.ando.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Noonan syndrome (NS) is a relatively common developmental disorder characterised by the association of craniofacial abnormalities, congenital heart defects, short stature and skeletal abnormalities, variable developmental delay/learning disability, and predisposition to certain cancers. NS is caused by germline mutations in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway. Although abnormalities in the hypothalamic-pituitary-gonadal axis have long been reported in NS patients, there is only scarce published data on this subject. Puberty is usually delayed of about two years for both boys and girls with NS. However, in the majority of patients, it starts spontaneously suggesting a normal hypothalamic-pituitary input. The lower fat mass usually observed in NS patients may influence the timing of puberty. Although there is almost no reliable data on this issue, it is usually considered that fertility is not affected in NS females. In contrast, primary testicular insufficiency, predominant on Sertoli cell function, is reported in NS males. However, the exact frequency of infertility in adult males is unknown. More generally, although the features of NS are well described during childhood, little is known about the progression of the disease in adulthood. Prospective long-term follow-up studies are required to further investigate gonadal function and fertility in NS adults and to clarify the long-term follow-up of these patients.
Collapse
|
11
|
Yan W, Li M, Guo Q, Li X, Zhou S, Dai J, Zhang J, Wu M, Tang W, Wen J, Xue L, Jin Y, Luo A, Wang S. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113432. [PMID: 35325608 DOI: 10.1016/j.ecoenv.2022.113432] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Parabens, a type of endocrine-disrupting chemicals, are widely used as antibacterial preservatives in food and cosmetics in daily life. Paraben exposure has gained particular attention in the past decades, owing to its harmful effects on reproductive function. Whether low-dose paraben exposure may cause ovarian damage has been ignored recently. Here, we investigated the effects of chronic low-dose propylparaben (PrPB) exposure on ovarian function. Female C57BL/6J mice were exposed to PrPB at a humanly relevant dose for 8 months. Our results showed that chronic exposure to PrPB at a humanly relevant dose significantly altered the estrus cycle, hormone levels, and ovarian reserve, accelerating ovarian aging in adult mice. These effects are accompanied by oxidative stress enrichment, leading to steroidogenesis dysfunction and acceleration of primordial follicle recruitment. Notably, melatonin supplementation has been shown to protect against PrPB-induced steroidogenesis dysfunction in granulosa cells. Here, we report that daily chronic PrPB exposure may contribute to ovarian aging by altering oxidative stress-mediated JNK and PI3K-AKT signaling regulation, and that melatonin may serve as a pharmaceutical candidate for PrPB-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Qingchun Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xiangyi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| |
Collapse
|
12
|
Cytosine-phosphate-guanine oligodeoxynucleotides regulate the cell cycle, apoptosis, and steroidogenesis of mouse ovarian granulosa cells by targeting inhibin alpha (1 ~ 32) fragments. In Vitro Cell Dev Biol Anim 2022; 58:243-254. [PMID: 35378691 DOI: 10.1007/s11626-022-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022]
Abstract
Cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs), which exist in vertebrate, bacterial, and viral genomes, are regarded as strong immune adjuvants. To date, the biological activities of CpG-ODNs in reproduction remain unknown. Here, we investigated the effects of CpG-ODNs on the cell cycle, apoptosis, and steroidogenesis in mouse granulosa cells (mGCs), in combination with inhibin alpha (1 ~ 32) fragments. mGCs were transfected with pEGFP (containing green fluorescent protein, as a control), pEGISI (containing inhibin alpha (1 ~ 32) fragments), or pEGISI-CpG-ODNs (containing inhibin alpha (1 ~ 32) fragments and CpG-ODNs motifs) plasmid for 48 h in vitro. Our results showed that the mRNA and protein expression levels of inhibin alpha were downregulated in mGCs transfected with pEGISI-CpG-ODNs, compared to those transfected with pEGISI. Flow cytometry demonstrated that pEGISI-CpG-ODNs transfection promoted cell proliferation (for example, increasing the number of cells in S and G2 phases) and decreased apoptosis, compared to pEGISI transfection. The present study also indicated that the expression of cell cycle-related genes (cyclin D2, cyclin D3, cyclin E1, Cdk2, and Cdk6) was increased, while the expression of apoptosis-related factors (Fas, FasL, caspase-8, and caspase-3) decreased after pEGISI-CpG-ODNs treatment. Additionally, pEGISI-CpG-ODNs reversed the effect of pEGISI on the secretion of estradiol in mGCs, which was further validated by upregulating the levels of its synthesis-related factors (StAR, Cyp11a1, and 17β-HSD II). Nevertheless, pEGISI-CpG-ODNs or pEGISI did not affect the concentration of progesterone nor changed the expression levels of its synthesis-related factors (3β-HSD I and Cyp19a1). In conclusion, this study demonstrated that CpG-ODNs may affect the cell cycle, apoptosis, and steroidogenesis by targeting the effects of inhibin alpha (1 ~ 32) fragments, supporting the potential role of CpG-ODNs in the development of granulosa cells.
Collapse
|
13
|
Mauro A, Berardinelli P, Russo V, Bernabò N, Martelli A, Nardinocchi D, Di Giacinto O, Turriani M, Barboni B. Effects of P 4 Antagonist RU486 on VEGF and Its Receptors' Signaling during the In Vivo Transition from the Preovulatory to Periovulatory Phase of Ovarian Follicles. Int J Mol Sci 2021; 22:13520. [PMID: 34948315 PMCID: PMC8706603 DOI: 10.3390/ijms222413520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by the switch on of Progesterone (P4) during the periovulatory phase remains to be clarified. The present research aimed to investigate in vivo VEGF-mediated mechanisms by inducing the development of periovulatory follicles using a pharmacologically validated synchronization treatment carried out in presence or absence of P4 receptor antagonist RU486. Spatio-temporal expression profiles of VEGF, FLT1, and FLK1 receptors and the two major MAPK/ERKs and PI3K/AKT downstream pathways were analyzed on granulosa and on theca compartment. For the first time, the results demonstrated that in vivo administration of P4 antagonist RU486 inhibits follicular VEGF receptors' signaling mainly acting on the theca layer by downregulating the activation of ERKs and AKTs. Under the effect of RU486, periovulatory follicles' microarchitecture did not move towards the periovulatory stage. The present evidence provides new insights on P4 in vivo biological effects in driving vascular and tissue remodeling during the periovulatory phase.
