1
|
Vijay P, Panwar D, Narwal R, Sehgal N. Structural modeling and gene expression analysis of phosvitinless vitellogenin (vgc) in the Indian freshwater murrel, Channa punctatus (Bloch, 1793). Gen Comp Endocrinol 2024; 352:114491. [PMID: 38494038 DOI: 10.1016/j.ygcen.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.
Collapse
Affiliation(s)
- Pooja Vijay
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Deepak Panwar
- Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ritu Narwal
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Finn RN, Cerdà J. Genetic adaptations for the oceanic success of fish eggs. Trends Genet 2024; 40:540-554. [PMID: 38395683 DOI: 10.1016/j.tig.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024]
Abstract
Genetic adaptations of organisms living in extreme environments are fundamental to our understanding of where life can evolve. Water is the single limiting parameter in this regard, yet when released in the oceans, the single-celled eggs of marine bony fishes (teleosts) have no means of acquiring it. They are strongly hyposmotic to seawater and lack osmoregulatory systems. Paradoxically, modern teleosts successfully release vast quantities of eggs in the extreme saline environment and recorded the most explosive radiation in vertebrate history. Here, we highlight key genetic adaptations that evolved to solve this paradox by filling the pre-ovulated eggs with water. The degree of water acquisition is uniquely prevalent to marine teleosts, permitting the survival and oceanic dispersal of their eggs.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain.
| | - Joan Cerdà
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain; Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Yilmaz O, Sullivan CV, Bobe J, Norberg B. The role of multiple vitellogenins in early development of fishes. Gen Comp Endocrinol 2024; 351:114479. [PMID: 38431208 DOI: 10.1016/j.ygcen.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Functions of vitellogenins have been in the limelight of fish reproductive physiology research for decades. The Vtg system of acanthomorph teleosts consists of two complete forms of Vtgs (VtgAa and VtgAb) and an incomplete form, VtgC. Insufficient uptake and processing of Vtgs and their yolk proteins lead to inadequate oocyte hydration ensuing failure in acquisition of egg buoyancy and early developmental deficiencies. This review presents a summary of our studies on utilization of multiple Vtgs in species with different egg buoyancy characteristics, as examples. Studies of moronids revealed limited degradation of all three forms of lipovitellin heavy chain derived from their three respective forms of Vtg, by which they contribute to the free amino acid pool driving oocyte hydration during oocyte maturation. In later studies, CRISPR/Cas9 was employed to invalidate zebrafish type I, type II and type III Vtgs, which are orthologs of acanthamorph VtgAa, VtgAb and VtgC, respectively. Results revealed type I Vtg to have essential developmental and nutritional functions in both late embryos and larvae. Genomic disturbance of type II Vtg led to high mortalities during the first 24 h of embryonic development. Despite being a minor form of Vtg in zebrafish and most other species, type III Vtg was also found to contribute essentially to the developmental potential of zebrafish zygotes and early embryos. Apart from severe effects on progeny survival, these studies also disclosed previously unreported regulatory effects of Vtgs on fecundity and fertility, and on embryo hatching. We recently utilized parallel reactions monitoring based liquid chromatography tandem mass spectrometry to assess the processing and utilization of lipovitellins derived from different forms of Vtg in Atlantic halibut and European plaice. Results showed the Lv heavy chain of VtgAa (LvHAa) to be consumed during oocyte maturation and the Lv light chain of VtgAb (LvLAb) to be utilized specifically during late larval stages, while all remaining YPs (LvLAa, LvHAb, LvHC, and LvLC) were utilized during or after hatching up until first feeding in halibut. In plaice, all YPs except LvHAa, which similarly to halibut supports oocyte maturation, are utilized from late embryo to late larval development up until first feeding. The collective findings from these studies affirm substantial disparity in modes of utilization of different types of Vtgs among fish species with various egg buoyancy characteristics, and they reveal previously unknown regulatory functions of Vtgs in maintenance of reproductive assets such as maternal fecundity and fertility, and in embryonic hatching. Despite the progress that has been made over the past two decades by examining multiple Vtgs and their functions, a higher complexity of these systems with much greater diversity between species in modes of Vtg utilization is now evident. Further research is needed to reveal novel ways each species has evolved to utilize these complex multiple Vtg systems and to discover unifying principles for this evolution in fishes of diverse lineages, habitats and life history characteristics.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway.
| | | | | | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway
| |
Collapse
|
4
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
6
|
Sharma L, Pipil S, Rawat VS, Sehgal N. Role of cathepsins B and D in proteolysis of yolk in the catfish Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:749-765. [PMID: 35482165 DOI: 10.1007/s10695-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Yolk processing pathways vary in the oocytes of benthophil and pelagophil teleosts. The present study investigated the yolk processing pattern in the oocytes of the fresh water catfish Clarias gariepinus at vitellogenic, maturation, and ovulated stages. This study concludes that during maturation stage, an electrophoretic shift in the major peptide band on Polyacrylamide gel electrophoresis (PAGE) occurs due to a decrease in the size of the yolk protein. The PMF spectrum of corresponding peptides from vitellogenic and ovulated oocytes revealed a difference in the minor ions. A minor difference in the molecular weight of the corresponding peptides occurs due to a difference in their amino acid composition. Maximal activity of the proteases cathepsin D and cathepsin B was observed in the vitellogenic oocytes, thus confirming their role in the processing of yolk. A significant transient increase in the activity of cathepsin B in the mature oocytes also suggests its role in oocyte maturation.
Collapse
Affiliation(s)
- Luni Sharma
- Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Supriya Pipil
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Ferreira MF, Lo Nostro FL, Fernández DA, Genovese G. Endocrine disruption in the sub Antarctic fish Patagonotothen tessellata (Perciformes, Notothenidae) from Beagle Channel associated to anthropogenic impact. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105478. [PMID: 34562790 DOI: 10.1016/j.marenvres.2021.105478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Situated in the sub-Antarctic region, Beagle Channel represents a unique marine ecosystem due to the connection between the Pacific and the Atlantic Oceans, and its proximity to the Antarctic Peninsula. Ushuaia city, the biggest settlement on the channel, exerts an increasing anthropogenic pressure by discharges of urban and industrial effluents. In the present work, we use Patagonotothen tessellata, one of the most abundant and widespread species in the channel, as a bioindicator species in order to evidence anthropic impact from Ushuaia Bay and surrounding areas. We first analyzed and characterized real time gene expression of androgen receptor, estrogen receptor and different forms of vitellogenin (VTG), under laboratory conditions. This was achieved by induction with estradiol of P. tessellata males. Then, the selected genes were used as biomarkers for an environmental biomonitoring study. Morphometric indices and circulating sex steroids (estradiol and testosterone) were also quantified in male fish collected from different sites. The qPCR analysis showed that vtgAb form is more inducible than vtgAa or vtgC forms after estrogen induction. The field survey revealed the up-regulation of vtgAb and the androgen receptor in fish from sites with higher anthropogenic influence. Sex steroids followed seasonal variations according to their reproductive cycle, with higher levels of estradiol and testosterone in winter and summer seasons. The use of biomarkers such as gene expression of VTG demonstrates that fish from Ushuaia Bay are likely to be exposed to endocrine disrupting compounds. To our knowledge, this research is the first attempt to assess the endocrine disruption associated to anthropic impact in a widespread fish of the Beagle Channel and contributes to a better understanding of the reproductive physiology of sub Antarctic ichthyofauna.