Collapse
Affiliation(s)
- Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, Via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Alessandra Martelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Delia Nardinocchi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Oriana Di Giacinto
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| |
Collapse
|
14
|
Ni S, Zhang T, Zhou C, Long M, Hou X, You L, Li H, Shi L, Su YQ. Coordinated Formation of IMPDH2 Cytoophidium in Mouse Oocytes and Granulosa Cells. Front Cell Dev Biol 2021; 9:690536. [PMID: 34124077 PMCID: PMC8194064 DOI: 10.3389/fcell.2021.690536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme catalyzing de novo biosynthesis of guanine nucleotides, aggregates under certain circumstances into a type of non-membranous filamentous macrostructure termed “cytoophidium” or “rod and ring” in several types of cells. However, the biological significance and underlying mechanism of IMPDH assembling into cytoophidium remain elusive. In mouse ovaries, IMPDH is reported to be crucial for the maintenance of oocyte–follicle developmental synchrony by providing GTP substrate for granulosa cell natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system to produce cGMP for sustaining oocyte meiotic arrest. Oocytes and the associated somatic cells in the ovary hence render an exciting model system for exploring the functional significance of formation of IMPDH cytoophidium within the cell. We report here that IMPDH2 cytoophidium forms in vivo in the growing oocytes naturally and in vitro in the cumulus-enclosed oocytes treated with IMPDH inhibitor mycophenolic acid (MPA). Inhibition of IMPDH activity in oocytes and preimplantation embryos compromises oocyte meiotic and developmental competences and the development of embryos beyond the 4-cell stage, respectively. IMPDH cytoopidium also forms in vivo in the granulosa cells of the preovulatory follicles after the surge of luteinizing hormone (LH), which coincides with the resumption of oocyte meiosis and the reduction of IMPDH2 protein expression. In cultured COCs, MPA-treatment causes the simultaneous formation of IMPDH cytoopidium in cumulus cells and the resumption of meiosis in oocytes, which is mediated by the MTOR pathway and is prevented by guanosine supplementation. Therefore, our results indicate that cytoophidia do form in the oocytes and granulosa cells at particular stages of development, which may contribute to the oocyte acquisition of meiotic and developmental competences and the induction of meiosis re-initiation by the LH surge, respectively.
Collapse
Affiliation(s)
- Shiwen Ni
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenmin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Min Long
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuan Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liji You
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lanying Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| |
Collapse
|
15
|
The Expression of ERK1/2 in Female Yak ( Bos grunniens) Reproductive Organs. Animals (Basel) 2020; 10:ani10020334. [PMID: 32093255 PMCID: PMC7070411 DOI: 10.3390/ani10020334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
The main reproductive organs undergo different histological appearances and physiological processes under different reproductive statuses. The variation of these organs depends on a delicate regulation of cell proliferation, differentiation, and apoptosis. Extracellular signal-regulated kinases1/2 (ERK1/2) are members of the mitogen-activated protein kinase (MAPK) super family. They have important roles in regulating various biological processes of different cells, tissues, and organ types. Activated ERK1/2 generally promotes cell survival, but under certain conditions, ERK1/2 also have the function of inducing apoptosis. It is widely believed that ERK1/2 play a significant role in regulating the reproductive processes of mammals. The goal of our research is to investigate the expression and distribution of ERK1/2 in the yak's main reproductive organs during different stages. In the present study, samples of the ovary, oviduct, and uterus of 15 adult female yak were collected and used in the experiment. The ERK1/2 proteins, localization, and quantitative expression of their mRNA were investigated using immunohistochemistry (IHC), western blot (WB) and relative quantitative real-time polymerase chain reaction (RT-PCR). The results indicated that ERK1/2 proteins and their mRNA were highly expressed in the ovary of the luteal phase and gestation period, in the oviduct of the luteal phase, and in the uterus of the luteal phase and gestation period. Immunohistochemical analysis revealed a strong distribution of ERK1/2 proteins in follicular granulosa cells, granular luteal cells, villous epithelial cells of the oviduct, endometrial glandular epithelium, and luminal epithelium. These results demonstrated that the expression of ERK1 and ERK2 proteins and their mRNA in the yak's ovary, oviduct, and uterus varies with the stage of the reproductive cycle. The variation character of ERK1 and ERK 2 expression in the yak's main reproductive organs during different stages implies that they play an important role in regulating the reproductive function under different physiological statuses.
Collapse
|
16
|
Sun T, Diaz FJ. Ovulatory signals alter granulosa cell behavior through YAP1 signaling. Reprod Biol Endocrinol 2019; 17:113. [PMID: 31883523 PMCID: PMC6935177 DOI: 10.1186/s12958-019-0552-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Hippo pathway plays critical roles in regulating cell proliferation, differentiation and survival among species. Hippo pathway proteins are expressed in the ovary and are involved in ovarian function. Deletion of Lats1 causes germ cell loss, ovarian stromal tumors and reduced fertility. Ovarian fragmentation induces nuclear YAP1 accumulation and increased follicular development. At ovulation, follicular cells stop proliferating and terminally differentiate, but the mechanisms controlling this transition are not completely known. Here we explore the role of Hippo signaling in mouse granulosa cells before and during ovulation. METHODS To assess the effect of oocytes on Hippo transcripts in cumulus cells, cumulus granulosa cells were cultured with oocytes and cumulus oocyte complexes (COCs) were cultured with a pSMAD2/3 inhibitor. Secondly, to evaluate the criticality of YAP1 on granulosa cell proliferation, mural granulosa cells were cultured with oocytes, YAP1-TEAD inhibitor verteporfin or both, followed by cell viability assay. Next, COCs were cultured with verteporfin to reveal its role during cumulus expansion. Media progesterone levels were measured using ELISA assay and Hippo transcripts and expansion signatures from COCs were assessed. Lastly, the effects of ovulatory signals (EGF in vitro and hCG in vivo) on Hippo protein levels and phosphorylation were examined. Throughout, transcripts were quantified by qRT-PCR and proteins were quantified by immunoblotting. Data were analyzed by student's t-test or one-way ANOVA followed by Tukey's post-hoc test or Dunnett's post-hoc test. RESULTS Our data show that before ovulation oocytes inhibit expression of Hippo transcripts and promote granulosa cell survival likely through YAP1. Moreover, the YAP1 inhibitor verteporfin, triggers premature differentiation as indicated by upregulation of expansion transcripts and increased progesterone production from COCs in vitro. In vivo, ovulatory signals cause an increase in abundance of Hippo transcripts and stimulate Hippo pathway activity as indicated by increased phosphorylation of the Hippo targets YAP1 and WWTR1 in the ovary. In vitro, EGF causes a transient increase in YAP1 phosphorylation followed by decreased YAP1 protein with only modest effects on WWTR1 in COCs. CONCLUSIONS Our results support a YAP1-mediated mechanism that controls cell survival and differentiation of granulosa cells during ovulation.
Collapse
Affiliation(s)
- Tianyanxin Sun
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Francisco J Diaz
- Center for Reproductive Biology and Health and Department of Animal Science, The Pennsylvania State University, 313 FRL Building, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Bu Q, Wang X, Xie H, Zhong K, Wu Y, Zhang J, Wang Z, Gao H, Huang Y. 180 Day Repeated-Dose Toxicity Study on Forchlorfenuron in Sprague-Dawley Rats and Its Effects on the Production of Steroid Hormones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10207-10213. [PMID: 31426637 DOI: 10.1021/acs.jafc.9b03855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Forchlorfenuron (FCF) is a synthetic plant cytokine-like growth regulator that is massively used in agriculture to increase fruit size and weight. There is an insufficiency of published data on the safety profile of FCF, especially as it is involved in ovarian function. In our study, a chronic toxicity study on FCF was conducted and designed by feeding at dosage levels of 0, 0.6, and 60 mg/kg body weight in Sprague-Dawley rats for 180 days. During the 180 day FCF administration, no biologically relevant changes were observed in the body weight, clinical signs, food consumption, organ weight, hematology, and clinical biochemistry of the tested animals. However, macroscopic and microscopic evaluations revealed the presence of severe hydrometra in the uterus and pathological changes in the ovaries. In addition, it was found that FCF inhibited the proliferation of granulosa cells (GCs) and H295R cells, as well as downregulated the expression of CYP17A1 and CYP19A1 in estradiol and progesterone production, resulting in decreased steroidogenesis in GCs and H295R cells. Taken together, our findings suggest that FCF has potential adverse effects on the ovaries and on steroidogenesis.
Collapse
Affiliation(s)
- Qian Bu
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | | | | | - Kai Zhong
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Yanping Wu
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | - Jiaqi Zhang
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | | | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center , Sichuan University , Chengdu 610065 , China
| | | |
Collapse
|
18
|
Schuermann Y, Rovani MT, Gasperin B, Ferreira R, Ferst J, Madogwe E, Gonçalves PB, Bordignon V, Duggavathi R. ERK1/2-dependent gene expression in the bovine ovulating follicle. Sci Rep 2018; 8:16170. [PMID: 30385793 PMCID: PMC6212447 DOI: 10.1038/s41598-018-34015-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ovulation is triggered by gonadotropin surge-induced signaling cascades. To study the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in bovine ovulation, we administered the pharmacological inhibitor, PD0325901, into the preovulatory dominant follicle by intrafollicular injection. Four of five cows treated with 50 µM PD0325901 failed to ovulate. To uncover the molecular basis of anovulation in ERK1/2-inhibited cows, we collected granulosa and theca cells from Vehicle and PD0325901 treated follicles. Next-generation sequencing of granulosa cell RNA revealed 285 differentially expressed genes between Vehicle and PD0325901-treated granulosa cells at 6 h post-GnRH. Multiple inflammation-related pathways were enriched among the differentially expressed genes. The ERK1/2 dependent LH-induced genes in granulosa cells included EGR1, ADAMTS1, STAT3 and TNFAIP6. Surprisingly, PD0325901 treatment did not affect STAR expression in granulosa cells at 6 h post-GnRH. Granulosa cells had higher STAR protein and theca cells had higher levels of STAR mRNA in ERK1/2-inhibited follicles. Further, both granulosa and theca cells of ERK1/2-inhibited follicles had higher expression of SLC16A1, a monocarboxylate transporter, transporting substances including β-hydroxybutyrate across the plasma membrane. Taken together, ERK1/2 plays a significant role in mediating LH surge-induced gene expression in granulosa and theca cells of the ovulating follicle in cattle.
Collapse
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Monique T Rovani
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bernardo Gasperin
- Laboratory of Animal Reproduction-ReproPEL, Federal University of Pelotas, 96010-610, Capão do Leão, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Santa Catarina, 88040-900, Brazil
| | - Juliana Ferst
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Paulo B Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
19
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
20
|
Xu Y, Niu J, Xi G, Niu X, Wang Y, Guo M, Yangzong Q, Yao Y, Sizhu SL, Tian J. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells. Gene 2018; 663:88-100. [DOI: 10.1016/j.gene.2018.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023]
|
21
|
Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev 2018; 64:385-392. [PMID: 29937465 PMCID: PMC6189573 DOI: 10.1262/jrd.2018-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine
the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent
in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells
and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or
42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more
advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5’ adenosine monophosphate activated kinase (P = 0.03). Heat stress
exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced
increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and
other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.
Collapse
Affiliation(s)
- Kelly A Campen
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Chelsea R Abbott
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| |
Collapse
|
22
|
Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc Natl Acad Sci U S A 2018; 115:E5326-E5333. [PMID: 29784807 PMCID: PMC6003357 DOI: 10.1073/pnas.1800352115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MTOR (mechanistic target of rapamycin), an integrator of pathways important for cellular metabolism, proliferation, and differentiation, is expressed at all stages of oocyte development. Primordial oocytes constitute a nonproliferating, nongrowing reserve of potential eggs maintained for the entire reproductive lifespan of mammalian females. Using conditional knockouts, we determined the role of MTOR in both primordial and growing oocytes. MTOR-dependent pathways in primordial oocytes are not needed to sustain the viability of the primordial oocyte pool or their recruitment into the cohort of growing oocytes but are essential later for maintenance of oocyte genomic integrity, sustaining ovarian follicular development, and fertility. In growing oocytes, MTOR-dependent pathways are required for processes that promote completion of meiosis and enable embryonic development. MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence.
Collapse
|
23
|
Li N, Liu T, Guo K, Zhu J, Yu G, Wang S, Ye L. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on proliferation of and steroid hormone synthesis in rat ovarian granulosa cells in vitro. J Cell Physiol 2018; 233:3629-3637. [PMID: 29034469 DOI: 10.1002/jcp.26224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the proliferation of and secretion by rat ovarian granulosa cells (GCs) treated with mono-(2-ethylhexyl) phthalate (MEHP). Ovarian GCs were incubated with MEHP at concentration of 0, 25, 50, 100, and 200 µM for 24 hr. Cell viability was determined using the MTT Cell Proliferation Assay. Progesterone and estradiol production was evaluated by radioimmunoassay (RIA) and the expression of FSHR, PR, and ER was measured by immunocytochemistry. StAR, P450scc, 3β-HSD, 17β-HSD, and P450 arom mRNA levels were determined by RT-PCR. MEHP markedly attenuated proliferation of GCs, increased expression of sex hormone receptors and key enzymes in progesterone production, and stimulated steroid hormone secretion. The result of these analyses demonstrates that MEHP exposure of GCs may have effects on rat ovarian functions.
Collapse
Affiliation(s)
- Na Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Te Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Guo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jian Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Guangyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Shuyue Wang
- Department of Emergency, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Lin Ye
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
24
|
Effects of PI3K and FSH on steroidogenesis, viability and embryo development of the cumulus–oocyte complex after in vitro culture. ZYGOTE 2017; 26:50-61. [DOI: 10.1017/s0967199417000703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SummaryThe purpose of this study was to evaluate the effects of FSH and PI3K on the nuclear maturation, viability, steroidogenesis and embryo development of bovine cumulus–oocyte complexes (COCs). Oocyte maturation was achieved with MIV B, MIV B+100 µM LY294002, MIV B+10 ng/mL follicle stimulating hormone (FSH), or MIV B+10 ng/mL FSH+100 µM LY294002 treatments for 22–24 h. After the cultured COCs were denuded, oocytes were separated into those that extruded polar bodies (mature) and those that did not, and real-time polymerase chain reaction (PCR) for BAX, BCL2, LHR, FSHR, CYP11A1, CYP19A1 and HSD17B1 genes was performed. The culture medium was collected to determine the levels of 17β-estradiol (E2) and progesterone (P4). The trypan blue test was used to study COC viability, and embryo development was evaluated. FSH increased nuclear maturation and PI3K blocked the maturation but did not influence oocyte viability. BAX and BCL2 expression levels in the cumulus cells were only affected by FSH, and the BAX levels decreased after treatment with LY294002. FSH increased the levels of E2 and P4, however inhibition of PI3K decreased E2 levels. MIV B enhanced levels of LHR, FSHR, CYP11A1, CYP19A1 and HSD17B1, whereas LY294002 inhibited the expression levels of all genes. MIV B+FSH decreased the expression levels of all genes except CYP11A1. LY294002 did not demonstrate any effects in the presence of FSH. Embryo development was significantly decreased when the MIV B+FSH medium was used. In conclusion, FSH controls the steroidogenesis, viability and gene expression in COCs. PI3K plays essential roles in nuclear maturation, steroidogenesis and embryo development.