Collapse
Affiliation(s)
- Maria Florencia Ferreira
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina.
| | - Daniel A Fernández
- Universidad Nacional de Tierra Del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA-UNTDF), Ushuaia, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET), Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Ushuaia, Argentina
| | - Griselda Genovese
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| |
Collapse
|
8
|
Yilmaz O, Patinote A, Com E, Pineau C, Bobe J. Knock out of specific maternal vitellogenins in zebrafish (Danio rerio) evokes vital changes in egg proteomic profiles that resemble the phenotype of poor quality eggs. BMC Genomics 2021; 22:308. [PMID: 33910518 PMCID: PMC8082894 DOI: 10.1186/s12864-021-07606-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We previously reported the results of CRISPR/Cas9 knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development. However, the specific contributions of different types of Vtg to major cellular processes remained to be investigated. The present study employed liquid chromatography and tandem mass spectrometry (LC-MS/MS) to meet this deficit. Proteomic profiles of zebrafish eggs lacking three type-I Vtgs simultaneously (vtg1-KO), or lacking only type III Vtg (vtg3-KO) were compared to those of wild type (Wt) eggs. Obtained spectra were searched against a zebrafish proteome database and identified proteins were quantified based on normalized spectral counts. RESULTS The vtg-KO caused severe changes in the proteome of 1-cell stage zebrafish eggs. These changes were disclosed by molecular signatures that highly resembled the proteomic phenotype of poor quality zebrafish eggs reported in our prior studies. Proteomic profiles of vtg-KO eggs and perturbations in abundances of hundreds of proteins revealed unique, noncompensable contributions of multiple Vtgs to protein and in energy homeostasis. The lack of this contribution appears to have a significant impact on endoplasmic reticulum and mitochondrial functions, and thus embryonic development, even after zygotic genome activation. Increased endoplasmic reticulum stress, Redox/Detox activities, glycolysis/gluconeogenesis, enrichment in cellular proliferation and in human neurodegenerative disease related activities in both vtg1- and vtg3-KO eggs were found to be indicators of the aforementioned conditions. Distinctive increase in apoptosis and Parkinson disease pathways, as well as the decrease in lipid metabolism related activities in vtg3-KO eggs implies compelling roles of Vtg3, the least abundant form of Vtgs in vertebrate eggs, in mitochondrial activities. Several differentially abundant proteins representing the altered molecular mechanisms have been identified as strong candidate markers for studying the details of these mechanisms during early embryonic development in zebrafish and possibly other vertebrates. CONCLUSIONS These findings indicate that the global egg proteome is subject to extensive modification depending on the presence or absence of specific Vtgs and that these modifications can have a major impact on developmental competence.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- INRAE, LPGP, 35000, Rennes, France.
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway.
| | | | - Emmanuelle Com
- Univ Rennes, Inserm, EHESP, Irset-UMR_S 1085, F-35042, Rennes cedex, France
- Protim, Univ Rennes, F-35042, Rennes cedex, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset-UMR_S 1085, F-35042, Rennes cedex, France
- Protim, Univ Rennes, F-35042, Rennes cedex, France
| | | |
Collapse
|
9
|
Takahashi T, Ogiwara K. Roles of melatonin in the teleost ovary: A review of the current status. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110907. [PMID: 33482340 DOI: 10.1016/j.cbpa.2021.110907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Melatonin, the neurohormone mainly synthesized in and secreted from the pineal gland of vertebrates following a circadian rhythm, is an important factor regulating various physiological processes, including reproduction. Recent data indicate that melatonin is also synthesized in the ovary and that it acts directly at the level of the ovary to modulate ovarian physiology. In some teleosts, melatonin is reported to affect ovarian steroidogenesis. The direct action of melatonin on the ovary could be a possible factor promoting oocyte maturation in teleosts. A role for melatonin in follicle rupture during ovulation in the teleost medaka has recently emerged. In addition, melatonin is suggested to affect oocyte maturation by its antioxidant activity. However, the molecular mechanisms underlying these direct effects of melatonin are largely unknown.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Papadaki M, Kaitetzidou E, Mylonas CC, Sarropoulou E. Non-coding RNA Expression Patterns of Two Different Teleost Gonad Maturation Stages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:683-695. [PMID: 32876760 DOI: 10.1007/s10126-020-09991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Non-coding RNAs (ncRNAs) are involved in several different regulatory pathways including reproduction. In teleost fish, efficacious reproduction is heavily dependent on the completion of the reproductive cycle. The presence of ncRNA, however, and their expression dynamics and putative regulatory role in mature and immature gonads have not yet been extensively explored. Therefore, the abundance of ncRNAs in mature and immature female sharpsnout seabream (Diplodus puntazzo) was investigated. The sharpsnout seabream is a rudimentary hermaphrodite which, in captivity, displays dysfunctions in the gonad maturation process. Our analyses revealed a gonad specific read length distribution with two main peaks representing miRNAs (21-26 nt) and PIWI RNA (27-34 nt). Besides, distinct expression patterns for several ncRNA biotypes including microRNAs (miRNAs), PIWI RNAs (piRNAs), and ribosomal RNAs (rRNAs) were detected. Identified miRNA accounted to 938, corresponding to ~ 13% of obtained transcripts. Among the differential expressed ncRNAs, 10 (~ 7%) were annotated as miRNA, out of which 2 were found in higher abundance in immature gonads (miR-125c and miR-24) and 8 (miR-451, miR-7a, miR-122-1, miR190a, miR129, ENSGACT00000029608, ENSGACT00000029489, and ENSGACT00000029667) were found to be higher expressed in mature gonads. Putative miRNA targets, including long non-coding RNAs (lncRNAs) and genes, are proposed. Target genes are involved in several processes of fish oocyte development, such as steroidogenesis, proteolysis, and apoptosis, and may explain hormone regulation. This study demonstrates a gonad maturation biased ncRNA profile which in turn may support the role of ncRNAs in ovarian physiology and reproductive performance of fish, stressing the specific function of each RNA biotype in oocyte development.
Collapse
Affiliation(s)
- Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Iraklion, Crete, Greece
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece.
| |
Collapse
|
11
|
Zhu Y, Wu J, Leng X, Du H, Wu J, He S, Luo J, Liang X, Liu H, Wei Q, Tan Q. Metabolomics and gene expressions revealed the metabolic changes of lipid and amino acids and the related energetic mechanism in response to ovary development of Chinese sturgeon (Acipenser sinensis). PLoS One 2020; 15:e0235043. [PMID: 32589675 PMCID: PMC7319304 DOI: 10.1371/journal.pone.0235043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Captive breeding has been explored in Chinese sturgeon (Acipenser sinensis) for species protection. However, gonad development from stage II to IV of cultured female broodstocks is a handicap. This study aimed to explore the physiological and metabolic changes during the ovary development from stage II to IV of female Chinese sturgeon and the related energy regulatory mechanism, which may be helpful to address the developmental obstacle. The results showed that the oocyte volume increased and the muscle lipid content decreased with the ovary development. Ovarian RNA levels of most genes related to lipid and amino acid metabolism were higher in stage II and III than in stage IV. Serum contents of differential metabolites in arginine, cysteine, methionine, purine, tyrosine, lysine, valine, leucine and isoleucine metabolism pathways peaked at stage III, while the contents of sarcosine, alanine and histidine, as well as most oxylipins derived from fatty acids peaked at stage IV. These results indicated the more active amino acids, lipid metabolism, and energy dynamics of fish body in response to the high energy input of ovary developing from stage II to III, and the importance of alanine, histidine, taurine, folate and oxylipins for fish with ovary at stage IV.