Collapse
|
25
|
Dam PTM, Jang YJ, Park JI, Choi BC, Song SJ, Chun SY. Regulation of uridine diphosphate-glucuronosyltransferase 2B15 expression during ovulation in the rat. Endocr J 2017; 64:605-612. [PMID: 28442641 DOI: 10.1507/endocrj.ej16-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Uridine diphosphate-glucuronosyltransferase 2B15 (UGT2B15) conjugates 5α-androstane-3α, 17β-diol (3α-diol) to 3α-diol glucuronide (3α-diol G) in steroid target tissues. The present study investigated the regulation of UGT2B15 expression during the ovulatory process in the rat. Real-time PCR analysis revealed that treatment of immature rats with equine chorionic gonadotropin followed by human chorionic gonadotropin transiently stimulated UGT2B15 gene expression in granulosa cells of preovulatory follicles within 6 h. The progesterone receptor antagonist RU486 suppressed the gonadotropin-induced UGT2B15 expression. The expression of UGT2B15 and the levels of 3α-diol G were transiently increased by luteinizing hormone (LH) treatment in cultured preovulatory follicles. The LH-stimulated UGT2B15 mRNA level in cultured preovulatory follicles was inhibited by inhibitors of adenylyl cyclase, phosphoinositide 3-kinase and mitogen-activated protein kinase. Furthermore, a vitamin D receptor agonist (calcitriol) suppressed the LH-stimulated UGT2B15 expression in a dose-dependent manner. Taken together, these results indicate that gonadotropins transiently stimulate UGT2B15 expression and activity in preovulatory follicles, and UGT2B15 mRNA levels are regulated by the progesterone receptor and vitamin D receptor.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Enzyme Induction/drug effects
- Female
- Fertility Agents, Female/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Glucuronosyltransferase/antagonists & inhibitors
- Glucuronosyltransferase/chemistry
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Gonadotropins/metabolism
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Luteinizing Hormone/pharmacology
- Luteolytic Agents/pharmacology
- Mifepristone/pharmacology
- Ovulation/drug effects
- Ovulation/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats, Sprague-Dawley
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/antagonists & inhibitors
- Receptors, Calcitriol/metabolism
- Receptors, Progesterone/agonists
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/metabolism
- Signal Transduction/drug effects
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Phuong T M Dam
- School of Biological Sciences and Technology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - You-Jee Jang
- School of Biological Sciences and Technology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Bum-Chae Choi
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women's Hospital, Gwangju 61917, Republic of Korea
| | - Sang-Jin Song
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women's Hospital, Gwangju 61917, Republic of Korea
| | - Sang-Young Chun
- School of Biological Sciences and Technology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
26
|
Tian X, Anthony K, Diaz FJ. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea. Biol Trace Elem Res 2017; 176:374-383. [PMID: 27604975 DOI: 10.1007/s12011-016-0841-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.
Collapse
Affiliation(s)
- X Tian
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 2236 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - K Anthony
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA
| | - Francisco J Diaz
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Mukherjee D, Majumder S, Roy Moulik S, Pal P, Gupta S, Guha P, Kumar D. Membrane receptor cross talk in gonadotropin-, IGF-I-, and insulin-mediated steroidogenesis in fish ovary: An overview. Gen Comp Endocrinol 2017; 240:10-18. [PMID: 27616426 DOI: 10.1016/j.ygcen.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Gonadal steroidogenesis is critical for survival and reproduction of all animals. The pathways that regulate gonadal steroidogenesis are therefore conserved among animals from the steroidogenic enzymes to the intracellular signaling molecules and G protein-coupled receptors (GPCRs) that mediate the activity of these enzymes. Regulation of fish ovarian steroidogenesis in vitro by gonadotropin (GtH) and GPCRs revealed interaction between adenylate cyclase and calcium/calmodulin-dependent protein kinases (CaMKs) and also MAP kinase pathway. Recent studies revealed another important pathway in GtH-induced fish ovarian steroidogenesis: cross talk between GPCRs and membrane receptor tyrosine kinases. Gonadotropin binding to Gαs-coupled membrane receptor in fish ovary leads to production of cAMP which in turn trans-activate the membrane-bound epidermal growth factor receptor (EGFR). This is followed by activation of ERK1/2 signaling that promotes steroid production. Interestingly, GtH-induced trans-activation of EGFR in the fish ovary uniquely requires matrix-metalloproteinase-mediated release of EGF. Inhibition of these proteases blocks GtH-induced steroidogenesis. Increased cAMP production in fish ovarian follicle upregulate follicular cyp19a1a mRNA expression and aromatase activity leading to increased biosynthesis of 17β-estradiol (E2). Evidence for involvement of SF-1 protein in inducing cyp19a1a mRNA and aromatase activity has also been demonstrated. In addition to GtH, insulin-like growth factor (IGF-I) and bovine insulin can alone induced steroidogenesis in fish ovary. In intact follicles and isolated theca cells, IGF-I and insulin had no effect on GtH-induced testosterone and 17a,hydroxysprogeaterone production. GtH-stimulated E2 and 17,20bdihydroxy-4-pregnane 3-one production in granulosa cells however, was significantly increased by IGF-I and insulin. Both IGF-I and insulin mediates their signaling via receptor tyrosine kinases leading to activation of PI3 kinase/Akt and MAP kinase. These kinase signals then activates steroidogenic enzymes which promotes steroid production. PI3 kinase, therefore considered to be an initial component of the signal transduction pathways which precedes MAP kinase in IGF-1 and insulininduced steroidogenesis in fish ovary. Thus, investigation on the mechanism of signal transduction regulating fish ovarian steroidogenesis have shown that multiple, apparently independent signal transduction pathways are needed to convey the message of single hormone or growth factor.