Collapse
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jinming Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Xiaoqian Leng
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Jinping Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Shan He
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiang Luo
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Xufang Liang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hong Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture and Rural Affairs, PRC, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Qingsong Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, PRC, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Passantino L, Zupa R, Pousis C, Mylonas CC, Hala E, Jirillo E, Corriero A. Increased melanomacrophage centres in the liver of reproductively dysfunctional female greater amberjack Seriola dumerili (Risso, 1810). JOURNAL OF FISH DISEASES 2020; 43:503-514. [PMID: 32103518 DOI: 10.1111/jfd.13149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 05/21/2023]
Abstract
The greater amberjack Seriola dumerili is a new aquaculture fish that may display reproductive dysfunctions. During extensive follicular atresia, which is a common reproductive dysfunction in females during vitellogenesis, part of the reabsorbed yolk returns to the liver to be metabolized and recycled. Melanomacrophage centres (MMCs) are aggregates of macrophage-like cells that play a role in the destruction, detoxification and recycling of endogenous and exogenous materials, and have been associated with systemic stress. Wild and captive-reared greater amberjack were sampled in the Mediterranean Sea during two different phases of the reproductive cycle. The liver of reproductively dysfunctional captive-reared females sampled during the spawning season showed a high density of both MMCs and apoptotic cells. A weak liver anti-cytochrome P450 monooxygenase 1A immunoreactivity was observed, suggesting that the examined fish were not exposed to environmental pollutants. We propose that the observed increase in MMCs and apoptosis in captive-reared fish was related to the hepatic overload associated to the metabolism of yolk proteins reabsorbed during extensive follicular atresia. Since follicular atresia is a frequent physiological and pathological event in teleosts, we suggest that the reproductive state should be always assessed when MMCs are used as markers of exposure to stress or pollutants.
Collapse
Affiliation(s)
- Letizia Passantino
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| | - Rosa Zupa
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| | - Chrysovalentinos Pousis
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Heraklion, Greece
| | - Edmond Hala
- Department of Aquaculture and Fisheries, Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Aldo Corriero
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
13
|
Yilmaz O, Patinote A, Nguyen T, Com E, Pineau C, Bobe J. Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio). Mol Reprod Dev 2019; 86:1168-1188. [DOI: 10.1002/mrd.23231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ozlem Yilmaz
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Amélie Patinote
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Thaovi Nguyen
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Emmanuelle Com
- Protim, Inserm U1085, IrsetCampus de Beaulieu, Université de Rennes 1, Proteomics Core Facility Rennes Cedex France
| | - Charles Pineau
- Protim, Inserm U1085, IrsetCampus de Beaulieu, Université de Rennes 1, Proteomics Core Facility Rennes Cedex France
| | - Julien Bobe
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| |
Collapse
|
14
|
Abstract
Our understanding of the functions of vitellogenin (Vtg) in reproduction has undergone an evolutionary transformation over the past decade. Primarily, Vtg was regarded as a female-specific reproductive protein, which is cleaved into yolk proteins including phosvitin (Pv) and lipovitellin (Lv), stored in eggs, providing the nutrients for early embryos. Recently, Vtg has been shown to be an immunocomponent factor capable of protecting the host against the attack by microbes including bacteria and viruses. Moreover, Pv and Lv that both are proteolytically cleaved products of maternal Vtg, as well as Pv-derived small peptides, all display an antibacterial role in developing embryos. In addition, both Vtg and yolk protein Pv possess antioxidant activity capable of protecting cells from damage by free radicals. Collectively, these data indicate that Vtg, in addition to being involved in yolk protein formation, also plays non-nutritional roles via functioning as immune-relevant molecules and antioxidant reagents.
Collapse
|
15
|
Xue R, Wang X, Xu S, Liu Y, Feng C, Zhao C, Liu Q, Li J. Expression profile and localization of vitellogenin mRNA and protein during ovarian development in turbot (Scophthalmus maximus). Comp Biochem Physiol B Biochem Mol Biol 2018; 226:53-63. [DOI: 10.1016/j.cbpb.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
16
|
Yilmaz O, Patinote A, Nguyen T, Bobe J. Multiple vitellogenins in zebrafish (Danio rerio): quantitative inventory of genes, transcripts and proteins, and relation to egg quality. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1509-1525. [PMID: 29882000 DOI: 10.1007/s10695-018-0524-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Scrutiny of the zebrafish (Danio rerio) genomic database confirmed eight functional vitellogenin (vtg) genes, each with one or two transcript variants, and the encoded Vtg polypeptides were structurally and functionally characterized in detail by in silico and experimental analyses. There were five type I (vtgs1, 4, 5, 6, and 7), two type II (vtg2 and vtg8), and one type III (vtg3) vtg gene(s) encoding three major types of Vtg protein based on subdomain structure (Vtg-I, Vtg-II, and Vtg-III, respectively). Among various tissues of mature zebrafish, transcripts of the eight vtg genes were detected by RNA-Seq only in liver and intestine, with liver being the main site of vtg expression. All vtg transcripts except vtg8 were also detected in mature female liver by RT-qPCR. The relative abundances of Vtg proteins and their variants were quantified by LC-MS/MS in the liver of mature females and in eggs. The Vtgs were generally several fold more abundant in eggs, but profiles of abundance of the 19 different forms of Vtg evaluated were otherwise similar in liver and eggs, suggesting that yolk protein composition is determined largely by hepatic Vtg synthesis and secretion. Based on transcript and protein levels, Vtg-I is, by far, the dominant type of Vtg in zebrafish, followed by Vtg-II and then Vtg-III. When relative abundances of the different forms of Vtg were evaluated by LC-MS/MS in egg batches of good versus poor quality, no differences in the proportional abundance of individual forms of Vtg, or of different Vtg types, attributable to egg quality were observed.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Fish Physiology and Genomics Institute, INRA UR1037, Rennes Cedex, France.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Amélie Patinote
- Fish Physiology and Genomics Institute, INRA UR1037, Rennes Cedex, France
| | - Thaovi Nguyen
- Fish Physiology and Genomics Institute, INRA UR1037, Rennes Cedex, France
| | - Julien Bobe
- Fish Physiology and Genomics Institute, INRA UR1037, Rennes Cedex, France
| |
Collapse
|
17
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
18
|
Gwon SH, Kim HK, Baek HJ, Lee YD, Kwon JY. Cathepsin B & D and the Survival of Early Embryos in Red Spotted Grouper, Ephinephelus akaara. Dev Reprod 2017; 21:457-466. [PMID: 29354791 PMCID: PMC5769140 DOI: 10.12717/dr.2017.21.4.457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022]
Abstract
Survival of embryos largely depends on yolk processing during early development. Proteolytic enzymes, cathepsin B & D (ctsb & ctsd) are known to have some important roles in yolk processing of various fish species. Mature female red spotted groupers were injected with human chorionic gonadotropin (HCG) to induce ovulation. The fertilized eggs and embryos were sampled at 0, 4 and 24 HPF (hours post fertilization). Survivals of each groups of embryos were checked at 24 and 48 HPH (hours post hatching). Transcripts of ctsb & ctsd showed the highest level at 0 HPF and relatively high at 4 HPF, but greatly decreased at 24 HPF. In bad egg quality group (BE, embryos survived until 24 HPH), transcript level of ctsb at 4 HPF were significantly lower than the transcript level at the same stage in good egg quality group (GE, embryos survived until 48 HPH) while no significant change of ctsb transcript level was observed at 0 or 24 HPF between BE and GE. Transcript level of ctsd was decreased at 24 HPF, but the difference was not as strong as the case of ctsb transcript. These results suggest that maternal ctsb transcript rather than ctsd transcript is likely to be involved in egg quality resulting in the difference of survival rate of embryos at early developmental period in this species.