Collapse
Affiliation(s)
- Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sujata Roy Moulik
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Chandernagore College, Chandannagar, Hooghly, West Bengal 712136, India
| | - Puja Pal
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dhynendra Kumar
- Department of Zoology, Veer Kunwar Singh University, Ara 802301, Bihar, India
| |
Collapse
|
28
|
Jang YJ, Park JI, Jeong SE, Seo YM, Dam PTM, Seo YW, Choi BC, Song SJ, Chun SY, Cho MK. Regulation of interleukin-11 expression in ovulatory follicles of the rat ovary. Reprod Fertil Dev 2017; 29:2437-2445. [DOI: 10.1071/rd16460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to examine the regulation of interleukin (IL)-11 expression, as well as the role of IL-11, during ovulation in gonadotropin-primed immature rats. Injection of equine chorionic gonadotropin (eCG), followed by human CG (hCG) to induce superovulation stimulated expression of the Il11 gene in theca cells within 6 h, as revealed by northern blot and in situ hybridisation analyses. Real-time reverse transcription–polymerase chain reaction analysis showed that the IL-11 receptor, α subunit gene was expressed in granulosa and theca cells and that injection of hCG had no effect on its expression. IL-11 protein expression was stimulated in theca cells by hCG. LH-stimulated increases in Il11 mRNA levels in cultured preovulatory follicles were inhibited by protein kinase A and mitogen-activated protein kinase kinase inhibitors. Toll-like receptor (TLR) 2 and TLR4 were detected in preovulatory follicles, and the TLR4 ligand lipopolysaccharide, but not the TLR2 ligand Pam3Cys, increased Il11 mRNA levels in theca cells, but not in granulosa cells. Treatment of preovulatory follicles with IL-11 stimulated progesterone production and steroidogenic acute regulatory protein (Star) gene expression. Together, these results indicate that IL-11 in theca cells is stimulated by mitogen-activated protein kinase signalling and TLR4 activation, and increases progesterone production during ovulation.
Collapse
|
29
|
Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev 2016; 61:495-502. [PMID: 26688146 PMCID: PMC4685214 DOI: 10.1262/jrd.2015-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the
preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling
network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa
cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell
compartment and the oocyte itself. Over the last decade, essential progress has been made in the
identification of molecular events associated with the final maturation and ovulation of mammalian oocytes.
All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the
gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways
leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation
of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even
though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we
aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the
activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a
specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Collapse
Affiliation(s)
- Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
30
|
Guo J, Shi L, Gong X, Jiang M, Yin Y, Zhang X, Yin H, Li H, Emori C, Sugiura K, Eppig JJ, Su YQ. Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J Cell Sci 2016; 129:3091-103. [PMID: 27358481 DOI: 10.1242/jcs.182642] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
Communication between oocytes and their companion somatic cells promotes the healthy development of ovarian follicles, which is crucial for producing oocytes that can be fertilized and are competent to support embryogenesis. However, how oocyte-derived signaling regulates these essential processes remains largely undefined. Here, we demonstrate that oocyte-derived paracrine factors, particularly GDF9 and GDF9-BMP15 heterodimer, promote the development and survival of cumulus-cell-oocyte complexes (COCs), partly by suppressing the expression of Ddit4l, a negative regulator of MTOR, and enabling the activation of MTOR signaling in cumulus cells. Cumulus cells expressed less Ddit4l mRNA and protein than mural granulosa cells, which is in striking contrast to the expression of phosphorylated RPS6 (a major downstream effector of MTOR). Knockdown of Ddit4l activated MTOR signaling in cumulus cells, whereas inhibition of MTOR in COCs compromised oocyte developmental competence and cumulus cell survival, with the latter likely to be attributable to specific changes in a subset of transcripts in the transcriptome of COCs. Therefore, oocyte suppression of Ddit4l expression allows for MTOR activation in cumulus cells, and this oocyte-dependent activation of MTOR signaling in cumulus cells controls the development and survival of COCs.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Lanying Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Xuhong Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Mengjie Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Xiaoyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Hui Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - John J Eppig
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China Key Laboratory of Model Animal Research, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| |
Collapse
|
31
|
Chowdhury I, Thomas K, Zeleznik A, Thompson WE. Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation. J Mol Endocrinol 2016; 56:325-36. [PMID: 27044659 PMCID: PMC5064770 DOI: 10.1530/jme-15-0278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/31/2016] [Indexed: 12/27/2022]
Abstract
Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and GynecologyMorehouse School of Medicine, Atlanta, Georgia, USA Reproductive Science Research ProgramMorehouse School of Medicine, Atlanta, Georgia, USA
| | - Kelwyn Thomas
- Department of NeurobiologyMorehouse School of Medicine, Atlanta, Georgia, USA
| | - Anthony Zeleznik
- Department of Cell Biology and PhysiologyUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Winston E Thompson
- Reproductive Science Research ProgramMorehouse School of Medicine, Atlanta, Georgia, USA Department of PhysiologyMorehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Fang L, Yu Y, Zhang R, He J, Sun YP. Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells. Sci Rep 2016; 6:24917. [PMID: 27113901 PMCID: PMC4845069 DOI: 10.1038/srep24917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023] Open
Abstract
Progesterone plays critical roles in maintaining a successful pregnancy at the early embryonic stage. Human chorionic gonadotropin (hCG) rapidly induces amphiregulin (AREG) expression. However, it remains unknown whether AREG mediates hCG-induced progesterone production. Thus, the objective of this study was to investigate the role of AREG in hCG-induced progesterone production and the underlying molecular mechanism in human granulosa cells; primary cells were used as the experimental model. We demonstrated that the inhibition of EGFR and the knockdown of AREG abolished hCG-induced steroidogenic acute regulatory protein (StAR) expression and progesterone production. Importantly, follicular fluid AREG levels were positively correlated with progesterone levels in the follicular fluid and serum. Treatment with AREG increased StAR expression and progesterone production, and these stimulatory effects were abolished by EGFR inhibition. Moreover, activation of ERK1/2, but not PI3K/Akt, signaling was required for the AREG-induced up-regulation of StAR expression and progesterone production. Our results demonstrate that AREG mediates hCG-induced StAR expression and progesterone production in human granulosa cells, providing novel evidence for the role of AREG in the regulation of steroidogenesis.
Collapse
Affiliation(s)
- Lanlan Fang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yiping Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ruizhe Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Jingyan He
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
33
|
Ezoe K, Daikoku T, Yabuuchi A, Murata N, Kawano H, Abe T, Okuno T, Kobayashi T, Kato K. Ovarian stimulation using human chorionic gonadotrophin impairs blastocyst implantation and decidualization by altering ovarian hormone levels and downstream signaling in mice. Mol Hum Reprod 2014; 20:1101-16. [PMID: 25122188 DOI: 10.1093/molehr/gau065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovarian stimulation induced by follicle-stimulating hormone and human chorionic gonadotrophin (hCG) is commonly used in assisted reproductive technology to increase embryo production. However, recent clinical and animal studies have shown that ovarian stimulation disrupts endometrial function and embryo development and adversely affects pregnancy outcomes. How ovarian stimulation impairs pregnancy establishment and the precise mechanisms by which this stimulation reduces the chances of conception remain unclear. In this study, we first demonstrated that ovarian stimulation using hCG alone impairs implantation, decidualization and fetal development of mice by generating abnormal ovarian hormone levels. We also showed that ovarian hormone levels were altered because of changes in the levels of the enzymes involved in their synthesis in the follicles and corpora lutea. Furthermore, we determined that anomalous ovarian hormone secretion induced by ovarian stimulation alters the spatiotemporal expression of progesterone receptors and their downstream genes, especially in the uterine epithelium. Epithelial estrogenic signaling and cell proliferation were promoted on the day of implantation in stimulated mice and these changes led to the failure of uterine transition from the prereceptive to the receptive state. Collectively, our findings indicate that ovarian stimulation using hCG induces an imbalance in steroid hormone secretion, which causes a failure of the development of uterine receptivity and subsequent implantation and decidualization by altering the expression of steroid receptors and their downstream signaling associated with embryo implantation.
Collapse
Affiliation(s)
- Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takiko Daikoku
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Akiko Yabuuchi
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Nana Murata
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Hiroomi Kawano
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takashi Abe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takashi Okuno
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Tamotsu Kobayashi
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
34
|
Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 2014; 91:53. [PMID: 25031361 DOI: 10.1095/biolreprod.113.112789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurotensin (NT) has multiple functions, ranging from acting as a neurotransmitter to regulating intestinal movement. However, its function in reproductive physiology is unknown. Here, we confirmed the expression and localization of NT receptors (NTR1) in mouse epididymal spermatozoa and investigated the effect of NT on sperm function. Sperm protein tyrosine phosphorylation, one of the indices of sperm capacitation, was facilitated dose-dependently by NT administration. In addition, the acrosome reaction was promoted in capacitated spermatozoa, and addition of a selective antagonist of NTR1 and NTR2 blocked the induction. Furthermore, intracellular calcium mobilization by NT addition was observed. This showed that NT was an accelerator of sperm function via its functional receptors. The presence of NT was confirmed by immunohistochemistry and its localization was observed in epithelia of the uterus and oviduct isthmus and ampulla, which correspond to the fertilization route of spermatozoa. The NT mRNA level in ovulated cumulus cell was remarkably increased by treatment with human chorionic gonadotropin (hCG). Using an in vitro maturation model, we analyzed the effects of FSH, epidermal growth factor (EGF), estradiol, and progesterone in NT production in cumulus cells. We found that FSH and EGF upregulated NT release and mRNA expression. Both FSH- and EGF-induced upregulation were inhibited by U0126, an MAPK kinase inhibitor, indicating that FSH and EGF regulate NT expression via a MAPK-dependent pathway. This evidence suggests that NT can act as a promoter of sperm capacitation and the acrosome reaction in the female reproductive tract.
Collapse
Affiliation(s)
- Yuuki Hiradate
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hiroki Inoue
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Norio Kobayashi
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshiki Shirakata
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yutaka Suzuki
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Aina Gotoh
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sang-Gun Roh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Uchida
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kazuo Katoh
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Kanagawa, Japan
| | - Eimei Sato
- National Livestock Breeding, Fukushima, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Kotarska K, Galas J, Przybyło M, Bilińska B, Styrna J. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency. Reprod Sci 2014; 22:242-9. [PMID: 24899473 DOI: 10.1177/1933719114537717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jerzy Galas
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Józefa Styrna
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
36
|
Chung CK, Ge W. Human chorionic gonadotropin (hCG) induces MAPK3/1 phosphorylation in the zebrafish ovarian follicle cells independent of EGF/EGFR pathway. Gen Comp Endocrinol 2013; 188:251-7. [PMID: 23644153 DOI: 10.1016/j.ygcen.2013.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/15/2013] [Indexed: 01/08/2023]
Abstract
In mammals, human chorionic gonadotropin (hCG), a luteinizing hormone (LH) analogue, induces MAPK3/1 phosphorylation in the granulosa cells and this event is largely dependent on epidermal growth factor receptor (EGFR) activity. However, whether this mechanism also works in other vertebrates such as fish remains unknown. Here, we showed that treatment of cultured zebrafish ovarian follicle cells with hCG also resulted in MAPK3/1 phosphorylation without affecting the total protein level of MAPK3/1. The phosphorylation level peaked at 5 min and then declined to the basal level after 40 min of hCG treatment. Further experiment showed that H89 (a PKA inhibitor) could abolish hCG-stimulated MAPK3/1 phosphorylation, but had no effect on EGF-induced phosphorylation, suggesting a mediating role for cAMP/PKA in hCG activation of MAPK3/1. On the other hand, AG1478 (an EGFR inhibitor) completely blocked EGF-stimulated MAPK3/1 phosphorylation, but had no effect on the hCG-induced MAPK3/1 phosphorylation. These data indicate that similar to its action in mammals, hCG/LH also stimulated MAPK3/1 phosphorylation in the zebrafish ovarian follicle cells; however, unlike the situation in the mammalian ovary, the hCG-stimulated MAPK3/1 phosphorylation in cultured zebrafish ovarian follicle cells was independent of EGFR.
Collapse
Affiliation(s)
- Chi-Kin Chung
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
37
|
Kundu S, Pramanick K, Paul S, Bandyopadhyay A, Mukherjee D. Expression of LH receptor in nonpregnant mouse endometrium: LH induction of 3β-HSD and de novo synthesis of progesterone. J Endocrinol 2012; 215:151-65. [PMID: 22875961 DOI: 10.1530/joe-11-0486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mouse uterus, at the late diestrus stage LH binding sites have previously been described. The aim of our study was to confirm the existence of LH receptor (Lhr (Lhcgr)) mRNA and its protein in mouse endometrium. Endometrium at all stages of the estrous cycle contained Lhr mRNA, essentially identical to that found in mouse ovary. Endometrium also contained a 72 kDa immunoreactive receptor protein that bound to mouse anti-LHR antibody in western blot. Both receptor mRNA and protein were maximally expressed in the endometrium at metestrus and LH caused a significant increase in their expression levels. Endometrium also contained 3β-hydroxy steroid dehydrogenase (3β-hsd) mRNA and 3β-HSD protein. LH addition elevated their expression and activity as evident from increased conversion of labeled pregnenolone to progesterone (P(4)) and de novo P(4) synthesis. LH-induced endometrial P(4) synthesis is mediated through expression of steroidogenic acute regulatory (Star) gene. Results demonstrated that LH-induced P(4) synthesis in endometrium is possibly mediated through the cAMP pathway. Involvement of a MAPK pathway was also evident. Gonadotropin-stimulated endometrial P(4) synthesis was markedly attenuated by an antagonist of MEK1/2, PD98059. LH-stimulated MEK1/2-dependent phosphorylation of ERK1/2 in a concentration- and time-dependant manner in cultured endometrial tissues. Moreover, involvement of cAMP in LH-stimulated activation of ERK1/2 was also evident. It is therefore possible that the major signaling pathways regulating endometrial steroidogenesis in mouse, including the adenylate cyclase and MAP kinase pathways, converge at a point distal to activation of protein kinase A and ERK1/2.