Collapse
Affiliation(s)
- Seo-Hui Gwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hyun Kyu Kim
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Don Lee
- Dept. of Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
19
|
Govoni JJ, Morris JA, Evans DW. Tracing Dietary Mercury Histochemically, with Autometallography, through the Liver to the Ovaries and Spawned Eggs of the Spot, a Temperate Coastal Marine Fish. JOURNAL OF AQUATIC ANIMAL HEALTH 2017; 29:173-180. [PMID: 28686515 DOI: 10.1080/08997659.2017.1349009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to mercury (Hg) results in reproductive abnormalities and deficiencies in female fish. We traced the maternal assimilation and redistribution of dietary inorganic (HgII) and organic (MeHg) forms of Hg in a coastal marine fish, the Spot Leiostomus xanthurus. We conducted a 90-d laboratory experiment in which treatment Spot were fed muscle of Blue Marlin Makaira nigricans with elevated concentrations of Hg mixed with a commercial fish food, while control Spot were fed only commercial food pellets. Gonadal maturation was induced by shortening the photoperiod and increasing the temperature. Spawning was induced by intramuscular injection of human chorionic gonadotropin at 100 IU/kg. Solid-sampling atomic absorption spectrophotometry measured the total Hg (THg), HgII, and MeHg in Blue Marlin muscle. Autometallography located Hg-sulfide granules in the liver, ovaries, and spawned eggs, and densitometry provided comparisons of Hg-sulfide granules in the ovaries of treatment and control Spot. Overall, the intensity and prevalence of Hg-sulfide granules were greater in the liver, ovaries, and eggs from treatment Spot than in those from controls. The tissue and cellular distribution of Hg-sulfide granules differed. Received November 18, 2016; accepted June 18, 2017.
Collapse
Affiliation(s)
- John J Govoni
- a National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research , 101 Pivers Island Road, Beaufort , North Carolina 28516 , USA
| | - James A Morris
- a National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research , 101 Pivers Island Road, Beaufort , North Carolina 28516 , USA
| | - David W Evans
- a National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research , 101 Pivers Island Road, Beaufort , North Carolina 28516 , USA
| |
Collapse
|
20
|
Cerdà J, Chauvigné F, Finn RN. The Physiological Role and Regulation of Aquaporins in Teleost Germ Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:149-171. [DOI: 10.1007/978-94-024-1057-0_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Ferreira MF, Varela ML, Lo Nostro F, Ansaldo M, Genovese G. Reproductive aspects of Notothenia rossii and N. coriiceps (Perciformes, Nototheniidae) at Potter Cove, 25 de Mayo (King George) Island during austral summer. Polar Biol 2016. [DOI: 10.1007/s00300-016-1918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Yilmaz O, Prat F, Ibáñez AJ, Köksoy S, Amano H, Sullivan CV. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis. Comp Biochem Physiol B Biochem Mol Biol 2015; 194-195:71-86. [PMID: 26643259 DOI: 10.1016/j.cbpb.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya, 07070, Turkey
| | - Francisco Prat
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Avda. República Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - A Jose Ibáñez
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal, s/n 12595, Ribera de Cabanes, Castellòn, Spain
| | - Sadi Köksoy
- Central Research and Immunology Laboratories, Akdeniz University, Faculty of Medicine, Antalya, 07070, Turkey
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig V Sullivan
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
23
|
Schilling J, Loziuk PL, Muddiman DC, Daniels HV, Reading BJ. Mechanisms of Egg Yolk Formation and Implications on Early Life History of White Perch (Morone americana). PLoS One 2015; 10:e0143225. [PMID: 26580971 PMCID: PMC4651544 DOI: 10.1371/journal.pone.0143225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
The three white perch (Morone americana) vitellogenins (VtgAa, VtgAb, VtgC) were quantified accurately and precisely in the liver, plasma, and ovary during pre-, early-, mid-, and post-vitellogenic oocyte growth using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Western blotting generally mirrored the PC-IDMS results. By PC-IDMS, VtgC was quantifiable in pre-vitellogenic ovary tissues and VtgAb was quantifiable in pre-vitellogenic liver tissues however, neither protein was detected by western blotting in these respective tissues at this time point. Immunohistochemistry indicated that VtgC was present within pre-vitellogenic oocytes and localized to lipid droplets within vitellogenic oocytes. Affinity purification coupled to tandem mass spectrometry using highly purified VtgC as a bait protein revealed a single specific interacting protein (Y-box binding protein 2a-like [Ybx2a-like]) that eluted with suramin buffer and confirmed that VtgC does not bind the ovary vitellogenin receptors (LR8 and Lrp13). Western blotting for LR8 and Lrp13 showed that both receptors were expressed during vitellogenesis with LR8 and Lrp13 expression highest in early- and mid-vitellogenesis, respectively. The VtgAa within the ovary peaked during post-vitellogenesis, while VtgAb peaked during early-vitellogenesis in both white perch and the closely related striped bass (M. saxatilis). The VtgC was steadily accumulated by oocytes beginning during pre-vitellogenesis and continued until post-vitellogenesis and its composition varies widely between striped bass and white perch. In striped bass, the VtgC accounted for 26% of the vitellogenin-derived egg yolk, however in the white perch it comprised only 4%. Striped bass larvae have an extended developmental window and these larvae have yolk stores that may enable them to survive in the absence of food for twice as long as white perch after hatch. Thus, the VtgC may play an integral role in providing nutrients to late stage fish larvae prior to the onset of exogenous feeding and its composition in the egg yolk may relate to different early life histories among this diverse group of animals.