Collapse
Affiliation(s)
- Sourav Kundu
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | | | |
Collapse
|
38
|
Ebeling S, Töpfer D, Weitzel JM, Meinecke B. Bone morphogenetic protein-6 (BMP-6): mRNA expression and effect on steroidogenesis during in vitro maturation of porcine cumulus oocyte complexes. Reprod Fertil Dev 2012; 23:1034-42. [PMID: 22127008 DOI: 10.1071/rd11027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/06/2011] [Indexed: 12/13/2022] Open
Abstract
Oocyte secreted factors (OSFs) have emerged as important factors for follicular development. The present study investigated the effect of the potential OSF bone morphogenic protein (BMP)-6 on steroidogenesis in porcine cumulus oocyte complexes during in vitro maturation. Cumulus oocyte complexes (COCs), cumulus complexes (CCs) without oocytes and CCs with supplemented BMP-6 were cultured for 0, 5, 26 or 46 h. BMP-6 transcripts were detected in oocytes and cumulus cells at all time points. In both cell types the mRNA expression was most intense after 5h, and decreased during further maturation. After 26 and 46 h of culture, CCs secreted significantly less 17β-estradiol than COCs. This effect was reversed by adding BMP-6 to CCs cultures. In addition, a down-regulation of Cyp19A1, the rate-limiting enzyme of 17β-estradiol synthesis, was detected in CC cultures after 5h. As seen for 17β-estradiol secretion, the addition of BMP-6 caused a significant increase in Cyp19A1 mRNA levels after 5, 26 and 46 h of culture. Progesterone secretion and transcripts of steroidogenic marker proteins StAR and 3β-HSD were not affected considerably by oocyte removal or addition of BMP-6. Furthermore, BMP-6 did not affect the activity of the mitogen-activated protein kinase. The results indicated that BMP-6 is a potential OSF and is involved in the prevention of premature luteinisation in cumulus cells via enhancing 17β-estradiol synthesis.
Collapse
Affiliation(s)
- S Ebeling
- Department of Reproductive Biology, University of Veterinary Medicine Hannover, Foundation, Germany.
| | | | | | | |
Collapse
|
39
|
Su YQ, Sugiura K, Sun F, Pendola JK, Cox GA, Handel MA, Schimenti JC, Eppig JJ. MARF1 regulates essential oogenic processes in mice. Science 2012; 335:1496-9. [PMID: 22442484 DOI: 10.1126/science.1214680] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.
Collapse
Affiliation(s)
- You-Qiang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tian X, Diaz FJ. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology 2012; 153:873-86. [PMID: 22147014 PMCID: PMC3275394 DOI: 10.1210/en.2011-1599] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Shortly before ovulation, the oocyte acquires developmental competence and granulosa cells undergo tremendous changes including cumulus expansion and luteinization. Zinc is emerging as a key regulator of meiosis in vitro, but a complete understanding of zinc-mediated effects during the periovulatory period is lacking. The present study uncovers the previously unknown role of zinc in maintaining meiotic arrest before ovulation. A zinc chelator [N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN)] caused premature germinal vesicle breakdown and associated spindle defects in denuded oocytes even in the presence of a phosphodiesterase 3A inhibitor (milrinone). TPEN also potently blocked cumulus expansion by blocking induction of expansion-related transcripts Has2, Ptx3, Ptgs2, and Tnfaip6 mRNA. Both meiotic arrest and cumulus expansion were rescued by exogenous zinc. Lack of cumulus expansion is due to an almost complete suppression of phospho-Sma- and Mad-related protein 2/3 signaling. Consistent with a decrease in phospho-Sma- and Mad-related protein 2/3 signaling, TPEN also decreased cumulus transcripts (Ar and Slc38a3) and caused a surprising increase in mural transcripts (Lhcgr and Cyp11a1) in cumulus cells. In vivo, feeding a zinc-deficient diet for 10 d completely blocked ovulation and compromised cumulus expansion. However, 42.5% of oocytes had prematurely resumed meiosis before human chorionic gonadotropin injection, underscoring the importance of zinc before ovulation. A more acute 3-d treatment with a zinc-deficient diet did not block ovulation but did increase the number of oocytes trapped in luteinizing follicles. Moreover, 23% of ovulated oocytes did not reach metaphase II due to severe spindle defects. Thus, acute zinc deficiency causes profound defects during the periovulatory period with consequences for oocyte maturation, cumulus expansion, and ovulation.
Collapse
Affiliation(s)
- X Tian
- Center for Reproductive Biology and Health, Department of Poultry Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
41
|
Yoshida N, Mizuno K. Effect of physiological levels of phytoestrogens on mouse oocyte maturation in vitro. Cytotechnology 2011; 64:241-7. [PMID: 21706314 DOI: 10.1007/s10616-011-9369-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 06/14/2011] [Indexed: 12/31/2022] Open
Abstract
Phytoestrogens are a group of naturally occurring compounds that have weak estrogenic activity. Genistein and daidzein are major phytoestrogens produced by soybeans. It has been reported previously that at high concentration, some phytoestrogens inhibit cell cycle progression of mouse germinal vesicle (GV) oocytes, but the environmentally relevant level is much lower. Here we show the effects of low concentrations of the isoflavones genistein, daidzein and the daidzein metabolite, equol, on mouse oocyte maturation. GV oocytes denuded of cumulus cells were cultured in TaM medium containing low levels (5 μM) of genistein, daidzein. or equol. In all cases, the oocytes underwent normal GV break down, first polar body extrusion and became arrested at metaphase II (mII). As judged by fluorescence microscopy, the treated mII oocytes exhibited normal distributions of actin microfilaments, cortical granules and metaphase spindle formation with condensed metaphase chromatin. Moreover, mRNA expression levels of the cytostatic factors Emi2 and Mos were similar to those of their respective controls. These data suggest that exposure of maturing GV oocytes to environmental levels of genistein, daidzein or equol in vitro do not cause negative effects on maturation to produce mII oocytes.
Collapse
Affiliation(s)
- Naoko Yoshida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan,
| | | |
Collapse
|
42
|
Shimada M, Yamashita Y. The Key Signaling Cascades in Granulosa Cells During Follicular Development and Ovulation Process. ACTA ACUST UNITED AC 2011. [DOI: 10.1274/jmor.28.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Liu J, Yang Y, Yang Y, Zhang Y, Liu W. Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology 2011; 282:47-55. [DOI: 10.1016/j.tox.2011.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
|
44
|
The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:821615. [PMID: 21637381 PMCID: PMC3100650 DOI: 10.1155/2011/821615] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/28/2010] [Indexed: 11/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) comprise a family of serine/threonine kinases that are activated by a large variety of extracellular stimuli and play integral roles in controlling many cellular processes, from the cell surface to the nucleus. The MAPK family includes four distinct MAPK cascades, that is, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase or stress-activated protein kinase, and ERK5. These MAPKs are essentially operated through three-tiered consecutive phosphorylation events catalyzed by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs lie in protein kinase cascades. The MAPK signaling pathways have been demonstrated to be associated with events regulating the expression of the steroidogenic acute regulatory protein (StAR) and steroidogenesis in steroidogenic tissues. However, it has become clear that the regulation of MAPK-dependent StAR expression and steroid synthesis is a complex process and is context dependent. This paper summarizes the current level of understanding concerning the roles of the MAPK signaling cascades in the regulation of StAR expression and steroidogenesis in different steroidogenic cell models.