Collapse
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Philip L. Loziuk
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David C. Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Harry V. Daniels
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yilmaz O, Prat F, Ibañez AJ, Amano H, Koksoy S, Sullivan CV. Estrogen-induced yolk precursors in European sea bass, Dicentrarchus labrax: Status and perspectives on multiplicity and functioning of vitellogenins. Gen Comp Endocrinol 2015; 221:16-22. [PMID: 25637672 DOI: 10.1016/j.ygcen.2015.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/30/2014] [Accepted: 01/10/2015] [Indexed: 01/22/2023]
Abstract
The estrogen-inducible egg yolk precursor, vitellogenin, of the European sea bass (Dicentrarchus labrax) has received considerable scientific attention by virtue of its central importance in determination of oocyte growth and egg quality in this important aquaculture species. However, the multiplicity of vitellogenins in the sea bass has only recently been examined. Recent cloning and homology analyses have revealed that the sea bass possesses the three forms of vitellogenin, VtgAa, VtgAb and VtgC, reported to occur in some other highly evolved teleosts. Progress has been made in assessing the relative abundance and special structural features of the three Vtgs and their likely roles in oocyte maturation and embryonic nutrition. This report discusses these findings in the context of our prior knowledge of vitellogenesis in this species and of the latest advances in our understanding of the evolution and function of multiple Vtgs in acanthomorph fishes.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya 07070, Turkey; National Institute of Agrinomic Research, Campus de Beaulieu, 35000 Rennes Cedex, France(1).
| | - Francisco Prat
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Castellón, Spain; Instituto de Ciencias Marinas de Andalucía (CSIC), 11510 Cádiz, Spain(1)
| | - Antonio José Ibañez
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Castellón, Spain; Electron and Confocal Microscopy Service, University of Valencia, 46100 Valencia, Spain(1)
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Sadi Koksoy
- Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Craig V Sullivan
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Carolina AquaGyn, P.O. Box 12914, Raleigh, NC 27605, USA(1)
| |
Collapse
|
25
|
Quagio-Grassiotto I, Wildner DD, Guimarães-Bassoli ACD. A cytochemical approach to describe oocyte development in the freshwater ostariophysan, Serrasalmus maculatus (Characiformes). Micron 2014; 60:18-28. [DOI: 10.1016/j.micron.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 12/17/2013] [Accepted: 01/05/2014] [Indexed: 12/15/2022]
|
26
|
Williams VN, Reading BJ, Hiramatsu N, Amano H, Glassbrook N, Hara A, Sullivan CV. Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:395-415. [PMID: 24005815 DOI: 10.1007/s10695-013-9852-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
The multiple vitellogenin (Vtg) system of striped bass, a perciform species spawning nearly neutrally buoyant eggs in freshwater, was investigated. Vitellogenin cDNA cloning, Western blotting of yolk proteins (YPs) using Vtg and YP type-specific antisera, and tandem mass spectrometry (MS/MS) of the YPs revealed the complex mechanisms of yolk formation and maturation in this species. It was discovered that striped bass possesses a tripartite Vtg system (VtgAa, VtgAb, and VtgC) in which all three forms of Vtg make a substantial contribution to the yolk. The production of Vtg-derived YPs is generally similar to that described for other perciforms. However, novel amino-terminal labeling of oocyte YPs prior to MS/MS identified multiple alternative sites for cleavage of these proteins from their parent Vtg, revealing a YP mixture far more complex than reported previously. This approach also revealed that the major YP product of each form of striped bass Vtg, lipovitellin heavy chain (LvH), undergoes limited degradation to smaller polypeptides during oocyte maturation, unlike the case in marine fishes spawning buoyant eggs in which LvHAa undergoes extensive proteolysis to osmotically active free amino acids. These differences likely reflect the lesser need for hydration of pelagic eggs spawned in freshwater. The detailed characterization of Vtgs and their proteolytic fate(s) during oocyte growth and maturation establishes striped bass as a freshwater model for investigating teleost multiple Vtg systems.
Collapse
Affiliation(s)
- V N Williams
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, 127 David Clark Labs, Raleigh, NC, 27695, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Williams VN, Reading BJ, Amano H, Hiramatsu N, Schilling J, Salger SA, Islam Williams T, Gross K, Sullivan CV. Proportional accumulation of yolk proteins derived from multiple vitellogenins is precisely regulated during vitellogenesis in striped bass (Morone saxatilis). ACTA ACUST UNITED AC 2014; 321:301-15. [DOI: 10.1002/jez.1859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Valerie N. Williams
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Benjamin J. Reading
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Haruna Amano
- Graduate School of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Justin Schilling
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Scott A. Salger
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Taufika Islam Williams
- Mass Spectrometry Laboratory; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Kevin Gross
- Department of Statistics; North Carolina State University; Raleigh North Carolina
| | - Craig V. Sullivan
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| |
Collapse
|
28
|
Shikina S, Chen CJ, Chung YJ, Shao ZF, Liou JY, Tseng HP, Lee YH, Chang CF. Yolk formation in a stony coral Euphyllia ancora (Cnidaria, Anthozoa): insight into the evolution of vitellogenesis in nonbilaterian animals. Endocrinology 2013; 154:3447-59. [PMID: 23766130 DOI: 10.1210/en.2013-1086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitellogenin (Vg) is a major yolk protein precursor in numerous oviparous animals. Numerous studies in bilateral oviparous animals have shown that Vg sequences are conserved across taxa and that Vgs are synthesized by somatic-cell lineages, transported to and accumulated in oocytes, and eventually used for supporting embryogenesis. In nonbilateral animals (Polifera, Cnidaria, and Ctenophora), which are regarded as evolutionarily primitive, although Vg cDNA has been identified in 2 coral species from Cnidaria, relatively little is known about the characteristics of yolk formation in their bodies. To address this issue, we identified and characterized 2 cDNA encoding yolk proteins, Vg and egg protein (Ep), in the stony coral Euphyllia ancora. RT-PCR analysis revealed that expression levels of both Vg and Ep increased in the female colonies as coral approached the spawning season. In addition, high levels of both Vg and Ep transcripts were detected in the putative ovarian tissue, as determined by tissue distribution analysis. Further analyses using mRNA in situ hybridization and immunohistochemistry determined that, within the putative ovarian tissue, these yolk proteins are synthesized in the mesenterial somatic cells but not in oocytes themselves. Furthermore, Vg proteins that accumulated in eggs were most likely consumed during the coral embryonic development, as assessed by immunoblotting. The characteristics of Vg that we identified in corals were somewhat similar to those of Vg in bilaterian oviparous animals, raising the hypothesis that such characteristics were likely present in the oogenesis of some common ancestor prior to divergence of the cnidarian and bilaterian lineages.
Collapse
Affiliation(s)
- Shinya Shikina
- Department of Aquaculture, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamane K, Yagai T, Nishimiya O, Sugawara R, Amano H, Fujita T, Hiramatsu N, Todo T, Matsubara T, Hara A. Characterization of vitellogenin and its derived yolk proteins in cloudy catshark (Scyliorhinus torazame). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:373-390. [PMID: 22918791 DOI: 10.1007/s10695-012-9706-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
Elasmobranchs (sharks and rays) exhibit unique reproductive characteristics and, in contrast to the situation in teleosts, very little is known about the identity, structure and physical characteristics of their egg yolk proteins. The aims of this study were to (1) detect and purify the vitellogenin (Vtg; egg yolk precursor) and yolk proteins (YPs) of the cloudy catshark (Scyliorhinus torazame), (2) examine the relationships between Vtg and YPs and (3) characterize and classify the deduced primary structure of the Vtg transcript (vtg). The apparent molecular weights of purified Vtg and putative Vtg-related YPs (lipovitellin: Lv, phosvitin: Pv) were determined by gel filtration and were ~560, >669 and ~58 kDa, respectively. Following SDS-PAGE, these purified products (i.e., Vtg, Lv and Pv) appeared as bands of ~210, ~110 and ~22 kDa, respectively. On Western blots, antisera against purified Vtg, Lv and Pv recognized the ~210 kDa Vtg band. Catshark Pv, in contrast to teleost Pvs, had a very low serine content. The catshark Vtg cDNA sequence (vtg) appeared to contain an open-reading frame consisting of domains encoding Lv, Pv and β'-component (β'-c). A phylogenetic analysis, with a consideration of genome duplication events, placed catshark vtg into the 'vtgAB type.' It is concluded that at least a single major type of Vtg protein, which is transcribed and translated from catshark vtgAB gene, is the precursor of three egg yolk proteins (Lv, Pv and β'-c) in catshark.
Collapse
Affiliation(s)
- Kodai Yamane
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zapater C, Chauvigné F, Tingaud-Sequeira A, Finn RN, Cerdà J. Primary oocyte transcriptional activation of aqp1ab by the nuclear progestin receptor determines the pelagic egg phenotype of marine teleosts. Dev Biol 2013; 377:345-62. [PMID: 23499660 DOI: 10.1016/j.ydbio.2013.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 11/30/2022]
Abstract
In marine teleosts, the aqp1ab water channel plays a vital role in the development of the pelagic egg phenotype. However, the developmental control of aqp1ab activation during oogenesis remains to be established. Here, we report the isolation of the 5'-flanking region of the teleost gilthead seabream aqp1ab gene, in which we identify conserved cis-regulatory elements for the binding of the nuclear progestin receptor (Pgr) and members of the Sox family of transcription factors. Subcellular localization studies indicated that the Pgr, as well as sox3 and -8b transcripts, are co-expressed in seabream oogonia, whereas in meiosis-arrested primary growth (pre-vitellogenic) oocytes, when aqp1ab mRNA and protein are first synthesized, the Pgr appears to be completely translocated from the ooplasm into the nucleus. By contrast, sox9b is highly expressed in more advanced oocytes, coinciding with a strong depletion of aqp1ab transcripts in the oocyte. Functional characterization of wild-type and mutated aqp1ab promoter constructs, using mammalian cells and Xenopus laevis oocytes, demonstrated that aqp1ab transcription is initiated by the Pgr, which is activated by the progestin 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P), the natural ligand of the seabream Pgr. In vitro incubation of seabream primary ovarian explants with the follicle-stimulating hormone or 17,20β-P confirmed that progestin-activated Pgr enhanced Aqp1ab synthesis via the aqp1ab promoter. However, transactivation assays in heterologous systems showed that Sox transcription factors can potentially modulate this mechanism. These data uncover the existence of an endocrine pathway involved in the early activation of a water channel necessary for egg formation in marine teleosts.
Collapse
Affiliation(s)
- Cinta Zapater
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Rawat VS, Rani KV, Phartyal R, Sehgal N. Vitellogenin genes in fish: differential expression on exposure to estradiol. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:39-46. [PMID: 22535407 DOI: 10.1007/s10695-012-9626-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Three types of vitellogenins (Vgs) namely vitellogenin A (VgA), vitellogenin B (VgB) and vitellogenin C (VgC) have been identified in fishes. The existence of VgA and VgB is reported in the Indian freshwater murrel Channa punctatus. Gene-specific primers were designed using available nucleotide sequences in National Centre for Biotechnology Information (NCBI), for amplification of VgA and VgB cDNA. Differential processing of Vgs is evident in many fishes. Adult male murrel expressed both the VgA and VgB genes when estradiol-17β (E(2)) is injected in vivo and Vg levels in blood quantified by Enzyme linked immunosorbent assay (ELISA) showed a dose-related response in such treatments. Cultured hepatocytes on treatment with E(2), however, expressed only VgB as detected by RT-PCR, suggesting different regulatory mechanism for the VgA and VgB genes.
Collapse
Affiliation(s)
- V S Rawat
- Department of Zoology, Hindu College, University of Delhi, Delhi, 110007, India
| | | | | | | |
Collapse
|
32
|
Cerdà J, Zapater C, Chauvigné F, Finn RN. Water homeostasis in the fish oocyte: new insights into the role and molecular regulation of a teleost-specific aquaporin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:19-27. [PMID: 22278707 DOI: 10.1007/s10695-012-9608-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
The discovery of the role of a teleost-specific aquaporin (Aqp1ab) during the process of oocyte hydration in marine fish producing pelagic (floating) eggs, recently confirmed by molecular approaches, has revealed that this mechanism is more sophisticated than initially thought. Recent phylogenetic and genomic studies suggest that Aqp1ab likely evolved by tandem duplication from a common ancestor and further neofunctionalized in oocytes for water transport. Investigations into the regulation of Aqp1ab during oogenesis indicate that the mRNA and protein product are highly accumulated during early oocyte growth, possibly through the transcriptional activation of the aqp1ab promoter by the classical nuclear progesterone receptor and perhaps by Sry-related high mobility group [HMG]-box (Sox) transcription factors. During oocyte growth and maturation, Aqp1ab intracellular trafficking may be regulated by phosphorylation and/or dephosphorylation of specific C-terminal residues in Aqp1ab, as well as by signal-mediated sorting processes. These mechanisms possibly regulate the temporal insertion of Aqp1ab into the oocyte plasma membrane during oocyte hydration, although the intracellular signaling pathways involved are yet unknown. Interestingly, in some freshwater species that spawn partially hydrated eggs, high accumulation of transcripts encoding functional Aqp1ab channels have also been found in the ovary. These findings suggest that the Aqp1ab-mediated mechanism for oocyte hydration is likely conserved in teleosts. The tight regulation of Aqp1ab during oogenesis, at both the transcriptional and posttranslational levels, highlights the essential physiological role of this water channel and opens new research avenues for understanding the molecular basis of egg formation in fish.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003, Barcelona, Spain.
| | | | | | | |
Collapse
|
33
|
Grier HJ. Development of the follicle complex and oocyte staging in red drum, sciaenops ocellatus linnaeus, 1776 (perciformes, sciaenidae). J Morphol 2012; 273:801-29. [DOI: 10.1002/jmor.20034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 02/20/2012] [Accepted: 02/26/2012] [Indexed: 11/09/2022]
|
34
|
Identification, purification, and immunoassay of stone flounder (Kareius bicolouratus) vitellogenin. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-1014-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Abstract
Aquaporins represent a primordial group of transmembrane solvent channels that have been documented throughout the living biota. This facet alone emphasizes the positive selection pressure for proteins associated with intracellular fluid homeostasis. Amongst extant Eukaryota the highest gene copy number can be found in plants and teleosts, a feature that reflects the genomic duplication history in both groups. In this minireview we discuss the discovery, structure, duplication, and diversification of the aquaporin superfamily. We focus on teleosts as the main models, but include data available for other organisms to provide a broader perspective.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Institute of Biology, Bergen High Technology Center, University of Bergen Bergen, Norway
| | | |
Collapse
|
36
|
Samaee SM, Estévez A. Evidence for the fragmentation of VtgAb LvH in common dentex (Dentex dentex), a marine pelagophil teleost. Theriogenology 2011; 76:110-4. [PMID: 21458053 DOI: 10.1016/j.theriogenology.2011.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/18/2022]
Abstract
Since the timing of the lipovitellin heavy chain (LvH) of vitellogenin Ab (VtgAb) degradation during marine teleosts ontogeny is poorly understood, the current study was planned to address some aspects of this shortcoming. Fertilized eggs (before epiboly) of Dentex dentex were analysed. Vtg-derived proteins, that appeared as 6 protein bands after SDS-PAGE, were purified using specific ion exchange chromatography. Five bands (i.e., ∼78, ∼57, ∼22, ∼19, and ∼17 kDa) were merely stained with Coomassie Blue and one band (i.e., ∼16 kDa) only with Periodic Acid Schiff (PAS). The ∼16 kDa protein band was subjected to a mass spectrometry-based sequencing. These results showed that the ∼16 kDa protein band contains a mixture of "LvH-Ab" derivatives with the same molecular weight. The specific staining system (i.e., PAS) also revealed the glycosylation of some of the LvH-Ab fragments inside the ∼16 kDa protein band. The study provides new data about fragmentation of the LvH-Ab in marine pelagophil teleosts.