Collapse
|
45
|
Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion. Theriogenology 2011; 75:90-104. [DOI: 10.1016/j.theriogenology.2010.07.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 11/22/2022]
|
46
|
Menon B, Franzo-Romain M, Damanpour S, Menon KMJ. Luteinizing hormone receptor mRNA down-regulation is mediated through ERK-dependent induction of RNA binding protein. Mol Endocrinol 2010; 25:282-90. [PMID: 21147848 DOI: 10.1210/me.2010-0366] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ligand-induced down-regulation of LH receptor (LHR) expression in the ovaries, at least in part, is regulated by a posttranscriptional process mediated by a specific LH receptor mRNA binding protein (LRBP). The LH-mediated signaling pathways involved in this process were examined in primary cultures of human granulosa cells. Treatment with 10 IU human chorionic gonadotropin (hCG) for 12 h resulted in the down-regulation of LHR mRNA expression while producing an increase in LHR mRNA binding to LRBP as well as a 2-fold increase in LRBP levels. The activation of ERK1/2 pathway in LH-mediated LHR mRNA down-regulation was also established by demonstrating the translocation of ERK1/2 from the cytosol to the nucleus using confocal microcopy. Inhibition of protein kinase A using H-89 or ERK1/2 by U0126 abolished the LH-induced LHR mRNA down-regulation. These treatments also abrogated both the increases in LRBP levels as well as the LHR mRNA binding activity. The abolishment of the hCG-induced increase in LRBP levels and LHR mRNA binding activity was further confirmed by transfecting granulosa cells with ERK1/2 specific small interfering RNA. This treatment also reversed the hCG-induced down-regulation of LHR mRNA. These data show that LH-regulated ERK1/2 signaling is required for the LRBP-mediated down-regulation of LHR mRNA.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0617, USA.
| | | | | | | |
Collapse
|
47
|
Ebeling S, Töpfer D, Meinecke B. Steroidogenesis and the Influence of MAPK Activity During In Vitro Maturation of Porcine Cumulus Oocyte Complexes. Reprod Domest Anim 2010; 46:513-9. [DOI: 10.1111/j.1439-0531.2010.01699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Doyle LK, Walker CA, Donadeu FX. VEGF modulates the effects of gonadotropins in granulosa cells. Domest Anim Endocrinol 2010; 38:127-37. [PMID: 19815366 DOI: 10.1016/j.domaniend.2009.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 11/13/2022]
Abstract
Follicle selection is associated with an increase in the expression of vascular endothelial growth factor (VEGF) and its receptors in granulosa cells, however, the roles of VEGF in regulating the function of these or other non-endothelial cells in the ovary have not been explored in detail. The current study used bovine cell cultures to investigate potential roles of VEGF in the regulation of granulosa cell function during follicle development. Granulosa cells were obtained from morphologically healthy follicles 4 to 8 mm or 9 to 14 mm in diameter (corresponding to diameters before and after the establishment of dominance, respectively, during a bovine follicular wave) and exposed to a range of VEGF concentrations (1 to 100 ng/mL) encompassing concentrations found naturally in bovine dominant follicles. A concentration of VEGF of 1 ng/mL induced significant proliferation of granulosa cells from 4- to 8-mm follicles (P=0.024) and increased the proliferative response of these cells to follicle-stimulating hormone (FSH; P=0.045); whereas higher doses of VEGF had no effect on proliferation (P=0.9). Treatment with VEGF induced an overall increase in mean extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation (P=0.02). In contrast, VEGF, alone or in combination with FSH, had no effect on expression of the steroidogenic enzyme, CYP11A1, by cells from 4- to 8-mm follicles (P=0.9). Granulosa cells from 9- to 14-mm follicles responded to 1 ng/mL VEGF with an increase in expression of the ovulation-associated gene, PTGS2 (P=0.003) but higher VEGF doses had no effect (P=0.9). The PTGS2 response to 1 ng/mL VEGF was similar to that induced by treatment with luteinizing hormone (LH). Interestingly, the stimulatory effects of LH on ERK1/2 phosphorylation (P=0.003) and PTGS2 expression (P<0.01) in granulosa cells from 9- to 14-mm follicles were abolished (P=0.2) by specific chemical inhibition of VEGF receptor 2 (VEGFR2). These results suggest novel and important roles of VEGF and its receptor, VEGFR2, in mediating and/or enhancing the effects of gonadotropins in granulosa cells.
Collapse
Affiliation(s)
- L K Doyle
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin BioCentre, Roslin, Midlothian EH25 9PS, Scotland, UK
| | | | | |
Collapse
|
49
|
Sha W, Xu BZ, Li M, Liu D, Feng HL, Sun QY. Effect of gonadotropins on oocyte maturation in vitro: an animal model. Fertil Steril 2010; 93:1650-61. [DOI: 10.1016/j.fertnstert.2009.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/26/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
|
50
|
Nyegaard M, Overgaard MT, Su YQ, Hamilton AE, Kwintkiewicz J, Hsieh M, Nayak NR, Conti M, Conover CA, Giudice LC. Lack of functional pregnancy-associated plasma protein-A (PAPPA) compromises mouse ovarian steroidogenesis and female fertility. Biol Reprod 2010; 82:1129-38. [PMID: 20130263 DOI: 10.1095/biolreprod.109.079517] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The insulin-like growth factor (IGF) system plays an important role in regulating ovarian follicular development and steroidogenesis. IGF binding proteins (IGFBP) mostly inhibit IGF actions, and IGFBP proteolysis is a major mechanism for regulating IGF bioavailability. Pregnancy-associated plasma protein-A (PAPPA) is a secreted metalloprotease responsible for cleavage of IGFBP4 in the ovary. The aim of this study was to investigate whether PAPPA plays a role in regulating ovarian functions and female fertility by comparing the reproductive phenotype of wild-type (WT) mice with mice heterozygous or homozygous for a targeted Pappa gene deletion (heterozygous and PAPP-A knockout [KO] mice, respectively). When mated with WT males, PAPP-A KO females demonstrated an overall reduction in average litter size. PAPP-A KO mice had a reduced number of ovulated oocytes, lower serum estradiol levels following equine chorionic gonadotropin administration, lower serum progesterone levels after human chorionic gonadotropin injection, and reduced expression of ovarian steroidogenic enzyme genes, compared to WT controls. In PAPP-A KO mice, inhibitory IGFBP2, IGFBP3, and IGFBP4 ovarian gene expression was reduced postgonadotropin stimulation, suggesting some compensation within the ovarian IGF system. Expression levels of follicle-stimulating hormone receptor, luteinizing hormone receptor, and genes required for cumulus expansion were not affected. Analysis of preovulatory follicular fluid showed complete loss of IGFBP4 proteolytic activity in PAPP-A KO mice, demonstrating no compensation for loss of PAPPA proteolytic activity by other IGFBP proteases in vivo in the mouse ovary. Taken together, these data demonstrate an important role of PAPPA in modulating ovarian function and female fertility by control of the bioavailability of ovarian IGF.
Collapse
Affiliation(s)
- Mette Nyegaard
- Department of Ob/Gyn., Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|