Collapse
Affiliation(s)
- S-M Samaee
- Department of Organismic Biology, Faculty of Natural Sciences, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
37
|
Zapater C, Chauvigné F, Norberg B, Finn RN, Cerdà J. Dual neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained and relaxed traits controlling channel function during meiosis resumption in teleosts. Mol Biol Evol 2011; 28:3151-69. [PMID: 21653921 DOI: 10.1093/molbev/msr146] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The preovulatory hydration of teleost oocytes is a unique process among vertebrates. The hydration mechanism is most pronounced in marine acanthomorph teleosts that spawn pelagic (floating) eggs; however, the molecular pathway for water influx remains poorly understood. Recently, we revealed that whole-genome duplication (WGD) resulted in teleosts harboring the largest repertoire of molecular water channels in the vertebrate lineage and that a duplicated aquaporin-1 paralog is implicated in the oocyte hydration process. However, the origin and function of the aquaporin-1 paralogs remain equivocal. By integrating the molecular phylogeny with synteny and structural analyses, we show here that the teleost aqp1aa and -1ab paralogs (previously annotated as aqp1a and -1b, respectively) arose by tandem duplication rather than WGD and that the Aqp1ab C-terminus is the most rapidly evolving subdomain within the vertebrate aquaporin superfamily. The functional role of Aqp1ab was investigated in Atlantic halibut, a marine acanthomorph teleost that spawns one of the largest pelagic eggs known. We demonstrate that Aqp1ab is required for full hydration of oocytes undergoing meiotic maturation. We further show that the rapid structural divergence of the C-terminal regulatory domain causes ex vivo loss of function of halibut Aqp1ab when expressed in amphibian oocytes but not in zebrafish or native oocytes. However, by using chimeric constructs of halibut Aqp1aa and -1ab and antisera specifically raised against the C-terminus of Aqp1ab, we found that this cytoplasmic domain regulates in vivo trafficking to the microvillar portion of the oocyte plasma membrane when intraoocytic osmotic pressure is at a maximum. Interestingly, by coinjecting polyA(+) mRNA from postvitellogenic halibut follicles, ex vivo intracellular trafficking of Aqp1ab is rescued in amphibian oocytes. These data reveal that the physiological role of Aqp1ab during meiosis resumption is conserved in teleosts, but the remarkable degeneracy of the cytoplasmic domain has resulted in alternative regulation of the trafficking mechanism.
Collapse
Affiliation(s)
- Cinta Zapater
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Tingaud-Sequeira A, Carnevali O, Cerdà J. Cathepsin B differential expression and enzyme processing and activity during Fundulus heteroclitus embryogenesis. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:221-8. [PMID: 21059400 DOI: 10.1016/j.cbpa.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
The role of lysosomal proteases such as cathepsin B (Ctsb) and one of the paralogs of cathepsin L (Ctsla) during yolk metabolism in fish oocytes is well established. However, the function of Ctsb during embryogenesis, particularly in marine teleosts, has been poorly documented. In this study, the spatio-temporal expression of Ctsb and Ctsla, their enzymatic activities, and the processing of the Ctsb and its cellular localization, was investigated in developing embryos of the killifish (Fundulus heteroclitus). Both fhctsb and fhctsla transcript levels, as well as cathepsin B- and L-like activities, gradually increased in embryos from the 2-4 cell stage up to 7 days post-fertilization. During the morula to gastrula transition an increase of the active FhCtsb single chain form was followed by a rise in cathepsin B activity, which were apparently regulated by post-transcriptional mechanisms. During neurulation, a 8-fold increase in cathepsin B activity was accompanied by a more moderate increase in cathepsin L activity, which was 6-fold enhanced by 7 dpf. These increased catalytic activities were well-correlated to changes in the electrophoretic pattern of yolk proteins and a strong expression of fhctsb and its protein product in the yolk syncytial layer. The increase of cathepsin B activity was further correlated with an increment of the relative amount of the FhCtsb single and double chain forms, both active forms of FhCtsb. These results suggest that FhCtsb may be involved in the mechanisms underlying the onset of gastrulation in F. heteroclitus embryos, and may play complementary roles with FhCtsla during yolk metabolism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | | |
Collapse
|
39
|
Amano H, Mochizuki M, Fujita T, Hiramatsu N, Todo T, Hara A. Purification and characterization of a novel incomplete-type vitellogenin protein (VgC) in Sakhalin taimen (Hucho perryi). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:41-8. [DOI: 10.1016/j.cbpa.2010.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
40
|
Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 2010; 10:38. [PMID: 20149227 PMCID: PMC2829555 DOI: 10.1186/1471-2148-10-38] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/11/2010] [Indexed: 01/15/2023] Open
Abstract
Background Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown. Results The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur. Conclusion The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
42
|
Mylonas CC, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 2010; 165:516-34. [PMID: 19318108 DOI: 10.1016/j.ygcen.2009.03.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022]
Abstract
Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered when choosing a spawning induction procedure include (a) the developmental stage of the gonads at the time the hormonal therapy is applied, (b) the type of hormonal therapy, (c) the possible stress induced by the manipulation necessary for the hormone administration and (d) in the case of artificial insemination, the latency period between hormonal stimulation and stripping for in vitro fertilization.
Collapse
Affiliation(s)
- Constantinos C Mylonas
- Institute of Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece.
| | | | | |
Collapse
|
43
|
Samaee SM, Mente E, Estévez A, Giménez G, Lahnsteiner F. Embryo and larva development in common dentex (Dentex dentex), a pelagophil teleost: the quantitative composition of egg-free amino acids and their interrelations. Theriogenology 2010; 73:909-19. [PMID: 20083301 DOI: 10.1016/j.theriogenology.2009.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
Abstract
Free amino acids (FAAs) play a key role in the physiology of marine teleosts (eggs, embryos, and larvae). However, the relationship between the egg FAAs content and the production of viable embryos and larvae (at different developmental stages) in batch spawner pelagophils has not yet comprehensively been investigated. Viable eggs of common dentex, Dentex dentex, were obtained from captive broodstocks. Egg wet weight (WW), dry weight (DW), and water content (%W) and viability parameters, or VPs (egg floating rate [FR], hatching rate [HR], and larval survival rate [SR] at days 0 to 5 posthatch) were determined for 45 egg batches. The egg batches were classified according to their HR magnitude. Twelve egg batches with the same WW, DW, and %W were taken from the same broodstock and at the same developmental stage to determine the qualitative and quantitative composition of FAAs. The total FAA (TFAA) content, glutamic acid (Glu), asparagine (Asn), glutamine (Gln), and arginine (Arg) were correlated with VPs. The Glu was significantly correlated with HR and SR at 0 day posthatch (dph), the Asn with SR at 1 dph, and the Gln and Arg with FR and HR. Of the 361 ratios made based on the absolute concentrations of FAAs, 24 ratios were correlated with VPs (P<0.005) through 42 simple regression models (R(2)=0.641 to 0.846). Of the 42 significant relationships found approximately 10%, approximately 28%, approximately 12%, approximately 30%, approximately 8%, approximately 4%, approximately 2%, approximately 2%, and approximately 2% of the models show the relations of the egg FAAs ratios with FR, HR, SR at days 1 to 5 posthatch, and %W, respectively. A path coefficient in combination with a Pearson's correlation coefficient provided a series of statistical evidences to show the effects of the egg FAAs interrelations on the relationships found between quantitative composition of a FAA and a VP.
Collapse
Affiliation(s)
- S-M Samaee
- Department of Organismic Biology, Faculty of Natural Sciences, University of Salzburg, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
44
|
Cerdà J. Molecular pathways during marine fish egg hydration: the role of aquaporins. JOURNAL OF FISH BIOLOGY 2009; 75:2175-2196. [PMID: 20738681 DOI: 10.1111/j.1095-8649.2009.02397.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The pre-ovulatory hydration of the oocyte of marine teleosts, a unique process among vertebrates that occurs concomitantly with meiosis resumption (oocyte maturation), is a critical process for the correct development and survival of the embryo. Increasing information is available on the molecular mechanisms that control oocyte maturation in fish, but the identification of the cellular processes involved in oocyte hydration has remained long ignored. During the past few years, a number of studies have identified the major inorganic and organic osmolytes that create a transient intra-oocytic osmotic potential for hydrating the oocytes, whereas water influx was believed to occur passively. Recent work, however, has uncovered the role of a novel molecular water channel (aquaporin), designated aquaporin-1b (Aqp1b), which facilitates water permeation and resultant swelling of the oocyte. The Aqp1b belongs to a teleost-specific subfamily of water-selective aquaporins, similar to mammalian aquaporin-1 (AQP1) that has possibly evolved by duplication of a common ancestor and further neofunctionalization in oocytes of marine teleosts for water uptake. Strikingly, Aqp1b shows specific regulatory domains at the cytoplasmic tail, which are key to the vesicular trafficking and temporal insertion of Aqp1b in the oocyte plasma membrane during the phase of maximal hydration. These findings are revealing that the mechanism of oocyte hydration in marine teleosts is a highly regulated process based on the interplay between the generation of inorganic and organic osmolytes and the controlled insertion of Aqp1b in the oocyte surface. The discovery of Aqp1b in teleosts provides an important insight into the molecular basis of the production of viable eggs in marine fish.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
45
|
Jaroszewska M, Dabrowski K. The Nature of Exocytosis in the Yolk Trophoblastic Layer of Silver Arowana (Osteoglossum bicirrhosum) Juvenile, the Representative of Ancient Teleost Fishes. Anat Rec (Hoboken) 2009; 292:1745-55. [DOI: 10.1002/ar.20996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Samaee SM, Lahnsteiner F, Giménez G, Estévez A, Sarg B, Lindner H. Quantitative composition of vitellogenin-derived yolk proteins and their effects on viability of embryos and larvae of common dentex (Dentex dentex), a marine pelagophil teleost. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/jez.549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Reading BJ, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively MO, Sullivan CV. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:169-187. [PMID: 18766402 DOI: 10.1007/s10126-008-9133-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
Three complete cDNAs encoding different forms of vitellogenin (Vtg) were isolated from a white perch (Morone americana) liver cDNA library and characterized with respect to immunobiochemical and functional features of the three Vtgs and their product yolk proteins (YPs) in this species and in the congeneric striped bass (Morone saxatilis). The two longest cDNAs encoded Vtgs with a complete suite of yolk protein domains that, based on comparisons with vtg sequences from other species, were categorized as VtgAa and VtgAb using the current nomenclature for multiple teleost Vtgs. The shorter cDNA encoded a Vtg that lacked a phosvitin domain, had a shortened C-terminus, and was categorized as VtgC. Mapping of peptide sequences from the purified Vtgs and their derived YPs to Vtg sequences deduced from the cDNAs definitively identified the white perch VtgAa, VtgAb, and VtgC proteins. Detailed comparisons of the primary structures of each Vtg with partial or complete sequences of Morone yolk proteins or of Vtgs from other fishes revealed conserved and variant structural elements of teleost Vtgs with functional significance, including, as examples, signal peptide cleavage sites, dimerization sites, cathepsin D protease recognition sites, and receptor-binding domains. These comparisons also yielded an interim revision of the classification scheme for multiple teleost Vtgs.
Collapse
Affiliation(s)
- Benjamin J Reading
- Department of Zoology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kristoffersen BA, Nerland A, Nilsen F, Kolarevic J, Finn RN. Genomic and Proteomic Analyses Reveal Non-Neofunctionalized Vitellogenins in a Basal Clupeocephalan, the Atlantic Herring, and Point to the Origin of Maturational Yolk Proteolysis in Marine Teleosts. Mol Biol Evol 2009; 26:1029-44. [DOI: 10.1093/molbev/msp014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Finn RN, Kolarevic J, Kongshaug H, Nilsen F. Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol Biol 2009; 9:2. [PMID: 19123940 PMCID: PMC2632621 DOI: 10.1186/1471-2148-9-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/05/2009] [Indexed: 02/01/2023] Open
Abstract
Background The multiplicity or loss of the vitellogenin (vtg) gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental), cleavage pattern (meroblastic or holoblastic) and character of the egg (pelagic or benthic). Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch) and Actinopterygii (fish branch). We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration and spawning in the marine environment.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, University of Bergen, Bergen High Technology Center, Postbox 7803, N-5020, Bergen, Norway.
| | | | | | | |
Collapse
|
50
|
Kolarevic J, Nerland A, Nilsen F, Finn RN. Goldsinny wrasse (Ctenolabrus rupestris) is an extreme vtgAa-type pelagophil teleost. Mol Reprod Dev 2008; 75:1011-20. [PMID: 18163443 DOI: 10.1002/mrd.20845] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During oocyte maturation in the goldsinny wrasse (Ctenolabrus rupestris) extensive proteolysis of yolk proteins generates a large pool of free amino acids that drive hydration of the pelagic egg. By cloning hepatic vitellogenins (vtg) and using mass spectrometry, N-terminal microsequencing, and Western-immunoblotting to identify the yolk proteins (Yp), we show that multiple forms of vitellogenin mRNAs (vtgAa, vtgAb, and vtgC) are expressed in the liver, but only a single major class of the Yps derived from vtgAa predominates in the oocytes. Some Yps derived from vtgAb and vtgC appear also to be incorporated in the oocytes and eggs, but only at background levels. During oocyte hydration the vtgAa-derived lipovitellin heavy chain (LvH-Aa) and its cleavage variants are completely degraded leaving only a processed lipovitellin light chain (LvL-Aa) fragment as the major yolk protein for embryonic development. The maturational cleavage site of the LvL-Aa is identified as two amino acids downstream from the conserved Tyr(1168) of VtgAa in Atlantic halibut. In addition, although a beta'-component (approximately 18 kDa) is present in the oocytes, it is not fully degraded during the hydration process.
Collapse
Affiliation(s)
- Jelena Kolarevic
- Department of Biology, University of Bergen, Allégaten, Bergen, Norway.
| | | | | | | |
Collapse
|